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Abstract. A robust, invisible watermarking scheme is proposed for
digital images, where the watermark is embedded using the block-
based lapped orthogonal transform (LOT). The embedding process
follows a spread spectrum watermarking approach. In contrast to
the use of transforms such as discrete cosine transform, our LOT
watermarking scheme allows larger watermark embedding energy
while maintaining the same level of subjective invisibility. In particu-
lar, the use of LOT reduces block artifacts caused by the insertion of
the watermark in a block-by-block manner, hence obtaining a better
balance between invisibility and robustness. Moreover, we use a
human visual system (HVS) model to adaptively adjust the energy of
the watermark during embedding. In our HVS model, each block is
categorized into one of four classes (texture, fine-texture, edge, and
plain-area) by using a feature known as the texture masking energy.
Blocks with edges are also classified according to the edge direc-
tion. The block classification is used to adjust the watermark embed-
ding parameters for each block. © 2006 SPIE and
IS&T. �DOI: 10.1117/1.2185658�

1 Introduction
In this paper we describe a robust, invisible watermark em-
bedded in a host image. Such a watermark must be resistent
to attacks and at the same time the visual quality of the
image must be preserved. In order to improve the robust-
ness of the watermark, one may increase the watermark
embedding energy, which may increase the visibility of the
watermark. Therefore, our goal is to achieve a balance be-
tween robustness and transparency in the embedding.

For invisible watermarking, the watermark must be in-
serted in such a way that the presence of the watermark is
not noticeable under typical viewing conditions. Thus mod-
eling the human vision system �HVS� plays a critical role in
watermarking.1,2 Algorithms for general watermark
embedding/detection are described in Refs. 3–15. Digital
watermarking is widely used for copyright protection.
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Document and printing security using digital watermarking
techniques are addressed in Refs. 16 and 17. The develop-
ment of spread spectrum watermarking is a milestone in
invisible robust watermarking.18,19 The watermark is em-
bedded using spread spectrum techniques in the most sig-
nificant components in a host signal, thus guaranteeing its
robustness. Approaches of watermarking evaluation are ex-
plored and benchmarking tools are developed.20–23

It is worth mentioning that with respect to image quality,
watermarking is closely related to image compression.
HVS research has been actively exploited in lossy image
compression to improve the coding efficiency while main-
taining a good subjective quality. Theoretically, every as-
pect of HVS research can be used in watermarking as well,
particularly in trying to determine how the watermark will
manifest itself in the watermarked image.

It has been recognized that watermark embedding in the
frequency domain has many advantages in terms of robust-
ness and transparency. Many watermarking methods have
been based on this concept. Some of the methods obtain
transforms of the entire image18 while others use block-
based transforms such as the discrete cosine transform
�DCT�.24 The method we propose in this paper is based on
the block-based lapped orthogonal transform �LOT�.25 The
advantage of using LOT as opposed to conventional block-
based transforms such as DCT is that it reduces the block
artifacts caused by the watermark embedding. LOT was
used in secure watermarking in Ref. 26 with the watermark
embedded using a template with log-polar-mapping to
combat the geometrical attacks. Our new method differs in
the way the watermark is embedded using an HVS model.
We use two types of characteristics in HVS to embed the
watermark in an image-content-adaptive manner, thus im-
proving our watermarking performance. Our technique
does not currently use a synchronization template.

2 General Framework
In this paper, we combine the use of block-based LOT to
combat the block artifacts in watermark embedding, and an
HVS perceptual model for block classification to adaptively
adjust the watermark embedding energy. Our proposed ap-
proach can achieve a better trade-off to balance the robust-

ness and transparency of the embedded watermark. Also,
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the use of LOT and our HVS model can be generalized and
incorporated to any existing block-based watermarking
schemes, either blind or nonblind.

Specifically, we describe the detailed design of a non-
blind watermarking scheme as a proof of the effectiveness
of our approach. As shown in Fig. 1, our watermarking
scheme mainly follows the spread spectrum watermarking
approach.18,27 We propose a block-based robust, invisible
watermarking scheme. We use block-based LOT and clas-
sify the blocks into specific categories using the HVS per-
ceptual model.

As opposed to 8�8 block-based DCT, LOT divides an
image into overlapping 16�16 blocks in the spatial do-
main and maps each block into an 8�8 block in the fre-
quency domain, hence obtaining an image in the transform
domain with the same size as the original. The use of LOT
helps reduce the block artifacts caused by block-based em-
bedding. Details of LOT are discussed in Sec. 3.1.

To obtain a balance between robustness and invisibility
of the embedded watermark, we introduce a perceptual
analysis module that uses HVS properties to adaptively em-
bed the watermark in each block. The perceptual analysis
module first extracts a feature from each block, namely the
texture masking energy �TME�, described below. The
blocks are then classified into four categories according to
the TME. Blocks classified as edge by the use of the TME
are further classified into four edge classes using an edge
detector. The effect of this is that each block is classified
into one of seven classes. Details of the perceptual analysis
are presented in Sec. 3.2.

The watermark embedding energy in each block is ad-
justed accordingly to adapt to the HVS sensitivities to er-
rors. We design a quantization matrix for each category of
the blocks through incorporating the HVS analysis results.
We take the quantization matrix as a just noticed difference
�JND�-like matrix to adaptively adjust the watermark em-
bedding energy to retain the transparency. We address the
details of the design for the JND quantization matrix in
Sec. 3.3.

Fig. 1 Block diagram o
An example of blind watermarking scheme that embeds
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a binary watermark sequence is to quantize a transform
coefficient of the host image and round it to either its near-
est odd-numbered or nearest even-numbered quantized
value based on the embedded watermark bin.28–30 Using
our approach, block-based LOT can be adopted and the
quantization step for each hosting transform coefficient can
be appropriately designed in a similar way as that for the
nonblind watermarking scheme we describe in this paper.

3 Watermarking Using LOT and HVS Perceptual
Analysis

3.1 Lapped Orthogonal Transform
LOT is described in-depth in Ref. 25, which presents a
DCT-based fast implementation for LOT and its inverse
transform �ILOT�. In the one-dimensional �1-D� case, for a
discrete 1-D signal x0 with length MN, LOT divides the
signal into M segments where each segment has length L
that satisfies N�L�2N. This means that every two adja-
cent segments have an overlapped portion of length �L
−N� /2. LOT transforms each signal fraction into an
N-entry coefficient vector, and thus the transformed signal
has the same total length as the original signal. Like some
other traditional transforms, it is straightforward to derive
the two-dimensional �2-D� separable LOT from the 1-D
version. As shown in Fig. 2, the 2D LOT maps every L
�L block in the spatial domain to an N�N block in the
frequency domain. We chose N=8 and L=2N in our imple-
mentation. Since every block in the transform domain con-
tains information of the adjacent blocks in the spatial do-
main, block artifacts caused by any processing in a block-
by-block manner in the transform domain will not be as
noticeable in the spatial domain. LOT usually requires 20–
30% more computational complexity than DCT. LOT has
been used in image and video compression.31

3.2 Block Categorization Using HVS Perceptual
Analysis

Characteristics of the HVS have been studied and exploited
32

lind LOT watermarking.
in the area of image and video compression. The limits of
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the HVS in the intensity, spatial, and temple domain allows
images to be represented with fewer bits but adequate sub-
jective visual quality. For example, the HVS has different
sensitivities to different image details. As a result, changes
in a “flat” region are more perceptible than the same
amount of changes in a complex texture region. The HVS
perceptual analysis also provides methods in digital water-
marking to increase the energy of the embedded watermark
while keep it imperceptible.1,2

In our perceptual model, two types of HVS properties
are used: the sensitivity to the complexity of texture and the
sensitivity to the orientation of edges. We classify the im-
age blocks into different categories based on these HVS
properties. The block-by-block watermark embedding is
then implemented accordingly. We design a JND-like ma-
trix for each category of the blocks so that the capacity of
each host block is maximized to retain the invisibility of the
embedded watermark.

We first extract an HVS feature, known as the texture
masking energy �TME�, from each block as follows33:

TE�k� =��
i=0

N−1

�
j=0

N−1

�i,j���0,0�

Ĥ−1�i, j�2Xk�i, j�2�1/2

. �1�

In the above equation, Xk�i , j� denotes the LOT transform
coefficient located in position �i , j� of the k’th block, and

Ĥ�f� is the HVS relative sensitivity function with respect to
the spatial frequency f , where f is related with the spatial
position �i , j� as follows:

f�cycles/degree� =
�i2 + j2

2N
�cycles/pixel�

� fs�pixels/degree� , �2�

and we chose fs=32. The function Ĥ�f� can be obtained
as33

Ĥ�f� = �A�f��H�f� ,

Fig. 2 Block-based LOT as opposed to block-based DCT.
H�f� = �0.31 + 0.69f�exp�− 0.29f� ,
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A�f� = �1

4
+

1

�2�ln	2�f

�
+�4�2f2

�2 + 1
�2�1/2

,

where �=11.636 deg−1.
Note that TE

2�k� is a sum of the energy in the k’th block
weighted by the reciprocal of the square of the sensitivity

function Ĥ2�f�. This implies that the TME provides a met-
ric measuring the insensitivity, or equivalently, the resis-
tance capability of a block to noise. We also divide each
N�N block into four N /2�N /2 subblocks, and obtain the
TME for each subblock, namely TE�k , l�, l=1,2 ,3 ,4, in a
similar way.

Since the TME represents the insensitivities of a block
and its subportions to noise, we use both TE�k� and TE�k , l�
to classify the k’th N�N block into four major categories:
texture, fine-texture, edge, and plain-area. This is done us-
ing a similar approach as in Ref. 33.

Studies of the HVS have shown that different edge ori-
entations have different masking capabilities. The HVS is
less sensitive to changes along the direction of an edge than
changes perpendicular to the edge. Thus we further classify
each edge block into four types according to the edge di-
rection: vertical, horizontal, diagonal, and antidiagonal, us-
ing the Sobel operator.31

An example of the result of our perceptual analysis is
shown in Fig. 3.

3.3 Design of JND Quantization Matrix
In this subsection, we design a JND quantization matrix for
each category of the blocks. We take the standard quanti-
zation matrix used in JPEG34 and create our JND quantiza-
tion matrix through modulating the JPEG matrix with two
specific matrices for each block category. Half of the quan-
tization step for one LOT transform coefficient is treated as
a measure of the just-noticed difference threshold. Hence
the amount of watermark embedding energy can be deter-
mined without violating the invisibility.

We obtain our JND quantization matrix for the k’th
block as

QL�k� = QS � Mblock�k� � Medge�k� , �3�

where “�” denotes the element-wise multiplication, and QS
is the standard quantization matrix used in JPEG,34 which
reflects the HVS sensitivity to spatial frequencies.24 Any

Fig. 3 An enlarged block classification using the HVS perceptual
analysis of crowd �Left: Block classification using the TME, where
cross-hatched regions denote texture, hatched regions denote fine-
texture, solid-line-bounded regions denote edge, and unmarked re-
gions denote plain-area; Right: Edge classification, where line seg-
ments denote the edge orientation�.
“noise” added to the transform coefficients shall be barely
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perceptible, as long as the magnitude of the noise is within
half of the quantization steps designated by QS. We design
two additional matrices, Mblock�k� and Medge�k�, to modu-
late the quantization steps in QS for the k’th block, based on
our perceptual analysis,

Mblock�k�

= �
0.8 plain-area

1.0 + minTE�k� � 0.25/�edge,0.25� edge

1.0 + minTE�k� � 0.25/� fine-texture,0.25� fine-texture

1.25 + minTE�k� � 0.25/�texture,0.25� texture
� ,

�4�

Medge = �M1 horizontal edge

M1
T vertical edge

M2 diagonal/anti-diagonal edge
� . �5�

In Eq. �4�, we chose �edge=600, �fine-texture=300, and
�texture=400. In Eq. �5�, M1 and M2 are designed as

M1 = �
1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.3

1.1 1.0 1.0 1.0 1.0 1.1 1.3 1.3

1.2 1.2 1.0 1.0 1.1 1.1 1.3 1.4

1.2 1.2 1.2 1.0 1.1 1.3 1.3 1.4

1.2 1.2 1.2 1.2 1.3 1.3 1.4 1.5

1.2 1.2 1.2 1.3 1.3 1.4 1.5 1.5

1.2 1.2 1.3 1.3 1.4 1.5 1.5 1.5

1.2 1.3 1.4 1.4 1.5 1.5 1.5 1.5

� , �6�

M2 = �
1.0 1.0 1.0 1.1 1.2 1.2 1.3 1.3

1.0 1.0 1.0 1.0 1.2 1.2 1.3 1.3

1.1 1.0 1.0 1.0 1.2 1.2 1.3 1.4

1.1 1.0 1.2 1.0 1.2 1.2 1.3 1.4

1.2 1.2 1.2 1.2 1.2 1.2 1.4 1.5

1.2 1.2 1.2 1.2 1.2 1.4 1.5 1.5

1.3 1.3 1.3 1.3 1.4 1.5 1.5 1.5

1.3 1.3 1.4 1.4 1.5 1.5 1.5 1.5

� ,

and M1
T is the transpose of M1.

The design of matrix Mblock�k� in Eq. �4� used the HVS
analysis result from the first step of our block classification
approach. As we have discussed, HVS has the property that
errors in high complex texture areas are less sensitive to
those in low complex texture areas. The TME of each block
is a measure of the texture complexity in the block, or
equivalently, a measure of the resistance capability of the
block to quantization errors. Hence the classification result
using TME has provided the ability and extent of error
insensitivity of each block category.

The four main block categories, sorted in an ascending
order in terms of error insensitivity, are: plain-area, edge,
fine-texture, and texture. The more insensitive a block is to
errors, the larger amount of watermark embedding energy

the block may allow to retain sufficient watermark invis-
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ibility. Hence we generally scale down the quantization
steps for blocks classified as plain-area to 0.8, but increase
the quantization steps for edge and fine-texture blocks to
1.0�1.25, and texture blocks to 1.25�1.5. Moreover, we
fine-tune the embedding energy for each block according to
its own TME value. We empirically chose the thresholds
for the TME value of each block category �edge, �fine-texture,
and �texture through examining the average TME value of
that specific category of blocks.

In addition to considering texture complexity of one
block, we also mentioned that HVS has different sensitivi-
ties to errors present at different edge orientations. The de-
sign of matrix Medge in Eqs. �5� and �6� aims to quantify
this HVS property. It has been pointed out in Ref. 35 that
the JND on both sides of an edge is raised up when ap-
proaching the edge, and the edge blocks concentrate their
energy on the specific spatial frequency band at the particu-
lar orientation. Hence we may increase the quantization
step size at those spatial frequencies in the vicinity of the
particular edge band. We design different quantization
modulation matrices Medge for different edge blocks of par-
ticular edge orientations. The design of Medge is empirically
derived, which mainly depends on the edge structure in the
edge block. The entries of Medge only remain 1.0 in the
specific edge frequency band, whereas the remaining en-
tries have increased to a value larger than one. Entries at
higher frequencies are larger than those at lower frequen-
cies.

The entries in our JND matrix QL are an indication of
the insensitivities of the LOT coefficients subject to quan-
tization noise. That is, the smaller the entry in QL, the more
perceptually significant the corresponding LOT coefficient
is when the image block is distorted by quantization noise.

The modulated JND quantization matrix QL we designed
here is an extended work of those described in Refs. 31 and
33. In our paper, we mainly use the concept of TME since
we believe it is a better quantitative measure of HVS error
insensitivity compared to other HVS analysis models based
on our experience. We create two modulation matrices,
Mblock and Medge, using the two-step block classification
results. The design of our JND matrix could be used for
both lossy image coding and invisible image watermarking.
We will present the effectiveness of our HVS analysis for
invisible image watermarking in the experimental results.

3.4 Watermark Generation, Embedding, Detection,
and Identification

In this subsection, we use the spread spectrum approach to
generate, embed, and extract the image watermark.18 It is
argued in Ref. 18 that a robust, invisible image watermark
should be constructed as an independent, identically distrib-
uted �i.i.d.� Gaussian random sequence and embedded in
the perceptually most significant spectral components of
the host image following a spread-spectrum-like fashion. It
has been proved that such watermarking schemes enable
the robustness and security of the embedded watermark,
since an attacker cannot remove the watermark without se-
riously degrading the fundamental structural components of
the host image, and meanwhile, most image processing op-

erations tend to leave the perceptually significant compo-
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nents intact. The choice of Gaussian distribution makes the
embedded watermark capable of combating collusion at-
tacks.

The invisibility of the watermark embedded in the per-
ceptually most significant components is facilitated by the
spread spectrum theory. An analogy exists between water-
mark embedding and secure signal communications over
channels with noise. The frequency domain of the host im-
age can be viewed as a communication channel, the water-
mark can be treated as a transmitted signal, and the mali-
cious and unintentional lossy processing operations can be
regarded as the channel noise. Hence, the same rationale
used for secure signal communications can be applied in
the field of invisible, robust watermarking. In spread spec-
trum communications, a narrow-band signal is transmitted
over a much larger bandwidth such that the signal energy
spread in any single frequency component is undetectable.
Analogously, a watermark can be embedded over many fre-
quency coefficients of the host image and the energy in any
single coefficient is hence undetectable. The embedded wa-
termark can only be destroyed through introducing noise of

Fig. 4 Original images �Left: crowd, Right: umas�.

Fig. 5 LOT image watermarking for crowd, �=1.0 �Top-left: Origi-
nal; Top-right: HVS analysis; Bottom-left; Watermarked using HVS,
enlarged bottom-left part; Bottom-right: Watermarked without HVS,

enlarged bottom-left part�.
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large amplitude spread over many host coefficients, which
will consequently cause serious image quality degradation.
In contrast, at the stage of watermark detection and identi-
fication, using the knowledge of the location and content
for the embedded watermark, it is possible to collect these
many weak signals spread over a large range of host coef-
ficients and provide a single output with sufficiently high
signal-to-noise ratio �SNR�.

We use the results of the perceptual analysis and the
JND matrix described in Sec. 3.2 and 3.3 to adaptively
embed the watermark in a block-by-block manner in the
LOT transform domain. Motivated by the concept of spread
spectrum watermarking,18 we form our watermark using an
independent, identically Gaussian-distributed pseudoran-
dom sequence, with zero mean and unit variance. In our
implementation, we fixed the number of LOT coefficients
that bear the watermark in each block to be 5. Thus for a
512�512 image, the total length of the embedded water-
mark is 20,480.

We choose the five visually most important AC coeffi-
cients in each block, whose corresponding entries in QL
have the least values except the one located in the �0,0�
position that is excluded from watermark embedding�, to
bear the watermark. The watermark is embedded in the
following way:

Xk��in,k, jn,k� = Xk�in,k, j j,k� + �QL�in,k, jn,k�w�n� , �7�

where w�n� is the watermark element, �in,k , jn,k� denotes the
specified position to bear the watermark in the k’th block, X
denotes the LOT coefficient of the original image, X� is the
corresponding watermarked coefficient, and � determines

Table 1 Watermark identification after attacks using common filter-

ing operations sim�W ,Ŵ��.

Image Scheme �

Median
Gaussian

3�3
Average

3�3 Sharpen2�2 3�3

LOC 0.25 15.8 32.3 48.4 36.7 30.2

DCT 15.7 28.9 44.1 34.5 33.2

crowd LOT 0.50 31.9 61.6 83.5 67.2 56.5

DCT 30.8 57.5 76.9 62.9 62.2

LOT 2.00 94.2 127.0 133.8 127.7 120.0

DCT 90.0 124.7 130.1 122.7 120.5

LOT 0.25 19.3 39.3 54.7 39.4 33.8

DCT 15.7 35.7 42.1 33.2 40.5

umas LOT 0.50 36.3 71.2 90.8 70.8 62.6

DCT 31.1 66.2 75.7 62.7 71.5

LOT 2.00 98.3 130.4 135.8 129.4 124.8

DCT 91.2 129.0 130.7 123.8 125.8
the overall intensity of the watermark embedding energy,
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which usually takes a value between 1/6 to 1.
To detect the watermark we need the original unwater-

marked image, as well as the location and intensity infor-
mation. We take LOT for both the original image and the
possibly corrupted watermarked image. For each water-
marked frequency component, we extract the watermark
using

ŵ�n� = X̂k��in,k, jn,k� − Xk�in,k, jn,k��/�QL�in,k, jn,k�� . �8�

Let Ŵ denote the extracted watermark vector, and W a can-
didate watermark. We identify the watermark by obtaining
the similarity �correlation� as follows:

sim�W,Ŵ� =
W · Ŵ

�Ŵ · Ŵ
, �9�

where “·” denotes the inner production. It is easy to show
that if W is a sequence of i.i.d. random variables with zero-

mean unit variance, and also independent of Ŵ, sim�W ,Ŵ�
is a zero-mean unit-variance Gaussian random variable. If

sim�W ,Ŵ� is greater than a threshold, we claim that Ŵ
comes from the original watermark W, hence identifying
the embedded watermark. In our implementation, we chose
6 as the threshold, which corresponds to a false alarm prob-
ability of 10−9 =1−��6�, where ��x� denotes the cumula-

Table 2 JPEG attack performance of LOT watermarking with in-

creased � crowd sim�W ,Ŵ��.

Quality 10 20 30 40 50 70 90

LOT ��=0.60� 42.8 78.0 101.6 114.8 123.0 133.8 141.4

DCT ��=0.50� 42.1 76.1 100.7 114.0 122.8 134.0 141.4

Fig. 6 LOT vs. DCT watermarking using a lossy JPEG compression
attack to crowd.
Journal of Electronic Imaging 013009-
tive distribution function �c.d.f.� of a Gaussian random

variable with zero-mean unit variance�. Note that when Ŵ

=W, sim�W ,Ŵ� achieves its maximum value 143.11�=5
�512�512/ �8�8��1/2�.

4 Experimental Results
We used our LOT watermarking scheme to watermark sev-
eral 512�512 gray-scale images shown in Fig. 4. The Stir-
mark 3.1 benchmark21 is used to attack the watermarked
images and test the robustness of the embedded watermark.

To demonstrate the effectiveness of our HVS analysis
and the use of our JND matrix, we compare the two water-
marked images with the same watermarking embedding in-
tensity, i.e., using the same �. One image has the water-
mark embedded using the HVS result and one without the
HVS result. For the one without using HVS analysis, we
take the JPEG standard quantization matrix QS instead of
our JND matrix QL for watermark generation, embedding,
and extraction, similar to the approach described in Ref. 24.
Due to the same � that is used, both watermarked images
have demonstrated almost the same robustness capability
under various attacks and lossy image operations such as
JPEG. However, as shown in Fig. 5, the watermarked im-
age without using HVS demonstrates a larger quality deg-
radation compared to the one using HVS, especially in
those flat areas, for example in the area of the pants. This
implies the use of HVS analysis improves the transparency
of the embedded watermark at the same level of robustness.

To demonstrate the advantages of using LOT, we imple-
mented a block-based DCT watermarking scheme for com-
parison. The only difference between the two schemes is

Fig. 7 LOT vs. DCT image watermarking for crowd �Top-left: Water-
marked image using LOT, �=0.6; Top-right: Watermarked image us-
ing DCT, �=0.5; Bottom-left: Difference image using LOT, �=0.6;
Bottom-right: Difference image using DCT, �=0.5�.
the transform.

Jan–Mar 2006/Vol. 15(1)6



Liu et al.: Lapped-orthogonal-transform-based adaptive image¼
It can be observed from Table 1 that under the same
embedding intensity �, our LOT scheme is slightly more
resistant to blurring attacks, but slightly more vulnerable to
sharpening attacks.

Figure 6 suggests that using the same �, the DCT wa-
termarking is slightly more resistant to lossy JPEG com-
pression. We have argued that one distinguished advantage
of the block-based LOT, as opposed to the block-based
DCT, is its capability of reducing block artifacts. Thus we
can choose a slightly larger � for our LOT method to in-
crease its robustness without compromising the transpar-
ency. For example, if we chose �=0.60, the LOT water-
marking scheme will outperform the DCT scheme with �
=0.50 as described in Table 2. The watermarked images
and the difference images between the original image and
the watermarked one are given in Fig. 7. Due to the larger
intensity � chosen for LOT, the LOT difference image pre-
sents more quantization noise compared with that using
DCT. Nevertheless, the LOT watermarked image has the
same or even better subjective quality compared with the
DCT watermarked image, showing that LOT effectively re-
duces the block artifacts.

Our LOT watermark survives the cropping attack, as
shown in Table 3. Intuitively, if we lose 90% of the image,
we lose 90% of the watermark sequence. However, consid-
ering our goal is to verify the similarity between the ex-
tracted sequence and the original sequence, losing 90% of
the extracted data only makes the similarity function to be

Table 3 LOT watermark identification

Cropping
�upper-left position �x ,y��

Area size: 1

�193, 169� �292,

sim�W ,Ŵ�� 48.1 47.5

Fig. 8 Image cropping attack �Left: Original im

cropped area, 171�170�.
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1/�10 of its original value. Usually the correlation is still
well above 6, so we can still make a correct decision after
a severe cropping. We chose two cropping sizes, 171
�170 and 51�51, which correspond to 1/9 and 1/100 of
the original image size, respectively. The theoretical values
for the maximum similarity between the extracted water-
mark and a candidate watermark i.e., sim�W ,W�� are
47.70=�5�512�512/9�1/2� and 14.31=�5�512
�512/100�1/2� for the above two size choices. As dis-
cussed in Ref. 18, since we are using a nonblind approach
in our watermarking, i.e., we have the original image avail-
able upon watermark detection, the watermark detector can
easily obtain the position of the watermarked cropped area
relative to the original image �such as using image correla-
tion�. For each cropping size, we tried three different crop-
ping locations, as given in Table 3 and Fig. 8. In addition,
we used the Stirmark 3.1 JPEG attack on the cropped area,
and our LOT watermarking can still survive as long as the
cropping size is large enough, as shown in Table 4.

One approach to improve our LOT watermarking
scheme is to adaptively adjust the number of watermark
elements embedded in each block rather than fix it at 5. A
better transparency-robustness balance should be expected.

5 Conclusion
In this paper, we presented a LOT-based adaptive image
watermarking scheme. LOT inherits all the best properties

a cropping attack to crowd ��=0.60�.

0 Area size 51�51

�57, 290� �150, 125� �315, 53� �15, 252�

49.3 14.9 14.1 14.7

ith the cropping area marked; Right: Enlarged
using

71�17

45�
age w
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of the DCT, such as decorrelation and energy compaction,
except that it requires 20–30% more computational com-
plexity than DCT. Specifically, LOT greatly reduced block
artifacts compared with DCT, making the embedded water-
mark less perceptible with same embedding energy. In ad-
dition, we used the HVS perceptual analysis to embed the
watermark in an adaptive manner. Our experiments showed
that our scheme obtains a good balance between robustness
and transparency of the watermark. The use of LOT and
our HVS model can be generalized and incorporated to any
existing block-based watermarking schemes.
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