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ABSTRACT 

Spatial join is an important yet costly operation in spatial 

databases. In order to speed up the execution of a spatial join, the 

input tables are often indexed based on their spatial attributes. The 

quadtree index structure is a well-known index for organizing 

spatial database objects. It has been implemented in several 

database management systems, e.g., in Oracle Spatial and in 

PostgreSQL (via SP-GiST). Queries typically involve multiple 

pipelined spatial join operators that fit together in a query 

evaluation plan. In order to extend the applicability of these spatial 

joins, they are optimized so that upon receiving sorted input, they 

produce sorted output for the spatial join operators in the upper-

levels of the query evaluation pipeline. This paper investigates the 

use of quadtree-based spatial join algorithms and how they can be 

adapted to answer queries that involve multiple pipelined spatial 

joins in a query evaluation plan. The paper investigates several 

adaptations to pipelined spatial join algorithms and their 

performance for the cases when both input tables are indexed, 

when only one of the tables is indexed while the second table is 

sorted, and when both tables are sorted but are not indexed. 

Categories and Subject Descriptors 

H.2. [Database Management]: H.2.4. [Systems]: Query Processing  

General Terms 

Algorithms, Performance, Design, Experimentation. 
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1. INTRODUCTION 
Many quadtree-based algorithms for performing spatial join exist 

in the literature, (e.g., see [3] for a survey). Almost all spatial join 

algorithms are not designed with pipelined execution in mind. One 

exception is the quadtree spatial join algorithms presented in [4], 

where the authors propose adaptations to existing quadtree-based 

spatial join algorithms so that the adapted algorithms fit in a 

pipelined query evaluation plan. One weakness in [4] is that the 

authors do not provide any experimental study to demonstrate the 

performance effectiveness of their proposed adaptations. This 

paper proposes further optimizations for quadtree-based spatial 

join algorithms that make such algorithms more suitable for 

answering complex queries via pipelined query evaluation plans. 

The paper also studies experimentally the performance of the 

proposed algorithms and compares them to other existing 

pipelinable algorithms (the ones in [4]). 

Refer to Figure 1 for illustration. In a complex query scenario, 

multiple spatial join operations need to be performed (e.g., Spatial 

Joins A and B in Figure 1). Typically, multiple spatial join 

operators will need to fit in a query evaluation pipeline, where the 

output of one spatial join operator (e.g., Spatial Join A in Figure 1) 

at the lower level of the query evaluation pipeline will feed into 

the input of another spatial join operator (e.g., Spatial Join B in 

Figure 1) at the higher level of the query evaluation pipeline. 

Many of the existing spatial join algorithms are not designed for 

pipelined execution. Thus, when fit in a query evaluation pipeline, 

these algorithms cannot take advantage of many of the features 

that make them work efficiently. For example, the spatial filter 

(SF) algorithm [5],[6] assumes that both inputs are indexed. 

Therefore, SF is only applicable at the leaf level of a query 

evaluation pipeline, where indexes are available. SF is not 

applicable at higher levels of the query evaluation pipeline (unless 

a temporary index is constructed on the intermediate results). For 

example, in Figure 1, since the output of Spatial Join A is not 

indexed, SF is not applicable as Spatial Join B since there is no 

index on its input. Similarly, the spatial merge (SM) join algorithm 

assumes that both inputs are sorted based on a space-filling curve 

order. Generally, in a query evaluation pipeline, this property is 

not guaranteed at higher levels of the pipeline, as it depends on 

how operators at the lower level in the pipeline produce their 

intermediate output results. In Figure 1, since the output of Spatial 

Join A is not sorted, SM is not applicable as Spatial Join B since 

one of B’s inputs is not sorted. Unless different measures are 

taken, SM would be applicable only at the leaf level of a query 

evaluation pipeline. Generally, constructing a temporary index on 

the fly (as mandated by SF) or sorting the data based on a space-

filling curve order (as mandated by SM) are costly solutions. So, 

we are left with nest-loops join, which is also an expensive choice.  

In this paper, several algorithms are proposed that make use of a 

quadtree-like index and that operate efficiently when embedded in 

a query evaluation pipeline. A thorough performance study is 

conducted for various query evaluation pipelines under a variety of 

conditions including low and high selectivities at the various levels 

of the query evaluation pipeline. Several findings and rules of 

thumb are derived from the experimental results that can guide a 

query optimizer to generate efficient query evaluation pipelines for 

query processing in spatial databases.  

 
Figure 1 - A sample query evaluation pipeline. 
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Orenstein and Manola [6],[7] present two algorithms for spatial 

join (overlap) using the Z-Order as their underlying organization 

of the spatial database. The first algorithm, termed the spatial 

merge (SM, for short), requires that the two input streams be 

sorted but does not necessarily require the presence of an index. 

The second algorithm, termed the spatial filter (SF, for short), is 

an optimization of the spatial merge. The spatial filter yields 

significant execution time speedups over the spatial merge at the 

added expense of requiring that both input streams be indexed 

(e.g., as a result of sorting on the basis of the spatial attribute so 

that random as well as sequential access to the elements in either 

stream is possible). The speedups are a direct result of using the 

index to directly access the input streams. 

 

Aref and Samet [5] present two spatial join algorithms that are 

optimizations over the spatial merge (SM) and the spatial filter 

(SF) algorithms. The first spatial join algorithm, termed linear-

scan (LS), avoids processing every element in the two streams by 

just scanning the irrelevant intervening elements between 

corresponding positions in the two streams as it has no index. The 

second spatial join algorithm, termed estimate-based (EB), uses 

on-line estimates of the input streams to decide whether to use the 

index for a direct access request or a linear scan. 

 

All the four spatial join algorithms (namely, SM, SF, LS, and EB), 

require that the input streams be spatially ordered, e.g., according 

to the Z-order, while the output they produce is not sorted. This is 

not a problem if the spatial join is only performed once. However, 

in most applications, it is usually the case that the spatial query 

requires the execution of a cascade of spatial joins (i.e., the output 

of one operation serves as input to the next operation). Thus, use 

of any one of these algorithms means that only the first spatial join 

in a query evaluation pipeline is efficiently executed. All 

subsequent spatial joins will require either to spatially sort their 

input (or build a temporary index) before performing the join, or to 

use a nested loops join algorithm with a spatial intersection 

predicate, since none of the above spatial join algorithms works 

properly for unsorted input streams. In [4], Aref and Samet 

introduce an algorithmic improvement that is applicable to all the 

above spatial join algorithms. When this new optimization is 

augmented to any of the four spatial join algorithms, the 

augmented algorithm will produce output tuples that are sorted 

spatially (e.g., using the Z-order sort order). Therefore, any of the 

modified spatial join algorithms can then be applicable in spatial 

query pipelines that involve multiple cascaded spatial joins 

without the need to re-sort the output at each intermediate stage.  

 

In this paper, we extend further in the direction of Aref and Samet 

[4] to increase the applicability of spatial join filters in query 

evaluation pipelines. The contributions of the paper are as follows. 

1. We propose two new algorithmic adaptations, ½SFu and ½SFs 

that extend the applicability of the spatial filter algorithms to cases 

when only one of the two input streams is indexed. 

2. We perform an elaborate experimental study to assess the 

performance gains of the proposed techniques in comparison with 

the techniques proposed in [4] (There was no performance study in  

[4] to study the effectiveness of the proposed techniques). 

3. The Underlying Spatial Data Organization 
In this paper, we focus on quadtree-based spatial databases, where 

each spatial object is represented by a set of restricted square 

elements (termed Morton Blocks) that collectively approximate 

(and cover) the object. These Morton elements [8] result from a 

recursive decomposition of the space into four square blocks (i.e., 

a quadtree-like decomposition [1]). For example, Figure 3a and 

Figure 3b are the Morton elements corresponding to the spatial 

data sets in Figure 2a and Figure 2b, respectively. The Morton 

elements are ordered on the basis of their size and the result of 

mapping the point at the upper-left corner of each block into an 

integer. This is achieved by interleaving the bits that represent the 

values of the x and y coordinates of the two-dimensional point. 

The result of the interleaving process is termed a Morton code [8].  

When computing the spatial join of Morton element 

decompositions of two spatial data sets, we report the pairs of 

overlapping blocks and then obtain the appropriate object 

identifiers by use of lookup operations. For example, the spatial 

join of the Morton elements in Figure 3a and Figure 3b consists of 

the block pairs (A,I), (F,J), (H,L), and (H,K) corresponding to the 

object pairs (3,4), (3,5), (3,6), and (3,5), respectively. Notice that 

because of the nature of the Morton elements and the recursive 

decomposition process by which they are constructed, any pair of 

corresponding Morton elements either in the input or output 

streams are either equal or are contained in one another; however, 

they cannot overlap without one Morton element being totally 

contained in another Morton element. 

 
Figure 2 - Two sample spatial data sets. 

 
Figure 3 - Result of decomposing the spatial data sets in Figure 2 

into their Morton  Elements. 

2. Spatial Join Algorithms 
Nested Loops join (NL) is a traditional join operator that is 

applicable in the context of spatial databases when neither of the 

two spatial data sets input to the join are sorted spatially.  

When both inputs are sorted but are not indexed, we have several 

choices, mainly, SMu: the original spatial merge join algorithm 

with unsorted output [6],[7], SMs: the optimized version of SM 

that produces sorted output [4], LSu: the original linear scan 

spatial join algorithm (LS) that produces unsorted output [5], and 

LSs: the optimized version of LS that produces sorted output [4].  

When both inputs are indexed, we can perform an index-only 

spatial join plan, where the joins are performed by traversing only 

the indexes. In this category, we have two choices: (1) SFu: the 

original spatial filter join algorithm (SF) with unsorted output 

[6],[7], and (2) SFs: the optimized version of SF that produces 

sorted output [4].  

The half spatial filter join operators (½SFu and ½SFs) are the ones 

we introduce in this paper. For the two tables being joined, if one 

table is indexed on the spatial attribute involved in the join and the 
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other is not, the spatial filter merge join algorithm cannot be used 

because of the absence of the index in one of the input tables. In 

order to utilize the index available on the other input table and still 

be able to do a spatial filter join, we introduce the half spatial filter 

merge join algorithm (denoted by ½SFu). In ½SFu, the first table 

advances in the same way as in SM to get the next block 

sequentially. The second (indexed) table advances in the same way 

as in SF. ½SFu uses the current block from the outer table to 

access the index and decide on the next block it should advance to. 

½SFu produces unsorted output. In a straightforward fashion, 

using the techniques in [4], the half spatial filter join algorithm can 

be adapted to produce sorted output without additional complexity 

in its execution (simply, by changing the timing when the output 

tuples are to be reported). This adaptation results in the half spatial 

filter join algorithm with sorted output (½SFs). ½SFs is the same 

as ½SFu except that ½SFs is improved to produce sorted output. 

3. Experimental Evaluation  
All the experiments are executed on a machine with Intel Pentium 

IV, CPU 2.4GHZ, and 512MB RAM running Windows XP. In the 

experiments, we consider query evaluation pipelines that involve 

three tables, T0, T1, and T2. The tables are generated synthetically 

by selecting random line segments from the Census Tiger files. For 

each of the selected lines, a minimum enclosing rectangle is 

generated. Then, each generated rectangle is decomposed into the 

Morton Blocks (or region quadtree blocks) that compose the 

rectangle. For rectangle decomposition, we use any of the window 

decomposition algorithms, e.g., [9]. We group the experiments 

into three cases based on the availability of indexes on the tables. 

In Case 1, all the three tables have indexes on the spatial attribute. 

In Case 2, T0 and T1 have indexes while T2 does not. In Case 3, 

none of the three tables has an index on the spatial attribute.  

As an example, consider the query evaluation pipeline (QEP) in 

Figure 4. In this QEP, tables T0 and T1 are both sorted and 

indexed while T2 is sorted but is not indexed. T0 joins with T1 

using a spatial filter merge join. The intermediate resulting table is 

written to disk and is sorted via an external sort operator. Then, the 

sorted intermediate table joins with T2 using a spatial merge join, 

which produces an unsorted final output. Apparently, the 

behaviors of Cases 1—3 above are related to the sizes of tables T0, 

T1, and T2 as well as to the sizes of the intermediate join results. 

The experiments are conducted to address two scenarios: (1) 

relatively small intermediate output (high join selectivity), e.g., 

when joining T0 and T1, and (2) relatively larger intermediate 

output (low join selectivity), e.g., when joining T0 and T1. 

3.1 Performance Results for Case 1 
In Case 1, all of the three tables have indexes. Figure 5 gives four 

possible query evaluation plans 1.1—1.4 for spatially joining T0, 

T1, and T2. In the performance graphs to follow, line# 

corresponds to the number under each plan in Figure 5 (e.g., line 3 

and line 5 correspond to Plans 1.3 and 1.5, respectively). 

High Join Selectivity: In this study, T0 has 6201 blocks and T1 

contains 6968 blocks. The size of the intermediate result, i.e., T0 

join T1, is 343 blocks. The size of T2 varies from around 5,000 to 

150,000 blocks. Figure 6a gives the performance results. The x-

axis corresponds to the size of T2 while the y-axis corresponds to 

the running time of the entire query evaluation plan. Lines 1-4 

correspond to the performance of Plans 1.1-1.4 in Figure 5. 

 

 

Figure 4. A Sample evaluation plan for spatial join processing. 

Plan 1.2 represents the traditional approach to performing multiple 

spatial joins, i.e., a sophisticated spatial join algorithm (in this 

case, the spatial filter [6],[7]) being applicable only at the lowest 

level of the query evaluation pipeline, and then either nest-loops 

(NL) or nested loops with index (NI) at the higher levels, 

depending on the presence or lack of an index on the inner table. 

 

Figure 5 - Query Evaluation Plans 1.1--1.4 for Case 1. 

Refer to Figure 6a. Plan 1.2 (line 2 in the figure) performs the 

worst (takes the longest running time in comparison to all the other 

plans). Plan 1.4 (line 4 in the figure) is an enhancement over Plan 

1.2, where a temporary index is built on the intermediate join 

result so that the spatial filter join (SFu) can be applicable at the 

higher level of the query evaluation pipeline. Because of the high 

selectivity of the lower-level join (the size of the intermediate join 
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result is small), the cost of constructing the temporary index is 

affordable and pays off. Plan 1.4 performs better than Plan 1.2 but 

worse than the others.  Plan 1.1 (line 1 in the figure) performs 

better than both Plans 1.2 and 1.4, where Plan 1.1 makes use of the 

½SFu join operator, as it only sorts the intermediate join result to 

prepare it for the next level. Plan 1.3 performs the best among all 

plans. Plan 1.3 demonstrates the benefits of using all the features, 

mainly using the SFs spatial filter join operator with sorted output 

at the lowest level of the pipeline and hence alleviates the need to 

explicitly sort the intermediate results and ½SFs, in contrast to 

nested-loops join, at the higher level of the query evaluation 

pipeline. In summary, in the case of high selectivity, Plan 1.3 is the 

best plan and can achieve up to 30% enhancement in performance 

(the enhancement in performance is computed as: 100X(running-

time-of-old-plan – run-time-of-new-plan)/ running-time-of-old-

plan. 
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                              (a)                                        (b) 

Figure 6 - Performance Results of Plans 1.1 - 1.4 for Case 1 in the 

case of (a) high selectivity and (b) low selectivity. 

Low Join Selectivity: In this set of experiments, both T0 and T1 

have synthetic spatial data sets of size around 100,000 blocks. The 

size of the intermediate join result (T0 join T1) is around 140,000 

blocks. The size of T2 ranges from 6,000 to 200,000 blocks. The 

results are given in Figure 6b. Similar to the case of high join 

selectivity in the previous section, Plan 1.3 has the best 

performance and achieves up to 90% enhancement in performance 

over Plan 1.2. Comparing Plan 1.3 with Plan 1.1, Plan 1.3 

performs 11% to 22% better than Plan 1.1 depending on the size 

of T2.  

Due to space limitations, the experimental results for cases 2 and 3 

are omitted from the paper. 

4. Concluding Remarks 
As evident from the experimental results, the usage of the 

improved spatial join algorithms is very effective.  Since these 

algorithms produce spatially sorted join output, the upper level 

join in the query evaluation plan can consume directly the output 

of the lower level join without the need for writing the 

intermediate results into disk and without the need for a blocking 

sort operation. This is true for both cases when the tables to be 

joined are spatially indexed or not. Another important advantage is 

that the results of the upper-level spatial join is also sorted without 

additional cost, and hence can be utilized in further pipeline 

operations. 

The indexes should be exploited as much as possible. ½SFs 

provides a good method to achieve this. ½SFs is best used as the 

upper level join. In contrast, in order to be able to use SF at the 

upper levels, we need to build a temporary index for the output of 

the lower level joins, which is not often profitable.  

In almost all cases, nested loops join results in bad performance. 

However, for high selectivity of the lower-level join, SFu+NI (the 

second join is an indexed nested loops join) has an execution cost 

that is close to that of SFs+½SFs. However, SFs+½SFs has the 

advantage of producing sorted final result. For low selectivity of 

the first join, the cost of SFu+NI is high, which makes it not a 

suitable choice. 

In the cases when there is no index available in the lower or upper 

level joins or in the second join, LS spatial join always has better 

performance, especially when the first two tables being joined are 

the ones smaller in size. So, LSs+LSs will have more apparent 

advantage when the first join has high selectivity than when it has 

low selectivity. 
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