
Testing for Software Vulnerability Using Environment
Perturbation

Abstract

We describe an methodology for testing a software system
for possible security flaws. Traditionally, security test-
ing is done using penetration analysis and formal meth-
ods. Based on the observation that most security flaws
are triggered due to a flawed interaction with the environ-
ment, we view the security testing problem as the prob-
lem of testing for the fault-tolerance properties of a soft-
ware system. We consider each environment perturba-
tion as a fault and the resulting security compromise a
failure in the toleration of such faults. Our approach is
based on the well known technique of fault-injection. En-
vironment faults are injected into the system under test
and system behavior observed. The failure to tolerate
faults is an indicator of a potential security flaw in the sys-
tem. An Environment-Application Interaction (EAI) fault
model is proposed which guides us to decide what faults to
inject. Based on EAI, we have developed a security test-
ing methodology, and apply it to several applications. We
successfully identified a number of vulnerabilities include
vulnerabilities in Windows NT operating system.

Keywords: Environment fault, fault classification, fault
injection, security, security flaw, testing, security testing.

1 Introduction

Security testing

Reports of security violations due to software errors are
becoming increasingly common. We refer to such errors
as “security errors” or “security flaws.” This has resulted
in security related concerns among software developers
and users regarding the “robustness” of the software they
use. All stages of software development are motivated
by the desire to make the product secure and invulnera-
ble to malicious intentions of some users. Our work is
concerned with the testing of software with the goal of
detecting errors that might lead to security violations.

Traditional methods for detecting security flaws in-
clude penetration analysis and formal verification of secu-
rity kernels [17, 19]. Penetration analysis relies on known

security flaws in software systems other than the one be-
ing tested. A team of individuals is given the responsibil-
ity of penetrating the system using this knowledge. For-
mal methods use a mathematical description of the secu-
rity requirements and that of the system that implements
the requirements. The goal of these methods is to show
formally that the requirements are indeed met by the sys-
tem.

A weakness of penetration analysis is that it requires
one either to know or be able to postulate the nature of
flaws that might exist in a system. Further, the effective-
ness of penetration analysis is believed to be as good as
that of the team that performs the analysis. A lack of an
objective criterion to measure the adequacy of penetration
analysis leads to uncertainty in the reliability of the soft-
ware system for which penetration analysis did not reveal
any security flaws.

Attractive due to the precision they provide, formal
methods suffer from the inherent difficulty in specifying
the requirements, the system, and then applying the pro-
cess of checking the requirements specification against
system specification.

Recently, several specific security testing techniques
have been developed [4, 7, 18, 23, 21, 28]. As discussed
in section 5, these techniques are either restricted to some
specific security flaws or limited by the underlying testing
techniques.

Another alternative for security testing is to use gen-
eral testing techniques, such as path testing, data-flow test-
ing, domain testing, and syntax testing [2]. However,
the effectiveness of these techniques in revealing security
flaws is still unknown and more studies are needed to jus-
tify their use in testing for security flaws.

Outline of our approach

Our approach for security testing employs a well known
technique in the testing of fault-tolerant systems, na- mely
fault injection. This approach has drawn upon years of re-
search and experience in vulnerability analysis [1, 3, 6, 16,
20]. Our approach relies on an empirically supported be-
lief that the environment plays a significant role in trigger-
ing security flaws that lead to security violations [9, 16].

1

The problem

For the purpose of our discussion, we assume that a “sys-
tem” is composed of an “application” and its “environ-
ment.” Thus, potentially, all code that is not considered as
belonging to the application belongs to the environment.
However, we can reduce the size of the environment, by
considering only those portions of the code that have a di-
rect or indirect coupling with the application code. Such
coupling might arise, for example, due to the application’s
use of global variables declared in the environment or the
use of common resources such as files and network ele-
ments.

For various reasons, programmers tend to make as-
sumptions about the environment in which their applica-
tion will function. When these assumptions hold, the ap-
plication is likely to behave appropriately. But, because
the environment, as a shared resource, can often be per-
turbed by other subjects, especially malicious users, these
assumptions might not be true. A secure program is one
that tolerates environment perturbations without any se-
curity violation.

If we consider environment perturbations to be faults,
then a secure system can be regarded as a fault-tolerant
system that is able to tolerate faults in the environment.
Therefore, the goal of testing the security of a system is
reduced to ensuring that the system is implemented to tol-
erate various environment faults; not leading to security
violations is considered toleration of such faults. In the
remainder of this paper, we will use the terms “ environ-
ment perturbation” and “environment fault” interchange-
ably where there is no confusion.

Fault injection–the deliberate insertion of faults into
an operational system to determine its response–offers an
effective solution to validate the dependability of fault-
tolerant computer and software systems [5]. In our ap-
proach, faults are injected into environment thereby per-
turbing it. In other words, we perturb the application en-
vironment during testing to see how the it responds and
whether there will be a security violation under this per-
turbation. If not then the system is considered secure.

Advantages of our approach

The use of environment fault injection technique leads to
several advantages. First, in practice, it is hard to trigger
certain anomalies in the environment, and knowing how
to trigger them depends on the tester’s knowledge of the
environment. Therefore, testing software security under
those environment anomalies becomes difficult. Fault in-
jection technique provides a way of emulating the envi-
ronment anomalies without having to be concerned with
how they could occur in practice. Second, our approach
provides a systematic way of deciding when to emulate

environment faults. If we want to test whether a sys-
tem will behave appropriately under certain environment
anomalies, we need to set up those environments. How-
ever, the set up time is often difficult to control. If the
set up is too early, it might change during the test and the
environment state might not be we is expected when an
interaction between the application and the environment
takes place. If the environment is set up too late, the effect
it has on the application’s behavior might not serve the
purpose for which it was set up. By exploiting static in-
formation in the application and the environment’s source
code, our approach can, however, decide deterministically
when to trigger environment faults. Third, unlike penetra-
tion analysis, where the procedure is difficult to automate
and quantify, fault injection technique provides a capabil-
ity of automating the testing procedure. In addition, we
adopt a two-dimensional metrics to quantify the quality
of our testing procedure.

Research issues

Fault injection requires the selection of a fault model [5].
The choice of this model depends on the nature of faults.
Software errors arising from hardware faults, for instance,
are often modeled via bits of zeroes and ones written into
a data structure or a portion of the memory [15, 25], while
protocol implementation errors arising from communica-
tion are often modeled via message dropping, duplica-
tion, reordering, delaying etc. [14]. Understanding the na-
ture of security faults provides a basis for the application
of fault injection. Several studies have been concerned
with the nature of security faults [1, 3, 6, 16, 20].) How-
ever, we are not aware of any study that classifies secu-
rity flaws from the point of view of environment pertur-
bation. Some general fault models have also been widely
used [13, 26, 21, 28]. The semantic gap between these
models and the environment faults that lead to security
violations is wide and the relationship between faults in-
jected and faults leading to security violations is not known.
We have developed an Environment-Application Interac-
tion
(EAI) fault model which serves as the basis the fault injec-
tion technique described here. The advantage of the EAI
model is in its capability of emulating environment faults
that are likely to cause security violations.

Another issue in fault injection technique is the loca-
tion, within the system under test, where faults are to be
injected. In certain cases, the location is obvious. For
example, in ORCHESTRA [14], the faults emulated are
communication faults. Hence, the communication chan-
nels between communicating entities provide the obvious
location for fault injection. In other cases, where the lo-
cation is hard to decide, nondeterministic methods, such

2

as random selection, selection according to distribution,
are used to choose the locations. For example, FERRARI
[15] and FINE [13] use such an approach. The selection
of location is also a major issue for us. In the current
stage of our research, we inject environment faults at the
points where the environment and the application interact.
In future work, we plan to exploit static analysis to further
reduce the number of fault injection locations by finding
the equivalence relationship among those locations. The
motivation for using static analysis method is that we can
reduce the testing efforts by utilizing static information
from the program.

A general issue about software testing is “what is an
acceptable test adequacy criterion?” [10]. We adopt a
two-dimensional coverage metric (code coverage and fault
coverage) to measure test adequacy.

The remainder of this paper is organized as follows:
section 2 presents the fault model. A methodology for se-
curity testing is presented in section 3. In section 4 we will
show the results of using this methodology in detecting
real world programs. Finally a brief overview of related
studies is presented in section 5 followed by summary of
this research and the potential for future work in section 6.

2 An Environment Fault Model

In order to determine system behavior under various en-
vironment conditions, an engineer must be able to deter-
mine the effects of environment perturbation on a given
system. Therefore, it is useful to inject faults that man-
ifest themselves as errors in systems at the environment-
application interaction level. To maintain confidence in
the validity of the errors, the model used for these in-
jections should be drawn from actual environment faults,
while faults injected into the system should be able to
emulate those environment faults appropriately. One as-
sumption behind this requirement is that a security viola-
tion resulting due to the injected fault is similar to one that
results due to an environment fault that arises during the
intended use of the system.

2.1 Terminology

Definition 2.1 (Internal State and Internal Entity)Any
element in an application’s code and data space is con-
sidered an internal entity. A state consisting of the status
of these entities is called an internal state.

Variablei in a application, for example, is an internal
entity. The value ofi is part of an internal state. The size
of a buffer used in the application is also part of its internal
state. In general, all information in this application’s data

space, stack space, and heap space are part of its internal
state.

Definition 2.2 (Environment Entity and Environment State)
Any element that is external to an application’s code and
data space is called an environment entity. A state that
consists of the status of these entities is called an environ-
ment state.

For instance, file and network are treated as environ-
ment entities. The permission of a file, existence of a file,
ownership of a file, real user-id of a process, and the ef-
fective user-id of process are different parts of an environ-
ment state.

A key difference between an environment and an in-
ternal entity, which makes implementation of a secure sys-
tem difficult and error-prone, is the shared nature of the
environment entity. An application is not the only one
that can access and change an environment entity. Other
objects, such as other users, may access and change the
environment entity as well. Internal entity, on the other
hand, is private to an application in the sense that only the
application can modify and access them, assuming that
the underlying operating system provides protected pro-
cess space.

In concurrent programming, shared resources are han-
dled by using the mutual exclusion and the sema- phore
mechanism to guarantee assumptions about the state of
shared resources. However, we believe that few program-
mers use a similar mechanism to guarantee their assump-
tion about the state of the environment. There are sev-
eral reasons for this. First, programmers might not have
recognized that the environment entities are shared re-
sources. When, for example, an application writes to a
file, it checks that it has the permission to write to that
file, and then assumes that right in subsequent operations
to that file without noticing that a malicious attacker could
have change the environment thereby rendering the as-
sumption false. Most security flaws resulting from race
conditions [4] are caused by such dubious assumptions.
Second, although some mechanisms, such as file locking,
guarantee that a programmer’s assumption hold on some
part of the environment state, there is no general mecha-
nism to do the same as the environment entity has various
attributes than what the mutual exclusion and semaphore
mechanisms could handle. As a result, programmers of-
ten usead hocmechanisms to guarantee the correctness
of their assumptions. This can lead to errors more read-
ily than would be the case when a standard mechanism is
used.

2.2 Developing a fault model

In order to provide high confidence in the validity of the
security flaws caused by environment faults, the method-

3

ology described here models systems at a high level. We
refer to this level as the Environment-Application Inter-
action (EAI) level. Fault injection at the interaction level
attempts to emulate what a “real” attacker does. Since
most of the vulnerability databases record the way attack-
ers exploit a vulnerability, we transform these exploits
to environment faults to be injected with little analysis
on those records thereby narrowing the semantic gap be-
tween faults injected at the interaction level and faults that
really occur during the intended use of the system. In con-
trast, other studies [21, 28] inject faults at the program
statement level thereby leaving a large semantic gap be-
tween faults injected and those that might arise during the
intended use of the application.

2.3 An EAI fault model

In general, environment faults affect an application in two
different ways. First, an application receives inputs from
its environment. The environment faults now become faults
in the input, which is then inherited by an internal entity
of the application. From this point onwards the environ-
ment faults propagate through the application via the in-
ternal entities. If the application does not handle the faults
correctly, a security violation might occur. The direct rea-
son for this violation appear to be faults in the internal
entity. However, this violation is due to the propagation
of environment faults. Stated differently, the environment
indirectly causes a security violation, through the medium
of the internal entity. Figure 1(a) shows this indirect way
in which the environment faults affect an application.

Consider the following example. Suppose that an ap-
plication receives its input from the network. Any fault
in the network message related to this input is inherited
by an internal entity. When the application does a mem-
ory copy from this message to an internal buffer without
checking the buffer’s boundaries, the fault in the network
message, the fault being “message too long,” now triggers
a violation of security policy.

A second way in which an environment fault affects
the application is when the fault does not propagate via
the internal entity. Instead, it stays within the environment
entity and when the application interacts with the environ-
ment without correctly dealing with these faults, security
policy is violated. In this case, the environment faults are
the direct cause of security violation and the medium for
environment faults is the environment entity itself. Fig-
ure 1(b) shows this direct way in which the environment
faults affect an application.

Let us now a consider an example to illustrate this sec-
ond kind of interaction. Suppose that an application needs
to execute a file. There are two possibilities one being that
the file belongs to the user who runs the application. Here

the environment attribute is the file’s ownership. In this
case the execution is safe. The other possibility is that
the file belongs to some malicious user. This is an en-
vironment fault created by the malicious user. Now the
individual who runs the application assumes that the file
belongs to the application. If the application does not
deal with this environment fault, it might execute arbi-
trary commands in that file thereby resulting in a security
violation.

The most error-prone interaction between an appli-
cation and the environment is that involving files. Pro-
grammers tend to use an abstraction of a file that includes
only a subset of the file attributes. A file name with a lo-
cation or file content, for example, is a commonly used
abstraction of a file. The environment faults, such as a
long file name or a file name with special characters, as-
sociated with this abstraction will propagate via the inter-
nal entity. If the application does not place appropriate
checks on these internal entities, such environment faults
will cause security violations such as those due to buffer
overflow and the execution of an unintended command.
The environment faults associated with the remaining file
attributes, such as whether the file is a symbolic link, the
ownership of the file, existence of the file, and the per-
missions associated with the file, will not propagate via
an internal entity. Although these attributes are extrinsic
to the application, if not dealt correctly, they are likely
to directly affect the interaction between application and
environment.

In summary, we have categorized the environment faults
according to the way they affect applications. Environ-
ment faults which affect programs via internal entities are
calledindirect environment faults. Environment faults which
affect programs via environment entities are calleddirect
environment faults.

2.3.1 Indirect environment faults

We categorize indirect environment faults according to the
way they propagate in the internal space. The propagation
includes initialization and use of an internal entity corre-
sponding to an environment fault. Different ways of prop-
agation are summarized in the following.

First, different kinds of environment faults are trans-
ferred to an internal entity, which has been initialized, in
different ways. Most common initializations are through
the interaction of the application with the environment, in
which case, there must be a statement in the program that
performs this initialization. However, for other initializa-
tions, there is no such statement in the application. The
initialization of an environment variable, for example, is
carried out by the operating system. The aspect of this
kind of internal entity can easily cause mis-handling since

4

enviroment
 entity

environment
entity

environment
entity

internal
entity

internal
entity

internal
entity

enviroment
 entity

entity
environment

entity

(a) (b)

 Environment Environment
Software System Software System

environment

input from the environment to the software system

execution of the software system execution of the software system

environment entity affects the software system directlyenvironment entity affects the software system via an internal entity

Figure 1: Interaction Model

programmers rarely notice the initialization or even their
existence.

Second, environment faults inherited by internal en-
tities propagate in different ways since internal entities
come from different sources and are used differently. Some
internal entities are used by the application directly in that
there are explicit statements in the application that use the
internal entities. Other internal entities are used by the
application indirectly, meaning that there is no explicit
statement in the application that uses the internal enti-
ties. Implicit usage might be caused by system calls as
system calls use some internal entities without being no-
ticed. When, for instance, a system call is made inUNIX
to execute a command without using an absolute path, one
might not notice from the application that this system call
uses thePATHenvironment variable to find the location of
that command. Without this knowledge on how the sys-
tem call works, programmer is unaware of this invisible
use of the internal entity and hence might make incorrect
assumptions about it.

As per the above discussion, an understanding of se-
curity flaws is facilitated by dividing indirect environment
faults into the following five sub-categories according to
their origins: 1)user input, 2) environment variable, 3)
file system input, 4) network input , 5) process input.

According to vulnerability analysis reported in [1, 3,
6, 16, 20] and our analysis of a vulnerability database,
faults likely to cause security violations depend on the se-
mantics of each entity.PATH, for example, is an environ-
ment variable, and comprises a list of paths used to search
a command whenever an application needs to execute that
command. In this case, the order of paths is important
since the search will look for that command using the or-

der specified inPATH, and the search will stop right after
it has found it. The security could most likely be affected
by changing the order of paths in thePATHvariable or
appending a new path to it. Certainly, an arbitrary modifi-
cation ofPATHwill rarely cause a security breach.

Different semantics of each internal entity is summa-
rized in Table 5.

2.3.2 Direct environment faults

Direct environment faults are perturbations of environ-
ment entities that affect an application’s behavior directly.
Unlike the internal entities, which consist only of vari-
ables, environment entities are more complex. For each
type of entity, the attributes vary. There are three types
of environment entities in a traditional operation system
model. We categorize environment faults according to
this model. These categories are enumerated as: 1)file
system, 2) process, 3) network.

Studies of security violation reports, vulnerability databases,
and vulnerability analyses suggest several security-related
attributes corresponding to each environment entity. These
are summarized in Table 6. This list is not exhaustive,
nevertheless it provides the common attributes that appear
in reports of security violations. Future vulnerability anal-
yses, however, might add new entries to the list.

2.4 Data Analysis

A security vulnerability database [16] is maintained in the
CERIAS Center at Purdue University. Currently there are
195 entries in this database which include vulnerabilities
of applications from different operating systems, such as

5

Table 1: high-level classification (total 142)

Categories Indirect En-
vironment
Fault

Direct En-
vironment
Fault

Others

number 81 48 13
percent 57% 34% 9%

Table 3: Direct Environmental Faults that Cause Security
Violations (total 48)

Categories File System Network Process
Number 42 5 1
Percent 87% 10% 2%

Windows NT, Solaris , HP-UX, andLinux . A use-
ful property of this database is that most of the vulner-
abilities are analyzed in detail either using the first hand
knowledge from actual penetration testing or using second
hand knowledge.

Among the 195 entries in the database 26 entries do
not provide sufficient information for our classification,
22 entries are caused by incorrect design, and 5 entries are
caused by incorrect configuration. Both design and con-
figuration errors excluded from the scope of our research.
We therefore classify only those errors that manifest di-
rectly as incorrect code in the application using the fault
model presented above. Hence the total number of entries
used for our classification is 142.

Table 1 shows the high-level classification of environ-
ment faults. 91% of the 142 security flaws are classi-
fied by using the EAI fault model; the remaining9% are
caused by software faults irrelevant to the environment.
These include errors such as those due to mistyping of the
code in the application.

Table 2 shows the classification of indirect environ-
ment faults. Table 3 shows the classification of direct en-
vironment faults. Data in Table 3 indicates that a signifi-
cant number of part of software vulnerabilities are caused
by the interaction with thefile system environment.
Interaction with thenetwork contributes only10% of
all software vulnerabilities in our database. The reason
for the low percentage network-caused vulnerabilities is
that most of the network vulnerabilities are introduced by
a weak protocol design which does not fall into the scope
of our classification. Table 4 provides further classifica-
tion of file system environment faults according to
Table 6.

3 Environment Fault Injection Method-
ology

3.1 Fault injection

Like the EAI model, which models the environment faults
at the interaction level, fault injections are also done at the
interaction level. The previous section classifies the envi-
ronment faults into direct and indirect environment faults.
These faults are injected using the following mechanisms:

1. Indirect Environment Fault Injections: An in-
direct environment fault occurs at the interaction
point where an application requests its environment
for an input. The input that the environment pro-
vides to the application will most likely affect the
application’s behavior. A secure application should
tolerate an unexpected anomaly in the environment
input. One way to perturb the input is to use random
input as in Fuzz [8, 23]. However, this approach
dramatically increases the testing space, which and
calls for a significantly large amount of testing ef-
fort. The Fuzz approach does not exploit the se-
mantics of each input. Our vulnerability analysis,
however, has shown that inputs most likely to cause
security violations tend to have patterns according
to their semantics. If, for instance, the input is a
list of paths used to search for a command, then se-
curity failure will most likely occur when the order
of these paths is altered, a new path is inserted or
deleted, or the length of the list is increased. Other
kinds of perturbations are less likely to cause secu-
rity failure. Thus, by an examination of rare cases
and by concentrating instead on fault patterns al-
ready observed, we reduce the testing space con-
siderably.

Faults injected into the application are based on pat-
terns that are likely to cause security faults. These
patterns come from our investigation of a vulnera-
bility database and other studies reported in the lit-
erature. The faults are summarized in Table 5.

2. Direct Environment Faults Injections: A direct
environment fault occurs at the interaction point where
the application accesses an environment entity for
creation, modification, reading or execution of an
environment entity. Different status of environment
entity attributes will affect the consequences of those
interactions. Thus, the environment fault injections
are used to perturb the attributes of an environment
entity at points of interaction and to observe how
the application responds to the perturbation. For
example, before an application executes anopen
operation to a namedfile , several perturbations

6

Table 2: Indirect Environment Faults that Cause Security Violations (total 81)

Categories User Input Environment
Variable

File System Input Network Input Process Input

Number 51 17 5 8 0
Percent 63% 21% 6% 10% 0%

Table 4: File System Environmental Faults (total 42)

Categories file symbolic permission ownership file working
existence link invariance directory

Number 20 6 6 3 6 1
Percent 48% 14% 14% 7% 14% 2%

Table 5: Indirect Environment Faults and Enviromnet Perturbations

Internal Entity Semantic Attribute Fault Injections
User Input file name +

directory name
change length, use relative path, use absolute path, insert special characters such as “..”,
“=” in the name

command change length, use relative path, use absolute path, insert special characters such as “j”,
“&”, “>” or newline in the command

file name +
directory name

change length, use relative path, use absolute path, use special characters, such as “j”, “&”
or “>” in the name

Environment
Variable

execution path +
library path

change length, rearrange order of path, insert a untrusted path, use incorrect path, use
recursive path

permission mask change mask to 0 so it will not mask any permission bit
File
System
Input

file name +
directory name

change length, use relative path, use absolute path, use special characters in the name such
as “j”, “&” or “ >” in name

file extension change to other file extensions like “.exe” in Windows system; change length of file exten-
sion

IP address change length of the address, use bad-formatted address
Network packet change size of the packet, use bad-formatted packet
Input host name change length of host name, use bad-formatted host name

DNS reply change length of the DNS reply, use bad-formatted reply
Process
Input

message change length of the message, use bad-formatted message

Table 6: Direct Environment Faults and Environment Perturbations

Environment Entity Attribute Fault Injections
file existence delete an existing file or make a non-existing file exist
file ownership change ownership to the owner of the process, other normal users, or root

File file permission flip the permission bit
System symbolic link if the file is a symbolic link, change the target it links to; if the file is not a symbolic link,

change it to a symbolic link
file content
invariance

modify file

file name invariance change file name
working directory start application in different directory
message authenticity make the message come from other network entity instead of where it is expected to come

from
protocol purposely violates underlying protocol by omitting a protocol step, adding an extra step,

reordering steps
socket share the socket with another process

Network service availability deny the service that application is asking for
entity trustability change the entity with which the application interacts to a untrusted one
message authenticity make the message come from other process instead of where it is expected to come from

Process process trustability change the entity with which the application interacts to a untrusted one
service availability deny the service that application is asking for

7

are performed on this file by changing its attributes
such as its existence, permissions, ownership, and
the type of the file since failure to handle these at-
tributes is most likely to cause security violations.
These attributes are and their their perturbation are
presented in Table 6.

3.2 Test adequacy criterion

An important issue in the management of software testing
is to “ensure that prior to the start of testing the objec-
tives of testing are known and agreed upon and that the
objectives are set in terms that can be measured.” Such
objectives “should be quantified, reasonable, and achiev-
able” [11].

We usefault coverageandinteraction coveragemea-
sure test adequacy. Fault coverage is defined as the per-
centage of the number of faults tolerated with respect to
that of the faults injected. Our conjecture is that the higher
the fault coverage the more secure the application is. In
addition to fault coverage, an additional measurement of
the testing effort is the interaction coverage. Interaction
coverage is defined as the percentage of the number of in-
teraction points where we injected faults with respect to
the total number of interaction points. Once again, we
conjecture that the higher the interaction coverage, the
more dependable the testing result are. Of course we as-
sume that faults found during testing are removed. These
two coverage criteria lead to a 2-dimensional metric for
measuring test adequacy.

3

42

1

1.0

1.0

Interaction Coverage

Fa
ul

t C
ov

er
ag

e

Figure 2: Test Adequacy Metric

Figure 2 shows the 2-dimensional metric and four sam-
ple points of significance. The metric serves as a quanti-
tative evaluation of a test set. Point 1 is representative of
the region where testing resulted in low interaction and
fault coverage. In this case testing is considered inade-
quate. Point 2 is representative of the region where the
fault coverage is high but interaction coverage is low. The

test is considered inadequate since in this test, only a few
interactions are perturbed, how the system behaves under
perturbation of other interactions is still unknown.

Point 3 is representative of an insecure region because
the fault coverage is so low that we consider the applica-
tion is likely to be vulnerable to the perturbation of the en-
vironment. The safest region is indicated by point 4 which
corresponds to a high interaction and fault coverage.

3.3 Procedure

The procedure of our Environment Fault Injection Method-
ology consists of the following steps:

1. Setcount andn to 0.

2. For each test case, do step 3 to 9.

3. For each interaction point in the execution trace, de-
cide if the application asks for an input. If there is
no input, only inject direct environment faults; if
there is an input, inject both direct and indirect en-
vironment faults.

4. Decide the object where faults will be injected.

5. Establish a fault list corresponding to this object us-
ing Table5 and Table 6.

6. For each fault in the list, inject it before the inter-
action point for the direct environment faults; inject
each fault after the interaction point for the indirect
environment faults since in this case, we want to
change the value the internal entity receives from
the input.

7. Increasen by 1.

8. Detect if security policy is violated. If so, increase
count by 1.

9. Calculate interaction coverage. If the test adequacy
criteria for interaction coverage is satisfied then stop
else repeat steps 3-9 until the adequacy criteria for
interaction coverage is achieved.

10. Dividecount by n yielding� to obtain the vulner-
ability assessment score (fault coverage) for the ap-
plication.

3.4 Example

To illustrate the steps shown above, we consider an exam-
ple of fault injection. The following code is taken from
BSDversion oflpr.c . Notice thatlpr is a privileged
application. It is aset-UID application which means
that it runs in the root’s privilege even when it is invoked
by a user who does not have the same privilege as the root.

8

f = create(n, 0660);
if (f<0) {

printf(‘‘%s: cannot create %s’’, name, n);
cleanup();

}
... (code skipped here)
if (write(f, buf, i)!=i) {

printf(‘‘%s: %s: temp file write error\n’’,
name, n);

break;
}

Suppose that we have decided to perturb the environ-
ment at a place where thecreate system call is issued.
This is an interaction point wherelpr interacts with the
file system . There is no input in this case and hence
we simply carry out direct environment fault injections.

The next step is to identify the object. Here,n is a
file name, and hence the object is the file referred to using
this file name. Then we refer to Table 6 and get a list of at-
tributes that need to be perturbed. This list includes 1) file
existence, 2) file ownership, 3) file permission, 4) sym-
bolic link, 5) file content invariance, 6) file name invari-
ance and 7) working directory. A further analysis shows
that attributes 5 and 6 are not applicable in this case as this
is supposed to be the first time the file is encountered.

We then perturb the remaining four attributes of the
file and inject the faults into the application. For example,
the perturbation of the “existence” means that we make
the file exist or not exist before the application creates it.
The perturbation of “symbolic link” means that we make
the file link to some other file, such as the password file,
before the application creates it.

After fault injection, we execute the application and
detect if there is any violation of the security policy. In
this case the violation is detected when we perturb at-
tributes 1, 2, 3 and 4. Doing so causeslpr to write to
a file even when the user who runs it does not have the
appropriate ownership and file permissions. Thus when
the file is linked to the password file, the password file is
be modified bylpr . The problem here is that the applica-
tion assumes that the file does not exist before the creation
or assumes that the file belongs to the user who runs the
application. In a real environment, this assumption could
easily be false and the fault injection test points out a se-
curity vulnerability.

4 Result

4.1 Turnin

Turnin is a program used in Purdue for electronically
submitting files for grading. Before students in a class can
use this program, the teaching assistant (TA) for this class
should have set up his account (or a dedicated course ac-
count) correspondly. This includes creating asubmit di-
rectory under the home directory of this account, creating

a Projlist file undersubmit directory, which speci-
fies a list of projects students could be able to turnin. Stu-
dents can type “turnin -c coursename -l” to view the list of
projects; students can type “turnin -c coursename -p pro-
jectname files” to turnin their project files. After submis-
sion, the submitted files will be copied to TA’ssubmit
directory.

Sinceturnin program allows students to copy their
files to TA’s protected directory, the program is running
asSUID, which means its effective user isroot . The
program consists of 1310 lines of code.

Following our method, we have identified 8 interac-
tion places where programmers could possibly have made
assumptions about the environment. We make 41 environ-
ment perturbation to check whether programmers indeed
made the assumptions, and whether the failure of these
assumptions can affect program’s security. Among those
perturbations, 9 perturbation lead to security violation,
which means the failure of assumptions on these 9 situa-
tion could lead to a vulnerability in the program. Then we
investigated each assumptions by asking whether they are
reasonable. For example, programmers obviously made
an assumption that/usr/local/lib/turnin.cf file
is trusted. Our perturbation testing found out if this as-
sumptions is false, the system’s security will be violated.
Since theturnin.cf will always be protected, so is its
directory, we believe the assumption is quite reasonable,
there is no vulnerability regarding to this assumption.

However, one assumption seems unreasonable to us,
it turns out to be a vulnerability, and is hence exploited by
us after we have known the assumption. The problematic
code is list in the following:

if ((FILE *)0 == (fp = fopen(pcFile, "r"))) {
printf("can not find project list file\n");
exit(9);

}

Sincefopen is an interaction point where potential
assumption might be made, we perturb the environment
status ofpcFile , making it only readable by root, not
by the people who is running theturnin program. The
result is that by running “turnin -c coursename -l”, we
can successfully read the contents of the file we are not
supposed to be able to read. So, here the programmers
have made an assumption that people are allowed to read
file pointed bypcFile usingturnin program, and its
failure can cause security violation. Now, the question
is: is this assumption reasonable? The result turns out to
be NO since TA can makepcFile point to any file he
wants, then usingturnin program to read the contents
of that file.

Knowing this fact, we designed a following scenario:
a TA makes theProjlist a symbolic link to/etc/shadow ,
which is not readable by anyone exceptroot . Then the

9

TA runs “turnin -c coursename -l”, Voila, the program
prints out the content of/etc/shadow !

Another perturbation we have done is perturbing the
attributes of the argument in the following code:

execve (acTar, nargv, environ);

Sincenargvcontains file names, according to table 5,
we have inserted special characters, such as “/“, “../”, in
front of the file names. The program does a good job in
forbidding the “/” character, however, it does not resist the
perturbation of inserting “../” in the front. Knowing this
fact, a student can submit several “.login” files with differ-
ent number of “../” in front of the “.login” file, such that
when his TA unpacks the submitted file, the TA’s “.lo-
gin” will be overwritten by the student’s malicious “.lo-
gin” file, which can do anything evil to the TA.

The turnin program has been used in Purdue Uni-
versity widely since 1993, and we became the first to iden-
tify these vulnerabilities. After our discovery, the unver-
sity quickly verified and problem and patched itsturnin
program.

4.2 Windows NT Registry

In Windows NT operation system, registry directory is
a critical part to the system security. Registry directory
is essentially an organized stored for operating system’s
and application’s data which are globally shared by dif-
ferent applications and different components of the oper-
ating system. An appropriate configuration on each reg-
istry key in the registry directory is a key factor for secu-
rity. Many security vulnerabilities has been reported due
to an inappropriate configuration of the registry keys. In
the Windows NT 4.0 (SP3), there are still keys that are
not protected. Our task is to test the related modules of
the operating system, and find if it is secure to leave those
registry keys unprotected.

First of all, we use static analysis technique to find out
where these unprotected keys are used, then we apply the
EPA method to find if programmers have made assump-
tions that can fail.

The result is a surprise! We have identified 9 unpro-
tected registry keys that could be exploited to break the
system security, and indeed we came up with test cases
to actually exploit the vulnerabilities. Furthermore, based
on the similarities of these 9 registry keys and other 20
unprotected keys, we speculate that the same vulnerabili-
ties exist for those 20 keys as well. However, we have not
been able to perturb the modules that used the other 20
keys yet due to the lack of knowledge of how those mod-
ules work. The 9 registry keys that we have exploited are
the results of applying our perturbation technique.

Due to the agreement with Microsoft, we are not re-
vealing the exact keys and source codes that have the vul-
nerabilities. So, in the next discussion, we will not refer
to any specific key, except the purpose of the key and the
problem with the key.

One of the keys in the registry directory specifies a
file name for a font. It seems pretty safe to give every-
body the right to modify this registry key until we have
found a module in the system that invokes a function call
to actually delete this file. To know whether the program
has done the correct checking before the delete or not, we
did a perturbation on the properties of this file according
to Table 6, making it writable only by administrator, and
also making it point to a very important file (such as sys-
tem configuration file, password file) instead of just a font
file. It turns out that the program fails to respond securely
under this environment perturbation - when administrators
run this module, they will actually delete the file specified
by this registry key regardless of whether this file is a font
file or a security critical file. The assumption behind of
this “delete” environment interaction is that the program-
mers assume the file name always points to a font file or
a unimportant file, however, since everybody has the right
to modify the value of this registry key, the assumption
fail to sustain.

Another vulnerability we have found is associated with
user logon module. When a user logons, the module will
find the user’s profile from a directory specified in a reg-
istry key. Using our EAI model, we have managed to per-
turb the trustability attribute of the directory, and found
out that the program does not deal with the situation when
the directory is not trusted, which means, whenever a user
logons, the logon module will go to the untrusted direc-
tory, and grab a specified profile for you. Therefore, by
the environment perturbation, we have found out that pro-
grammers have made a fatal assumption about the trusta-
bility of the profile directory. After knowing the fact, it
becomes straightforward to design a test case and fail the
programmers’ assumptions.

5 Related Work

A significant amount of computer security testing is per-
formed using penetration testing. Security is assessed by
attempting to break into an installed system by exploit-
ing well-known vulnerabilities. Several researchers, in-
cluding Linde and Attanasio [17], Pfleeger [24], describes
the process of penetration testing. Pfleeger points out that
penetration testing is prone to several difficulties. First,
there is usually no simple procedure to identify the appro-
priate cases to test. Error prediction depends on the skill,
experience, and familiarity with the system of the creator
of the hypotheses. Second, there is no well defined and

10

tested criterion used to decide when to stop penetration
testing. Statistical analysis is needed to show how much
confidence we can gain after a certain “quantity” of pene-
tration testing has been done. Penetration testing does not
provide such a metric. Third, it is difficult to develop a
test plan as it not only needs familiarity with system but
also needs skill and experience. It is also possible that
testers do not know how to develop a test to investigate
some hypotheses due to the limitation of their knowledge
of the environment. This might lead to a decrease in our
confidence in the test result as attackers might know what
the testers do not know.

Our research attempts to overcome the above men-
tioned difficulties. It has a deterministic procedure to con-
duct and test, a criterion to decide when testing should
stop. It overcomes the limitation of the lack of knowledge
of the environment by emulating possible attacks using
the faults injection technique. Finally, our approach over-
comes the limitation of testers’ knowledge by offering a
set of concrete faults that should be injected into applica-
tion.

Adaptive Vulnerability Analysis (AVA) is designed by
Ghosh et al. to quantitatively assess information system
security and survivability. This approach exercises soft-
ware in source-code form by simulating incoming mali-
cious and non-malicious attacks that fall under various
threat classes [21, 22, 27, 28]. In this respect, our own
work parallels the AVA approach. A major divergence ap-
pears, however, with respect to how incoming attacks are
simulated. AVA chooses to perturb the internal state of
the executing application by corrupting the flow of data
and the internal states assigned to application variables.
Our approach chooses to perturb the environment state
by changing the attributes of the environment entity and
perturbing the input that an application receives from the
environment. Our approach should be considered as com-
plementary to AVA.

For attacks that do not affect the internal states of an
application, AVA appears incapable of simulating them
by only perturbing the internal states. For vulnerabilities
that are caused purely by incorrect internal states, our ap-
proach cannot simulate them by only perturbing the en-
vironment. One disadvantage of the AVA is the seman-
tic gap between the attacks during the use of an applica-
tion and the perturbation AVA makes during testing. In
other words, knowing that the application fails under cer-
tain perturbation, it is difficult to derive what kind of at-
tacks correspond to this failure. This makes it difficult to
assess the validity of the perturbation. Our approach nar-
rows the semantic gap by perturbing at the environment-
application level since most attacks really occur due to
intentional perturbation of the environment.

Fuzz is a black-box testing method designed by Miller

et al. It feeds randomly generated input stream to sev-
eral system utilities, includinglogin , ftp , telnet .
The results show that40% of the basic applications and
over25% of the X-Window application can crash [23].
Different patterns of input could possibly cause more ap-
plications to fail. Inputs made under different environ-
mental circumstances could also lead to abnormal behav-
ior. Other testing methods could expose these problems
where random testing, by its very nature, might not [9].
Rather than rely on random inputs, our approach exploits
those input patterns that could possibly cause security vi-
olations.

Bishop and Dilger studied one class of the time-of-
check-to-time-of-use (TOCTTOU) flaws [4]. A TOCT-
TOU flaw occurs when an application checks for a partic-
ular characteristic of an object and then takes some ac-
tion that assumes the characteristic still holds when in
fact it does not. This approach focuses on a source-code
based technique for identifying patterns of code which
could have this programming condition flaw. One of its
limitations is that static analysis cannot always determine
whether the environmental conditions necessary for this
class of TOCTTOU flaws exist [4]. The authors conclude
that dynamic analyzers could help test the environment
during execution and warn when an exploitable TOCT-
TOU flaw occurs. Our approach is dynamic. Instead
of detecting dangerous environment conditions, we in-
ject dangerous environment conditions and see whether
the application will fail.

Fink and Levitt employ application-slicing technique
to test privileged applications. Specifications are used to
slice an application to an executable subset relevant to the
specification, and manual methods are used to derive test
data for the slice. By using application slices as the ba-
sis of security testing, they assume that testing a slice is
equivalent to testing the whole application [7]. The moti-
vation behind the application-slicing technique is to focus
on a reduced and less complex portion of the application
such that other static and dynamic analyses are made more
efficient. We believe this to be a significant step in secu-
rity testing. However, what is missing in this approach is
an efficient testing technique used to test the slices. This
paper assumes general testing methods can be used to test
the slices and the effectiveness of their approach depends
on the effectiveness of general testing methods on reveal-
ing security flaws, which, as far as we know, is still un-
known.

Gligor has proposed a security testing method. It elim-
inates redundant test cases by 1) using a variant of control
synthesis graphs, 2) analyzing dependencies between de-
scriptive kernel-call specifications, and 3) exploiting ac-
cess check separability. The method is used to test the Se-
cure Xenix kernel [18]. A key drawback of this approach

11

is that it cannot detect the fact that entire sequences of
functions, i.e. access check computations, may be miss-
ing [12] as many security flaws are caused by the missing
of access checking and input validity checking.

6 Summary and Future Work

We have presented a white-box security testing method-
ology using environment perturbation technique, a vari-
ant of the fault injection technique. The methodology is
based on the Environment-Application Interaction (EAI)
model, which captures the properties of a family of soft-
ware vulnerability. We have applied this methodology to
several real-world systems and applications, and we have
successfully identified a number of security flaws that ex-
ist for several years without being discovered.

Future work will concentrate on applying this method-
ology to more applications. We are in the progress of de-
veloping and conducting a set of experiments to evaluate
the effectiveness of this methodology. In the future, we
hope to be able to develop a prototype tool for security
testing based on this methodology.

References
[1] T. Aslam. A taxonomy of security faults in the unix oper-

ation system. Master’s thesis, Purdue University, August
1995.

[2] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, 1990.

[3] M. Bishop. A taxonomy of unix system and network vul-
nerabilities. Technical Report CSE-95-10, Department of
Computer Science, University of California at Davis, May
1995.

[4] M. Bishop and M. Dilger. Checking for race conditions in
file acesses.The USENIX Association Computing Systems,
9(2):131–151, Spring 1996.

[5] J. Clark and D. Pradhan. Fault injection: A method for val-
idating computer-system dependability.IEEE Computer,
pages 47–56, June 1995.

[6] W. Du and A. Mathur. Categorization of software errors
that led to security breaches. In21st National Information
Systems Security Conference, Crystal City, VA, 1998.

[7] G. Fink and K. Levitt. Property-based testing of privileged
programs. InProceedings of the 10th Annual Computer Se-
curity Applications Conference; Orlando, FL, USA; 1994
Dec 5-9, 1994.

[8] B. Miller, L. Fredriksen and B. So. An empirical study
of the reliability of unix utilities. Communications of the
ACM, 33(12):32–44, December 1990.

[9] S. Garfinkel and G. Spafford.Practical UNIX & Internet
Security. O’Reilly & Associates, Inc., 1996.

[10] J. Goodenough and S. Gerhart. Toward a theory of test-
ing: Data selection criteria.current Trends in Program-
ming Methodology, 2:44–79, 1977.

[11] H. Zhu, P. Hall and J. May. Software unit test coverage
and adequacy.ACM Computing Surveys, 29(4):366–427,
December 1997.

[12] W. Howden. The theory and practice of functional testing.
IEEE Software, 2:18–23, September 1985.

[13] W. Kao, R. Iyer and D. Tang. FINE: A fault injection and
monitoring environment for tracing the unix system behav-
ior under faults.IEEE Transactions on Software Envineer-
ing, 19(11):1105–1118, November 1993.

[14] S. Dawson, F. Jahanian and T. Mitton. ORCHESTRA:
A fault injection environment for distributed systems. In
26th International Symposium on Fault-Tolerant Comput-
ing (FTCS), pages 404–414, Sendai, Japan, June 1996.

[15] G. Kanawati, N. Kanawati and J. Abraham. FERRARI:
A tool for the validation of system dependability proper-
ties. InProceedings 22nd International Symposium Fault
Tolerant Computing, pages 336–344, July 1992.

[16] I. Krsul. Software Vulnerability Analysis. PhD thesis, Pur-
due University, Department of Computer Sciences, West
Lafayette, Indiana, 1998.

[17] R. R. Linde. Operating system penetration. InAFIPS Na-
tional Computer Conference, pages pp. 361–368, 1975.

[18] V. D. Gligor, C. S. Chandersekaran, W. Jiang, A. Johri,
G. L. Luchenbaugh and L. E. Reich. A new security test-
ing method and its application to the secure xenix ker-
nel. IEEE Transactions on Software Engineering, SE-
13(2):169–183, February 1987.

[19] E. J. McCauley and P. J. Drongowski. The design of a se-
cure operating system. InNational Computer Conference,
1979.

[20] C. E. Landwehr, A. R. Bull, J. P. McDermott and W. S.
Choi. A taxonomy of computer program security flaws.
ACM Computing Surveys, 26(3), September 1994.

[21] A. Ghosh, T. O’Connor, G. McGraw. An automated ap-
proach for identifying potential vulnerabilities in software.
In IEEE Symposium on Security and Privacy, Oakland,
CA, 1998.

[22] J. Voas, F. Charron, G. McGraw, K. Miller and
M.Friedman. Predicting how badly “good” software can
behave.IEEE Software, 14(4):73–83, August 1997.

[23] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.
Natarajan and J. Steidl. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. Technical
report, Computer Sciences Department, University of Wis-
consin, 1995.

[24] C. Pfleeger, S. Pfleeger and M. Theofanos. A methodology
for penetration testing.Computers and Security, 8(7):613–
620, 1989.

[25] S. Han, K. Shin and H. Rosenberg. Doctor: An integrated
software fault injection environment for distributed real-
time systems. Technical report, University of Michigan,
Department of Elect. Engr. and Computer Science, 1995.

12

[26] M. Hsueh, T. Tsai and R. Iyer. Fault injection techniques
and tools.IEEE Computer, pages 75–82, April 1997.

[27] J. Voas. Testing software for characteristics other than cor-
rectness: Safety, failure tolerance, and security. InProc. of
the Int’l Conference on Testing Computer Software, 1996.

[28] J. Voas and G. McGraw.Software Fault Injection: Incocu-
lating Programs Against Errors. John Wiley & Sons, Inc.,
1998.

13

