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Abstract. k-anonymization techniques have been the focus of intense
research in the last few years. An important requirement for such tech-
niques is to ensure anonymization of data while at the same time min-
imizing the information loss resulting from data modifications. In this
paper we propose an approach that uses the idea of clustering to min-
imize information loss and thus ensure good data quality. The key ob-
servation here is that data records that are naturally similar to each
other should be part of the same equivalence class. We thus formulate a
specific clustering problem, referred to as k-member clustering problem.
We prove that this problem is NP-hard and present a greedy heuristic,
the complexity of which is in O(n2). As part of our approach we de-
velop a suitable metric to estimate the information loss introduced by
generalizations, which works for both numeric and categorical data.

1 Introduction

A recent approach addressing data privacy relies on the notion of k-anonymity
[11,13]. In this approach, data privacy is guaranteed by ensuring that any record
in the released data is indistinguishable from at least (k − 1) other records with
respect to a set of attributes called the quasi-identifier. Although the idea of
k-anonymity is conceptually straightforward, the computational complexity of
finding an optimal solution for the k-anonymity problem has been shown to be
NP-hard, even when one considers only cell suppression [1,9]. The k-anonymity
problem has recently drawn considerable interest from research community, and
a number of algorithms have been proposed [3,4,6,7,8,12]. Current solutions,
however, suffer from high information loss mainly due to reliance on pre-defined
generalization hierarchies [4,6,7,12] or total order [3,8] imposed on each attribute
domain. We discuss these algorithms more in detail in Section 2.

The main goal of our work is to develop a new k-anonymization approach
that addresses such limitations. The key idea underlying our approach is that
the k-anonymization problem can be viewed as a clustering problem. Intuitively,
the k-anonymity requirement can be naturally transformed into a clustering
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problem where we want to find a set of clusters (i.e., equivalence classes), each
of which contains at least k records. In order to maximize data quality, we
also want the records in a cluster to be as similar to each other as possible. This
ensures that less distortion is required when the records in a cluster are modified
to have the same quasi-identifier value. We thus formulate a specific clustering
problem, which we call k-member clustering problem. We prove that this problem
is NP-hard and present a greedy algorithm which runs in time O(n2). Although
our approach does not rely on generalization hierarchies, if there exist some
natural relations among the values in a domain, our algorithm can incorporate
such information to find more desirable solutions. We note that while many
quality metrics have been proposed for the hierarchy-based generalization, a
metric that precisely measures the information loss introduced by the hierarchy-
free generalization has not yet been introduced. For this reason, we define a data
quality metric for the hierarchy-free generalization, which we call information
loss metric. We also show that with a small modification, our algorithm is able
to reduce classification errors effectively.

The remainder of this paper is organized as follows. We review the basic
concepts of the k-anonymity model and survey existing techniques in Section 2.
We formally define the problem of k-anonymization as a clustering problem and
introduce our approach in Section 3. Then we evaluate our approach based on
the experimental results in Section 4. We conclude our discussion in Section 5.

2 Preliminaries

2.1 Basic Concepts

The k-anonymity model assumes that person-specific data are stored in a table
(or a relation) of columns (or attributes) and rows (or records). The process of
anonymizing such a table starts with removing all the explicit identifiers, such as
name and SSN, from the table. However, even though a table is free of explicit
identifiers, some of the remaining attributes in combination could be specific
enough to identify individuals if the values are already known to the public. For
example, as shown by Sweeney [13], most individuals in the United States can
be uniquely identified by a set of attributes such as {ZIP, gender, date of birth}.
Thus, even if each attribute alone is not specific enough to identify individuals,
a group of certain attributes together may identify a particular individual. The
set of such attributes is called quasi-identifier.

The main objective of the k-anonymity model is thus to transform a table so
that no one can make high-probability associations between records in the table
and the corresponding entities. In order to achieve this goal, the k-anonymity
model requires that any record in a table be indistinguishable from at least
(k−1) other records with respect to the pre-determined quasi-identifier. A group
of records that are indistinguishable to each other is often referred to as an
equivalence class. By enforcing the k-anonymity requirement, it is guaranteed
that even though an adversary knows that a k-anonymous table contains the
record of a particular individual and also knows some of the quasi-identifier
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ZIP Gender Age Diagnosis
47918 Male 35 Cancer
47906 Male 33 HIV+
47918 Male 36 Flu
47916 Female 39 Obesity
47907 Male 33 Cancer
47906 Female 33 Flu

Fig. 1. Patient Table

ZIP Gender Age Diagnosis
4791∗ Person [35-39] Cancer
4790∗ Person [30-34] HIV+
4791∗ Person [35-39] Flu
4791∗ Person [35-39] Obesity
4790∗ Person [30-34] Cancer
4790∗ Person [30-34] Flu

Fig. 2. 3-anonymous Patient table

attribute values of the individual, he/she cannot determine which record in the
table corresponds to the individual with a probability greater than 1/k. For
example, a 3-anonymous version of the table in Fig. 1 is shown in Fig. 2.

2.2 Existing Techniques

The k-anonymity requirement is typically enforced through generalization, where
real values are replaced with “less specific but semantically consistent values”
[13]. Given a domain, there are various ways to generalize the values in the
domain. Typically, numeric values are generalized into intervals (e.g., [12−19]),
and categorical values are generalized into a set of distinct values (e.g., {USA,
Canada}) or a single value that represents such a set (e.g., North-America).

Various generalization strategies have been proposed. In [7,11,12], a non-
overlapping generalization-hierarchy is first defined for each attribute of quasi-
identifier. Then an algorithm tries to find an optimal (or good) solution which
is allowed by such generalization hierarchies. Note that in these schemes, if a
lower level domain needs to be generalized to a higher level domain, all the
values in the lower domain are generalized to the higher domain. This restric-
tion could be a significant drawback in that it may lead to relatively high
data distortion due to unnecessary generalization. The algorithms in [4,6], on
the other hand, allow values from different domain levels to be combined to
represent a generalization. Although this leads to much more flexible general-
ization, possible generalizations are still limited by the imposed generalization
hierarchies.

Recently, some schemes that do not rely on generalization hierarchies [3,8]
have been proposed. For instance, LeFevre et al. [8] transform the k-anonymity
problem into a partitioning problem. Specifically, their approach consists of the
following two steps. The first step is to find a partitioning of the d-dimensional
space, where d is the number of attributes in the quasi-identifier, such that
each partition contains at least k records. Then the records in each partition
are generalized so that they all share the same quasi-identifier value. Although
shown to be efficient, these approaches also have a disadvantage that it requires
a total order for each attribute domain. This makes it impractical in most cases
involving categorical data which have no meaningful order.
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3 Anonymization and Clustering

The key idea underlying our approach is that the k-anonymization problem can
be viewed as a clustering problem. Clustering is the problem of partitioning a set
of objects into groups such that objects in the same group are more similar to
each other than objects in other groups with respect to some defined similarity
criteria [5]. Intuitively, an optimal solution of the k-anonymization problem is
indeed a set of equivalence classes such that records in the same equivalence
class are very similar to each other, thus requiring a minimum generalization.

3.1 k-Anonymization as a Clustering Problem

Typical clustering problems require that a specific number of clusters be found
in solutions. However, the k-anonymity problem does not have a constraint on
the number of clusters; instead, it requires that each cluster contains at least
k records. Thus, we pose the k-anonymity problem as a clustering problem,
referred to as k-member clustering problem.

Definition 1. (k-member clustering problem) The k-member clustering
problem is to find a set of clusters from a given set of n records such that
each cluster contains at least k (k ≤ n) data points and that the sum of all
intra-cluster distances is minimized. Formally, let S be a set of n records and
k the specified anonymization parameter. Then the optimal solution of the k-
clustering problem is a set of clusters E = {e1, . . . , em} such that:

1. ∀ i �= j ∈ {1, . . . , m}, ei ∩ ej = ∅,
2.

⋃
i=1,...,m ei = S,

3. ∀ ei ∈ E , |ei| ≥ k, and
4.

∑
�=1,...,m |e�| · MAXi,j = 1,...,|e�| Δ(p(�,i), p(�,j)) is minimized.

Here |e| is the size of cluster e, p(�,i) represents the i-th data point in cluster e�,
and Δ(x, y) is the distance between two data points x and y. �

Note that in Definition 1, we consider the sum of all intra-cluster distances,
where an intra-cluster distance of a cluster is defined as the maximum distance
between any two data points in the cluster (i.e., the diameter of the cluster).
As we describe in the following section, this sum captures the total information
loss, which is the amount of data distortion that generalizations introduce to the
entire table.

3.2 Distance and Cost Metrics

At the heart of every clustering problem are the distance functions that measure
the dissimilarities among data points and the cost function which the clustering
problem tries to minimize. The distance functions are usually determined by the
type of data (i.e., numeric or categorical) being clustered, while the cost function
is defined by the specific objective of the clustering problem. In this section, we
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describe our distance and cost functions which have been specifically tailored for
the k-anonymization problem.

As previously discussed, a distance function in a clustering problem measures
how dissimilar two data points are. As the data we consider in the k-anonymity
problem are person-specific records that typically consist of both numeric and
categorical attributes, we need a distance function that can handle both types
of data at the same time.

For a numeric attribute, the difference between two values (e.g., |x−y|) natu-
rally describes the dissimilarity (i.e., distance) of the values. This measure is also
suitable for the k-anonymization problem. To see this, recall that when records in
the same equivalence class are generalized, the generalized quasi-identifier must
subsume all the attribute values in the equivalence class. That is, the general-
ization of two values x and y in a numeric attribute is typically represented as
a range [x, y], provided that x < y. Thus, the difference captures the amount of
distortion caused by the generalization process to the respective attribute (i.e.,
the length of the range).

Definition 2. (Distance between two numeric values) Let D be a finite
numeric domain. Then the normalized distance between two values vi, vj ∈ D is
defined as:

δN(v1, v2) = |v1 − v2| / |D|,
where |D| is the domain size measured by the difference between the maximum
and minimum values in D. �

For categorical attributes, however, the difference is no longer applicable as most
of the categorical domains cannot be enumerated in any specific order. The
most straightforward solution is to assume that every value in such a domain is
equally different to each other; e.g., the distance of two values is 0 if they are
the same, and 1 if different. However, some domains may have some semantic
relationships among the values. In such domains, it is desirable to define the
distance functions based on the existing relationships. Such relationships can
be easily captured in a taxonomy tree 1. We assume that a taxonomy tree of
a domain is a balanced tree of which the leaf nodes represent all the distinct
values in the domain. For example, Fig. 3 illustrates a natural taxonomy tree for
the Country attribute. However, for some attributes such as Occupation, there
may not exist any semantic relationship which can help in classifying the domain
values. For such domains, all the values are classified under a common value as
in Fig. 4. We now define the distance function for categorical values as follows:

Definition 3. (Distance between two categorical values) Let D be a cat-
egorical domain and TD be a taxonomy tree defined for D. The normalized
distance between two values vi, vj ∈ D is defined as:

δC(v1, v2) = H(Λ(vi, vj)) / H(TD),

1 Taxonomy tree can be considered similar to generalization hierarchy introduced
in [7,11,12]. However, we treat taxonomy tree not as a restriction, but a user’s
preference.
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Country 

America Asia 

North West

USA Canada Iran    Egypt   

East

India    Japan 

South

Brazil Mexico

Fig. 3. Taxonomy tree of Country

Occupation 

   Armed-Forces  Teacher  Doctor  Salesman   Tech-Support   

Fig. 4. Taxonomy tree of Occupation

where Λ(x, y) is the subtree rooted at the lowest common ancestor of x and y,
and H(R) represents the height of tree T . �

Example 1. Consider attribute Country and its taxonomy tree in Fig. 3. The
distance between India and USA is 3/3 = 1, while the distance between India
and Iran is 2/3 = 0.66. On the other hand, for attribute Occupation and its
taxonomy tree in Fig. 4 which goes up only one level, the distance between any
two values is always 1.

Combining the distance functions for both numeric and categorical domains, we
define the distance between two records as follows:

Definition 4. (Distance between two records) Let QT = {N1, . . . , Nm,
C1, . . . , Cn} be the quasi-identifier of table T , where Ni(i = 1, . . . , m) is an
attribute with a numeric domain and Cj(j = 1, . . . , n) is an attribute with a
categorical domain. The distance of two records r1, r2 ∈ T is defined as:

Δ(r1, r2) =
∑

i=1,...,m

δN (r1[Ni], r2[Ni]) +
∑

j=1,...,n

δC(r1[Cj ], r2[Cj ]),

where ri[A] represents the value of attribute A in ri, and δN and δC are the dis-
tance functions defined in Definitions 2 and 3, respectively. �

Now we discuss the cost function which the k-members clustering problem
tries to minimize. As the ultimate goal of our clustering problem is the k-
anonymization of data, we formulate the cost function to represent the amount
of distortion (i.e., information loss) caused by the generalization process. Recall
that, records in each cluster are generalized to share the same quasi-identifier
value that represents every original quasi-identifier value in the cluster. We as-
sume that the numeric values are generalized into a range [min, max] [8] and
categorical values into a set that unions all distinct values in the cluster [3]. With
these assumptions, we define a metric, referred to as Information Loss metric
(IL), that measures the amount of distortion introduced by the generalization
process to a cluster.

Definition 5. (Information loss) Let e = {r1, . . . , rk} be a cluster (i.e., equiv-
alence class) where the quasi-identifier consists of numeric attributes N1, . . . , Nm

and categorical attributes C1, . . . , Cn. Let TCi be the taxonomy tree defined for



194 J.-W. Byun et al.

the domain of categorical attribute Ci. Let MINNi and MAXNi be the min and
max values in e with respect to attribute Ni, and let ∪Ci be the union set of
values in e with respect to attribute Ci. Then the amount of information loss
occurred by generalizing e, denoted by IL(e), is defined as:

IL(e) = |e| · (
∑

i=1,...,m

(MAXNi − MINNi)
|Ni|

+
∑

j=1,...,n

H(Λ(∪Cj ))
H(TCj )

)

where |e| is the number of records in e, |N | represents the size of numeric domain
N , Λ(∪Cj ) is the subtree rooted at the lowest common ancestor of every value
in ∪Cj , and H(T ) is the height of taxonomy tree T . �

Using the definition above, the total information loss of the anonymized table is
defined as follows:

Definition 6. (Total information loss) Let E be the set of all equivalence
classes in the anonymized table AT . Then the amount of total information loss
of AT is defined as:

Total-IL(AT ) =
∑

e∈E IL(e). �

Recall that the cost function of the k-members problem is the sum of all intra-
cluster distances, where an intra-cluster distance of a cluster is defined as the
maximum distance between any two data points in the cluster. Now, if we con-
sider how records in each cluster are generalized, minimizing the total informa-
tion loss of the anonymized table intuitively minimizes the cost function for the
k -members clustering problem as well. Therefore, the cost function that we want
to minimize in the clustering process is Total-IL.

3.3 Anonymization Algorithm

Armed with the distance and cost functions, we are now ready to discuss the
k-member clustering algorithm. As in most clustering problems, an exhaustive
search for an optimal solution of the k-member clustering is potentially expo-
nential. In order to precisely characterize the computational complexity of the
problem, we define the k-member clustering problem as a decision problem as
follows.

Definition 7. (k-member clustering decision problem) Given n records,
is there a clustering scheme E = {e1, . . . , e�} such that

1. |ei| ≥ k, 1 < k ≤ n: the size of each cluster is greater than or equal to a
positive integer k, and

2.
∑

i=1,...,� IL(ei) < c, c > 0: the Total-IL of the clustering scheme is less than
a positive constant c. �

Theorem 1. The k-member clustering decision problem is NP-complete.
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Proof. That the k-member clustering decision problem is in NP follows from the
observation that if such a clustering scheme is given, verifying that it satisfies
the two conditions in Definition 7 can be done in polynomial time.

In [1], Aggarwal et al. proved that optimal k-anonymity by suppression is
NP-hard, using a reduction from the Edge Partition Into Triangles prob-
lem. In the reduction, the table to be k-anonymized consists of n records; each
record has m attributes, and each attribute takes a value from {0, 1, 2}. The
k-anonymization technique used is to suppress some cells in the table. Aggarwal
et al. showed that determining whether there exists a 3-anonymization of a table
by suppressing certain number of cells is NP-hard.

We observe that the problem in [1] is a special case of the k-member clustering
problem where each attribute is categorical and has a flat taxonomy tree. It
thus follows that the k-member clustering problem is also NP-hard. When each
attribute has a flat taxonomy tree, the only way to generalize a cell is to the root
of the flat taxonomy tree, and this is equivalent to suppressing the cell. Given
such a database, the information loss of each record in any generalization is the
same as the number of cells in the record that differ from any other record in the
equivalent class, which equals the number of cells to be suppressed. Therefore,
there exists a k-anonymization with total information loss no more than t if and
and only if there exists a k-anonymization that suppresses at most t cells. �

Faced with the hardness of the problem, we propose a simple and efficient al-
gorithm that finds a solution in a greedy manner. The idea is as follows. Given
a set of n records, we first randomly pick a record ri and make it as a cluster
e1. Then we choose a record rj that makes IL(e1 ∪ {rj}) minimal. We repeat
this until |e1| = k. When |e1| reaches k, we choose a record that is furthest from
ri and repeat the clustering process until there are less than k records left. We
then iterate over these leftover records and insert each record into a cluster with
respect to which the increment of the information loss is minimal. We provide
the core of our greedy k-member clustering algorithm, leaving out some trivial
functions, in Figure 5.

Theorem 2. Let n be the total number of input records and k be the specified
anonymity parameter. Every cluster that the greedy k-member clustering algo-
rithm finds has at least k records, but no more than 2k − 1 records.

Proof. Let S be the set of input records. As the algorithm finds a cluster with
exactly k records as long as the number of remaining records is equal to or
greater than k, every cluster contains at least k records. If there remain less
than k records, these leftover records are distributed to the clusters that are
already found. That is, in the worst case, k − 1 remaining records are added to
a single cluster which already contains k records. Therefore, the maximum size
of a cluster is 2k − 1. �

Theorem 3. Let n be the total number of input records and k be the specified
anonymity parameter. The time complexity of the greedy k-member clustering
algorithm is in O(n2).
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Function greedy_k_member_clustering (S, k) 
Input: a set of records S and a threshold value k. 
Output: a set of clusters each of which contains at least k
records. 

1. if( | S |   k )  
2.     return S; 
3. end if; 
4. result = ∅; r = a randomly picked record from S; 
5. while( | S | ≥ k )  
6.     r = the furthest record from r; 
7.     S = S – {r};  
8.     c = {r}; 
9.     while( | c | < k )
10.          r = find_best_record(S, c); 
11.          S = S – {r};  
12.          c = c ∪ {r}; 
13.     end while; 
14.     result = result ∪ {c}; 
15. end while;       
16. while( | S |  ≠ 0 ) 
17.     r = a randomly picked record from S; 
18.     S = S – {r}; 
19.     c = find_best_cluster(result, r); 
20.     c = c ∪ {r}; 
21. end while; 
22. return result; 

End; 

Function find_best_record (S, c) 
Input: a set of records S and a cluster c. 
Output: a record r ∈ S such that IL(c ∪ {r}) is minimal. 

1. n = |S|; min =  ∞; best = null; 
2. for(i = 1,…n) 
3.     r = i-th record in S; 
4.     diff = IL(c ∪ {r}) – IL(c); 
5.     if( diff < min ) 
6.         min = diff; 
7.         best = r; 
8.     end if; 
9. end for;   
10. return best; 

End; 

Function find_best_cluster (C, r) 
Input: a set of clusters C and a record r. 
Output: a cluster c ∈ C such that IL(c ∪ {r}) is minimal. 

1. n = |C|; min =  ∞;  best = null; 
2. for(i = 1,…n) 
3.     c = i-th cluster in C; 
4.     diff = IL(c ∪ {r}) – IL(c); 
5.     if( diff < min ) 
6.         min = diff; 
7.         best = c; 
8.     end if; 
9. end for;   
10. return best; 

End; 

Fig. 5. Greedy k-member clustering algorithm

Proof. Observe that the algorithm spends most of its time selecting records from
the input set S one at a time until it reaches |S| = k (Line 9). As the size of
the input set decreases by one at every iteration, the total execution time T is
estimated as:

T = (n − 1) + (n − 2) + . . . + k ≈

n(n − 1)
2

Therefore, T is in O(n2). �

3.4 Improvement for Classification

In most k-anonymity work, the focus is heavily placed on the quasi-identifier, and
therefore other attributes are often ignored. However, these attributes deserve
more careful consideration. In fact, we want to minimize the distortion of quasi-
identifier not only because the quasi-identifier itself is meaningful information,
but also because a more accurate quasi-identifier will lead to good predictive
models on the transformed table [6]. In fact, the correlation between the quasi-
identifier and other attributes can be significantly weakened or perturbed due
to the ambiguity introduced by the generalization of the quasi-identifier. Thus,
it is critical that the generalization process does preserve the discrimination of
classes using quasi-identifier. Considering this issue, Iyengar also proposed the
classification metric (CM) as:

CM =
∑

all rows Penalty(row r) / N ,
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where N is the total number of records, and Penalty(row r) = 1 if r is suppressed
or the class label of r is different from the class label of the majority in the
equivalence group.

Inspired by this metric, we modify our algorithm in Figure 5 by replacing Line
4 of Function find best record with the following.

if (majority-class-label(c) == class-label(r))
diff = IL({c ∪ {r}) − IL(c);

else diff = IL({c ∪{r}) − IL(c) + classPenalty;

In essence, the algorithm is now forced to choose records with the same class
label for a cluster, and the magnitude of enforcement is controlled by the weight
of penalty. With this minor modification, our algorithm can effectively reduce
the cost of classification metric without increasing much information loss. We
show the results in Section 4.

4 Experimental Results

The main goal of the experiments was to investigate the performance of our ap-
proach in terms of data quality, efficiency, and scalability. To accurately evaluate
our approach, we also compared our implementation with another algorithm,
namely the median partitioning algorithm proposed in [8].

4.1 Experimental Setup

The experiments were performed on a 2.66 GHz Intel IV processor machine with
1 GB of RAM. The operating system on the machine was Microsoft Windows
XP Professional Edition, and the implementation was built and run in Java 2
Platform, Standard Edition 5.0.

For our experiments, we used the Adult dataset from the UC Irvine Ma-
chine Learning Repository [10], which is considered a de facto benchmark for
evaluating the performance of k-anonymity algorithms. Before the experiments,
the Adult data set was prepared as described in [3,6,8]. We removed records
with missing values and retained only nine of the original attributes. For k-
anonymization, we considered {age, work class, education, marital status, occupa-
tion, race, gender, and native country} as the quasi-identifier. Among these, age
and education were treated as numeric attributes while the other six attributes
were treated as categorical attributes. In addition to that, we also retained the
salary class attribute to evaluate the classification metric.

4.2 Data Quality and Efficiency

In this section, we report experimental results on the greedy k-members algo-
rithm for data quality and execution efficiency.

Fig. 6 reports the Total-IL costs of the three algorithms (median partitioning,
greedy k-member, and greedy k-member modified to reduce classification error)



198 J.-W. Byun et al.

 0

 50

 100

 150

 200

 0  50  100  150  200  250  300  350  400  450  500

U
n

ce
rt

a
in

ty
 M

ea
su

re
 (

u
n

it
 =

 1
K

)

k-value

Clustering vs. Partitioning (n = 30,162)

Greedy k-member
Greedy k-member: CM

Median Partitioning

Fig. 6. Information Loss Metric

 0

 5

 10

 15

 20

 25

 0  50  100  150  200  250  300  350  400  450  500

D
is

ce
rn

a
b

il
it

y
 P

en
a
lt

y
 (

u
n

it
 =

 1
M

)

K-values

Clustering vs. Partitioning (n = 30,162)

Greedy k-member
Greedy k-member: CM

Median Partitioning

Fig. 7. Discernibility Metric

for increasing values of k. As the figure illustrates, the greedy k-members algo-
rithm results in the least cost of the Total-IL for all k values. Note also that the
Total-IL cost of the modified greedy k-member is very close to the cost of the
unmodified algorithm. The superiority of our algorithms over the median parti-
tioning algorithm results from the fact that the median partitioning algorithm
considers the proximity among the data points only with respect to a single
dimension at each partitioning.

Another metric used to measure the data quality is the Discernibility metric
(DM) [3], which measures the data quality based on the size of each equivalence
class. Intuitively data quality diminishes as more records become indistinguish-
able with respect to each other, and DM effectively captures this effect of the
k-anonymization process. Fig. 7 shows the DM costs of the three algorithms for
increasing k values. As shown, the two greedy k-member algorithms perform
better than the median partitioning algorithm. In fact, the greedy k-member al-
gorithms always produce equivalence classes with sizes very close to the specified
k, due to the way clusters are formed.

Fig. 8 shows the experimental result with respect to the CM metric described
in Section 3. As expected, the greedy k-member algorithm modified to mini-
mize classification errors (as described in Section 3) outperforms all the other
algorithms. Observe that even without the modification, the greedy k-members
algorithm still produces less classification errors than the median partitioning
for every k value. We also measured the execution time of the algorithms for
different k values. The results are shown in Fig. 9. Even though the execution
time for the greedy k-member algorithm is higher than the partitioning algo-
rithm, we believe that it is still acceptable in practice as k-anonymization is
often considered an off-line procedure.

4.3 Scalability

Fig. 10 and 11 show the Total-IL costs and execution-time behaviors of the al-
gorithms for various table cardinalities (for k = 5). For this experiment, we used
the subsets of the Adult dataset with different sizes. As shown, the Total-IL
costs increase almost linearly with the size of the dataset for both algorithms.
However, the greedy k-member algorithm introduces the least Total-IL cost for



Efficient k-Anonymization Using Clustering Techniques 199

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  50  100  150  200  250  300  350  400  450  500

C
la

ss
if

ic
a
ti

o
n

 P
en

a
lt

y
 (

u
n

it
 =

 1
K

)

K-values

Classification (n = 30,162)

Median Partitioning
Greedy K-Member

Greedy K-Member: CM
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Fig. 10. Cardinality and Information Loss
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Fig. 11. Cardinality and Runtime

any size of dataset. Although the greedy k-members is slower than the par-
titioning algorithm, we believe that the overhead is still acceptable in most
cases considering its better performance with respect to the Total-IL metric.

5 Conclusions

In this paper, we proposed an efficient k-anonymization algorithm by transform-
ing the k-anonymity problem to the k-member clustering problem. We also pro-
posed two important elements of clustering, that is, distance and cost functions,
which are specifically tailored for the k-anonymization problem. We emphasize
that our cost metric, IL metric, naturally captures the data distortion introduced
by the generalization process and is general enough to be used as a data quality
metric for any k-anonymized dataset.
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