
Pipelined Spatial Join Processing for Quadtree-based Indexes
Walid G. Aref

Department of Computer Science, Purdue University

aref@cs.purdue.edu

ABSTRACT

Spatial join is an important yet costly operation in spatial

databases. In order to speed up the execution of a spatial join, the

input tables are often indexed based on their spatial attributes. The

quadtree index structure is a well-known index for organizing

spatial database objects. It has been implemented in several

database management systems, e.g., in Oracle Spatial and in

PostgreSQL (via SP-GiST). Queries typically involve multiple

pipelined spatial join operators that fit together in a query

evaluation plan. In order to extend the applicability of these spatial

joins, they are optimized so that upon receiving sorted input, they

produce sorted output for the spatial join operators in the upper-

levels of the query evaluation pipeline. This paper investigates the

use of quadtree-based spatial join algorithms and how they can be

adapted to answer queries that involve multiple pipelined spatial

joins in a query evaluation plan. The paper investigates several

adaptations to pipelined spatial join algorithms and their

performance for the cases when both input tables are indexed,

when only one of the tables is indexed while the second table is

sorted, and when both tables are sorted but are not indexed.

Categories and Subject Descriptors

H.2. [Database Management]: H.2.4. [Systems]: Query Processing

General Terms

Algorithms, Performance, Design, Experimentation.

Keywords

Spatial join algorithms, spatial databases, query optimization.

1. INTRODUCTION
Many quadtree-based algorithms for performing spatial join exist

in the literature, (e.g., see [3] for a survey). Almost all spatial join

algorithms are not designed with pipelined execution in mind. One

exception is the quadtree spatial join algorithms presented in [4],

where the authors propose adaptations to existing quadtree-based

spatial join algorithms so that the adapted algorithms fit in a

pipelined query evaluation plan. One weakness in [4] is that the

authors do not provide any experimental study to demonstrate the

performance effectiveness of their proposed adaptations. This

paper proposes further optimizations for quadtree-based spatial

join algorithms that make such algorithms more suitable for

answering complex queries via pipelined query evaluation plans.

The paper also studies experimentally the performance of the

proposed algorithms and compares them to other existing

pipelinable algorithms (the ones in [4]).

Refer to Figure 1 for illustration. In a complex query scenario,

multiple spatial join operations need to be performed (e.g., Spatial

Joins A and B in Figure 1). Typically, multiple spatial join

operators will need to fit in a query evaluation pipeline, where the

output of one spatial join operator (e.g., Spatial Join A in Figure 1)

at the lower level of the query evaluation pipeline will feed into

the input of another spatial join operator (e.g., Spatial Join B in

Figure 1) at the higher level of the query evaluation pipeline.

Many of the existing spatial join algorithms are not designed for

pipelined execution. Thus, when fit in a query evaluation pipeline,

these algorithms cannot take advantage of many of the features

that make them work efficiently. For example, the spatial filter

(SF) algorithm [5],[6] assumes that both inputs are indexed.

Therefore, SF is only applicable at the leaf level of a query

evaluation pipeline, where indexes are available. SF is not

applicable at higher levels of the query evaluation pipeline (unless

a temporary index is constructed on the intermediate results). For

example, in Figure 1, since the output of Spatial Join A is not

indexed, SF is not applicable as Spatial Join B since there is no

index on its input. Similarly, the spatial merge (SM) join algorithm

assumes that both inputs are sorted based on a space-filling curve

order. Generally, in a query evaluation pipeline, this property is

not guaranteed at higher levels of the pipeline, as it depends on

how operators at the lower level in the pipeline produce their

intermediate output results. In Figure 1, since the output of Spatial

Join A is not sorted, SM is not applicable as Spatial Join B since

one of B’s inputs is not sorted. Unless different measures are

taken, SM would be applicable only at the leaf level of a query

evaluation pipeline. Generally, constructing a temporary index on

the fly (as mandated by SF) or sorting the data based on a space-

filling curve order (as mandated by SM) are costly solutions. So,

we are left with nest-loops join, which is also an expensive choice.

In this paper, several algorithms are proposed that make use of a

quadtree-like index and that operate efficiently when embedded in

a query evaluation pipeline. A thorough performance study is

conducted for various query evaluation pipelines under a variety of

conditions including low and high selectivities at the various levels

of the query evaluation pipeline. Several findings and rules of

thumb are derived from the experimental results that can guide a

query optimizer to generate efficient query evaluation pipelines for

query processing in spatial databases.

Figure 1 - A sample query evaluation pipeline.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ACMGIS'07, November 7-9, 2007, Seattle, WA, U.S.A.

Copyright 2007 ACM 978-1-59593-914-2/07/11...$5.00

Spatial

Join B

Spatial

Join A

T0 (Indexed) T1 (Indexed)

T2 (Indexed)

Unsorted &

unindexed

Proceedings of the 15th International Symposium on Advances in Geographic Information Systems
 ACM GIS 2007

Orenstein and Manola [6],[7] present two algorithms for spatial

join (overlap) using the Z-Order as their underlying organization

of the spatial database. The first algorithm, termed the spatial

merge (SM, for short), requires that the two input streams be

sorted but does not necessarily require the presence of an index.

The second algorithm, termed the spatial filter (SF, for short), is

an optimization of the spatial merge. The spatial filter yields

significant execution time speedups over the spatial merge at the

added expense of requiring that both input streams be indexed

(e.g., as a result of sorting on the basis of the spatial attribute so

that random as well as sequential access to the elements in either

stream is possible). The speedups are a direct result of using the

index to directly access the input streams.

Aref and Samet [5] present two spatial join algorithms that are

optimizations over the spatial merge (SM) and the spatial filter

(SF) algorithms. The first spatial join algorithm, termed linear-

scan (LS), avoids processing every element in the two streams by

just scanning the irrelevant intervening elements between

corresponding positions in the two streams as it has no index. The

second spatial join algorithm, termed estimate-based (EB), uses

on-line estimates of the input streams to decide whether to use the

index for a direct access request or a linear scan.

All the four spatial join algorithms (namely, SM, SF, LS, and EB),

require that the input streams be spatially ordered, e.g., according

to the Z-order, while the output they produce is not sorted. This is

not a problem if the spatial join is only performed once. However,

in most applications, it is usually the case that the spatial query

requires the execution of a cascade of spatial joins (i.e., the output

of one operation serves as input to the next operation). Thus, use

of any one of these algorithms means that only the first spatial join

in a query evaluation pipeline is efficiently executed. All

subsequent spatial joins will require either to spatially sort their

input (or build a temporary index) before performing the join, or to

use a nested loops join algorithm with a spatial intersection

predicate, since none of the above spatial join algorithms works

properly for unsorted input streams. In [4], Aref and Samet

introduce an algorithmic improvement that is applicable to all the

above spatial join algorithms. When this new optimization is

augmented to any of the four spatial join algorithms, the

augmented algorithm will produce output tuples that are sorted

spatially (e.g., using the Z-order sort order). Therefore, any of the

modified spatial join algorithms can then be applicable in spatial

query pipelines that involve multiple cascaded spatial joins

without the need to re-sort the output at each intermediate stage.

In this paper, we extend further in the direction of Aref and Samet

[4] to increase the applicability of spatial join filters in query

evaluation pipelines. The contributions of the paper are as follows.

1. We propose two new algorithmic adaptations, ½SFu and ½SFs

that extend the applicability of the spatial filter algorithms to cases

when only one of the two input streams is indexed.

2. We perform an elaborate experimental study to assess the

performance gains of the proposed techniques in comparison with

the techniques proposed in [4] (There was no performance study in

[4] to study the effectiveness of the proposed techniques).

3. The Underlying Spatial Data Organization
In this paper, we focus on quadtree-based spatial databases, where

each spatial object is represented by a set of restricted square

elements (termed Morton Blocks) that collectively approximate

(and cover) the object. These Morton elements [8] result from a

recursive decomposition of the space into four square blocks (i.e.,

a quadtree-like decomposition [1]). For example, Figure 3a and

Figure 3b are the Morton elements corresponding to the spatial

data sets in Figure 2a and Figure 2b, respectively. The Morton

elements are ordered on the basis of their size and the result of

mapping the point at the upper-left corner of each block into an

integer. This is achieved by interleaving the bits that represent the

values of the x and y coordinates of the two-dimensional point.

The result of the interleaving process is termed a Morton code [8].

When computing the spatial join of Morton element

decompositions of two spatial data sets, we report the pairs of

overlapping blocks and then obtain the appropriate object

identifiers by use of lookup operations. For example, the spatial

join of the Morton elements in Figure 3a and Figure 3b consists of

the block pairs (A,I), (F,J), (H,L), and (H,K) corresponding to the

object pairs (3,4), (3,5), (3,6), and (3,5), respectively. Notice that

because of the nature of the Morton elements and the recursive

decomposition process by which they are constructed, any pair of

corresponding Morton elements either in the input or output

streams are either equal or are contained in one another; however,

they cannot overlap without one Morton element being totally

contained in another Morton element.

Figure 2 - Two sample spatial data sets.

Figure 3 - Result of decomposing the spatial data sets in Figure 2

into their Morton Elements.

2. Spatial Join Algorithms
Nested Loops join (NL) is a traditional join operator that is

applicable in the context of spatial databases when neither of the

two spatial data sets input to the join are sorted spatially.

When both inputs are sorted but are not indexed, we have several

choices, mainly, SMu: the original spatial merge join algorithm

with unsorted output [6],[7], SMs: the optimized version of SM

that produces sorted output [4], LSu: the original linear scan

spatial join algorithm (LS) that produces unsorted output [5], and

LSs: the optimized version of LS that produces sorted output [4].

When both inputs are indexed, we can perform an index-only

spatial join plan, where the joins are performed by traversing only

the indexes. In this category, we have two choices: (1) SFu: the

original spatial filter join algorithm (SF) with unsorted output

[6],[7], and (2) SFs: the optimized version of SF that produces

sorted output [4].

The half spatial filter join operators (½SFu and ½SFs) are the ones

we introduce in this paper. For the two tables being joined, if one

table is indexed on the spatial attribute involved in the join and the

2

other is not, the spatial filter merge join algorithm cannot be used

because of the absence of the index in one of the input tables. In

order to utilize the index available on the other input table and still

be able to do a spatial filter join, we introduce the half spatial filter

merge join algorithm (denoted by ½SFu). In ½SFu, the first table

advances in the same way as in SM to get the next block

sequentially. The second (indexed) table advances in the same way

as in SF. ½SFu uses the current block from the outer table to

access the index and decide on the next block it should advance to.

½SFu produces unsorted output. In a straightforward fashion,

using the techniques in [4], the half spatial filter join algorithm can

be adapted to produce sorted output without additional complexity

in its execution (simply, by changing the timing when the output

tuples are to be reported). This adaptation results in the half spatial

filter join algorithm with sorted output (½SFs). ½SFs is the same

as ½SFu except that ½SFs is improved to produce sorted output.

3. Experimental Evaluation
All the experiments are executed on a machine with Intel Pentium

IV, CPU 2.4GHZ, and 512MB RAM running Windows XP. In the

experiments, we consider query evaluation pipelines that involve

three tables, T0, T1, and T2. The tables are generated synthetically

by selecting random line segments from the Census Tiger files. For

each of the selected lines, a minimum enclosing rectangle is

generated. Then, each generated rectangle is decomposed into the

Morton Blocks (or region quadtree blocks) that compose the

rectangle. For rectangle decomposition, we use any of the window

decomposition algorithms, e.g., [9]. We group the experiments

into three cases based on the availability of indexes on the tables.

In Case 1, all the three tables have indexes on the spatial attribute.

In Case 2, T0 and T1 have indexes while T2 does not. In Case 3,

none of the three tables has an index on the spatial attribute.

As an example, consider the query evaluation pipeline (QEP) in

Figure 4. In this QEP, tables T0 and T1 are both sorted and

indexed while T2 is sorted but is not indexed. T0 joins with T1

using a spatial filter merge join. The intermediate resulting table is

written to disk and is sorted via an external sort operator. Then, the

sorted intermediate table joins with T2 using a spatial merge join,

which produces an unsorted final output. Apparently, the

behaviors of Cases 1—3 above are related to the sizes of tables T0,

T1, and T2 as well as to the sizes of the intermediate join results.

The experiments are conducted to address two scenarios: (1)

relatively small intermediate output (high join selectivity), e.g.,

when joining T0 and T1, and (2) relatively larger intermediate

output (low join selectivity), e.g., when joining T0 and T1.

3.1 Performance Results for Case 1
In Case 1, all of the three tables have indexes. Figure 5 gives four

possible query evaluation plans 1.1—1.4 for spatially joining T0,

T1, and T2. In the performance graphs to follow, line#

corresponds to the number under each plan in Figure 5 (e.g., line 3

and line 5 correspond to Plans 1.3 and 1.5, respectively).

High Join Selectivity: In this study, T0 has 6201 blocks and T1

contains 6968 blocks. The size of the intermediate result, i.e., T0

join T1, is 343 blocks. The size of T2 varies from around 5,000 to

150,000 blocks. Figure 6a gives the performance results. The x-

axis corresponds to the size of T2 while the y-axis corresponds to

the running time of the entire query evaluation plan. Lines 1-4

correspond to the performance of Plans 1.1-1.4 in Figure 5.

Figure 4. A Sample evaluation plan for spatial join processing.

Plan 1.2 represents the traditional approach to performing multiple

spatial joins, i.e., a sophisticated spatial join algorithm (in this

case, the spatial filter [6],[7]) being applicable only at the lowest

level of the query evaluation pipeline, and then either nest-loops

(NL) or nested loops with index (NI) at the higher levels,

depending on the presence or lack of an index on the inner table.

Figure 5 - Query Evaluation Plans 1.1--1.4 for Case 1.

Refer to Figure 6a. Plan 1.2 (line 2 in the figure) performs the

worst (takes the longest running time in comparison to all the other

plans). Plan 1.4 (line 4 in the figure) is an enhancement over Plan

1.2, where a temporary index is built on the intermediate join

result so that the spatial filter join (SFu) can be applicable at the

higher level of the query evaluation pipeline. Because of the high

selectivity of the lower-level join (the size of the intermediate join

SMu

SFu

T0 T1

T2

Indexed Indexed

sort

Unsorted

Sorted

T1

T2 SFu

T0 T1

T2

1.2

Indexed Indexed

Indexed

NI 1/2SFu

SFu

T0

Indexed Indexed

Sort

1.1

Indexed

Unsorted Unsorted

1/2SFs

SFs

T0 T1

T2

1.3

Indexed Indexed

Indexed

Sorted

SFu

SFu

T0 T1

T2

Indexed Indexed

Sort &

build

index

1.4

Indexed

Unsorted

3

result is small), the cost of constructing the temporary index is

affordable and pays off. Plan 1.4 performs better than Plan 1.2 but

worse than the others. Plan 1.1 (line 1 in the figure) performs

better than both Plans 1.2 and 1.4, where Plan 1.1 makes use of the

½SFu join operator, as it only sorts the intermediate join result to

prepare it for the next level. Plan 1.3 performs the best among all

plans. Plan 1.3 demonstrates the benefits of using all the features,

mainly using the SFs spatial filter join operator with sorted output

at the lowest level of the pipeline and hence alleviates the need to

explicitly sort the intermediate results and ½SFs, in contrast to

nested-loops join, at the higher level of the query evaluation

pipeline. In summary, in the case of high selectivity, Plan 1.3 is the

best plan and can achieve up to 30% enhancement in performance

(the enhancement in performance is computed as: 100X(running-

time-of-old-plan – run-time-of-new-plan)/ running-time-of-old-

plan.

0

10

20

30

40

50

60

70

80

90

100

0 20000 40000 60000 80000 100000 120000 140000 160000

Size of Table T2 in Blocks

R
u

n
n

in
g

 T
im

e
 i

n
 1

0
0
0
0
 C

li
c
k
s

line1 line2 line3 line4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50000 100000 150000 200000

Size of Table T2 in Blocks

R
u

n
n

in
g

 T
im

e
 i

n
 1

0
0
0

0
 C

li
c

k
s

line1 line2 line3 line4

 (a) (b)

Figure 6 - Performance Results of Plans 1.1 - 1.4 for Case 1 in the

case of (a) high selectivity and (b) low selectivity.

Low Join Selectivity: In this set of experiments, both T0 and T1

have synthetic spatial data sets of size around 100,000 blocks. The

size of the intermediate join result (T0 join T1) is around 140,000

blocks. The size of T2 ranges from 6,000 to 200,000 blocks. The

results are given in Figure 6b. Similar to the case of high join

selectivity in the previous section, Plan 1.3 has the best

performance and achieves up to 90% enhancement in performance

over Plan 1.2. Comparing Plan 1.3 with Plan 1.1, Plan 1.3

performs 11% to 22% better than Plan 1.1 depending on the size

of T2.

Due to space limitations, the experimental results for cases 2 and 3

are omitted from the paper.

4. Concluding Remarks
As evident from the experimental results, the usage of the

improved spatial join algorithms is very effective. Since these

algorithms produce spatially sorted join output, the upper level

join in the query evaluation plan can consume directly the output

of the lower level join without the need for writing the

intermediate results into disk and without the need for a blocking

sort operation. This is true for both cases when the tables to be

joined are spatially indexed or not. Another important advantage is

that the results of the upper-level spatial join is also sorted without

additional cost, and hence can be utilized in further pipeline

operations.

The indexes should be exploited as much as possible. ½SFs

provides a good method to achieve this. ½SFs is best used as the

upper level join. In contrast, in order to be able to use SF at the

upper levels, we need to build a temporary index for the output of

the lower level joins, which is not often profitable.

In almost all cases, nested loops join results in bad performance.

However, for high selectivity of the lower-level join, SFu+NI (the

second join is an indexed nested loops join) has an execution cost

that is close to that of SFs+½SFs. However, SFs+½SFs has the

advantage of producing sorted final result. For low selectivity of

the first join, the cost of SFu+NI is high, which makes it not a

suitable choice.

In the cases when there is no index available in the lower or upper

level joins or in the second join, LS spatial join always has better

performance, especially when the first two tables being joined are

the ones smaller in size. So, LSs+LSs will have more apparent

advantage when the first join has high selectivity than when it has

low selectivity.

5. Acknowledgements
This research was supported in part by the National Science

Foundation under Grant IIS-0093116. The author acknowledges

the help of Ming Lu in helping with the experiments.

6. REFERENCES
[1] H. Samet, The Design and Analysis of Spatial Data

Structures. Addison-Wesley, Reading, MA, 1990.

[2] H. Samet, Applications of Spatial Data Structures: Computer

Graphics, Image Processing, and GIS. Addison-Wesley,

Reading, MA, 1990.

[3] E. Jacox, H. Samet, Spatial join techniques. ACM

Transactions on Database Systems, 32(1), March 2007.

[4] Walid G. Aref and Hanan Samet, Cascaded Spatial Joins, The

4th ACM International Workshop on Advances in

Geographic Information Systems (ACM-GIS), pp. 17--24,

Rockville, Maryland, December 1996.

[5] Walid G. Aref and Hanan Samet, The Spatial Filter Revisited,

The 6th International Symposium on Spatial Data Handling,

Edinburgh, Scotland, UK, September 1994.

[6] Jack A. Orenstein, Frank Manola, PROBE Spatial Data

Modeling and Query Processing in an Image Database

Application. IEEE Trans. Software Eng. 14(5): 611-629,

1988.

[7] Jack A. Orenstein, Spatial Query Processing in an Object-

Oriented Database System. SIGMOD Conference, pp. 326-

336, 1986.

[8] G. M. Morton, A Computer Oriented Geodetic Data Base and

a New Technique in File Sequencing, IBM Ltd., Ottawa,

Canada, 1966.

[9] Guido Proietti, An Optimal Algorithm for Decomposing a

Window into Maximal Quadtree Blocks, Acta Informatica,

36(4): 257-266, 1999.

4

