
Analysis of a Denial of Service Attack on TCP

Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn,
Eugene H. Spafford, Aurobindo Sundaram, Diego Zamboni

COAST Laboratory
Department of Computer Sciences

Purdue University
1398 Department of Computer Sciences

West Lafayette, IN 47907–1398
fschuba,krsul,kuhn,spaf,sundaram,zambonig@cs.purdue.edu

Abstract

This paper analyzes a network-based denial of service at-
tack for IP (Internet Protocol) based networks. It is popu-
larly called SYN flooding. It works by an attacker sending
many TCP (Transmission Control Protocol) connection re-
quests with spoofed source addresses to a victim’s machine.
Each request causes the targeted host to instantiate data
structures out of a limited pool of resources. Once the target
host’s resources are exhausted, no more incoming TCP con-
nections can be established, thus denying further legitimate
access.

The paper contributes a detailed analysis of the SYN
flooding attack and a discussion of existing and proposed
countermeasures. Furthermore, we introduce a new solu-
tion approach, explain its design, and evaluate its perfor-
mance. Our approach offers protection against SYN flood-
ing for all hosts connected to the same local area network,
independent of their operating system or networking stack
implementation. It is highly portable, configurable, exten-
sible, and requires neither special hardware, nor modifica-
tions in routers or protected end systems.

1. Introduction

Since September 1996, several dozen sites on the In-
ternet have been subjected to a denial of service attack,
popularly called SYN Flooding [4, 5, 20]. The attack ex-
ploits weaknesses in the TCP/IP (Transmission Control Pro-
tocol/Internet Protocol) protocol suite. This cannot be cor-
rected without significant modifications to its protocols.
These denial of service attacks can be launched with little
effort. Presently, it is difficult to trace an attack back to its
originator.

Several possible solutions to this attack have been pro-
posed by others, and some implemented. We have devel-
oped an active monitoring tool that classifies IP source ad-
dresses with high probability as being falsified or genuine.
Our approach finds connection establishment protocol mes-
sages that are coming from forged IP addresses, and takes
actions to ensure that the resulting illegitimate half-open
connections are reset immediately.

This paper is organized as follows. Section 2 describes
backgroundmaterial, such as the IP and TCP protocols. Sec-
tion 3 explains the SYN flooding attack. Section 4 discusses
existing approaches to solve this problem, such as config-
uration improvements and firewall-based approaches. The
technical details of our approach are described in Section 5,
followed by a performance evaluation in Section 6. Sec-
tions 7 and 8 outline future work issues and present conclu-
sions.

2. Background

We will provide a brief description of the features of the
TCP/IP protocol suite that facilitate this attack. For further
details see [2, 16, 17].

2.1. Internet Protocol

The Internet Protocol (IP) is the standard network
layer protocol of the Internet that provides an unreliable,
connection-less, best-effort packet delivery service. IP de-
fines the basic unit of data transfer used throughout an IP
network, called a datagram. The service is unreliable, be-
cause the delivery of datagrams is not guaranteed. Data-
grams may be lost, duplicated, delayed, or delivered out of
order. IP is connection-less, because each packet is treated
independently of others — each may travel over different

paths and some may be lost while others are delivered. IP
provides best-effort delivery, because packets are not dis-
carded unless resources are exhausted or underlying net-
works fail. Datagrams are routed towards their destination.
A set of rules characterize how hosts and gateways should
process packets, how and when error messages should be
generated, and when packets should be discarded.

2.2. Transmission Control Protocol

To ensure reliable communications for applications and
services that need them, the Transmission Control Protocol
(TCP) is available. It resides between IP and the applica-
tion layer. TCP provides a reliable, connection-orienteddata
stream delivery service. As long as there is link layer com-
munication between two communicating endpoints, TCP
guarantees that datagrams will be delivered in order, without
errors, and without duplication. It provides these services by
using flow control mechanisms, such as the sliding window
protocol, and adaptive retransmission techniques.

2.2.1 Three-way Handshake

A

S1

DG M

A - attacker
Si - source
D - destination

M - monitor
G - gateway

S2

Figure 1. Generic network topology

Before data can be transmitted between a source host Si
and a destination host D, TCP needs to establish a connec-
tion between Si and D (see Figure 1). The connection es-
tablishment process is called the three-way handshake (see
Figure 2). The first step in the process is a SYN1 packet that
is sent from Si to D. The second message, from D to Si, has
both the SYN and ACK flags set indicating that D acknowl-
edges the SYN and is continuing the handshake. The third
message, from Si to D has its ACK bit set, and is an indica-
tion to D that both hosts agree that a connection has been es-
tablished. The third message may contain user payload data.

The three-way handshake also initializes the sequence
numbers for a new connection between Si and D. Sequence
numbers are needed by the TCP protocol to enable reliable

1TCP packet types are distinguished by flag bits (e.g., SYNchronize,
ACKnowledgment, ReSeT) set in the TCP header code field. In the remain-
der of the paper we will abbreviate TCP control packets by referring to the
flags set in their code field, e.g., SYN instead of TCP control datagram with
the SYN bit set in its code field.

LISTENSYN

ACK

x

y x+1SYN , ACK
SYN_RECVD

S D

CONNECTED

y+1

Figure 2. Three-way Handshake

packet delivery and retransmission. Si sends an initial se-
quence number x with the first datagram: SYNx. In the
second message D acknowledges the first datagram with
ACKx+1 and sends its own sequence number y: SYNy. Si

acknowledges D’s packet in the final message of the three-
way handshake: ACKy+1.

2.2.2 TCP Data Structures

For any TCP connection, under BSD style network code,
there are three memory structures that need to be allo-
cated by both endpoints (See [19]). The socket struc-
ture (socket) holds information related to the local end
of the communication link: protocol used, state informa-
tion, addressing information, connection queues, buffers
and flags. TCP uses the Internet protocol control block
structure (inpcb) at the transport layer to hold information
such as TCP state information, IP address information, port
numbers, IP header prototype and options, and a pointer to
the routing table entry for the destination address. The TCP
Control Block structure (tcpcb) contains TCP specific in-
formation such as timer information, sequence number in-
formation, flow control status, and out-of-band data. The
combined size of these data structures for a single TCP con-
nection may typically exceed 280 bytes.

Different versions of Unix use different data structures
and schemes of allocation, but for the purpose of this discus-
sion, it is sufficient to understand that every TCP connection
establishment requires an allocation of significant memory
resources.

2.2.3 TCP Connection Establishment

When a SYN arrives at a port on which a TCP server is lis-
tening, the above-mentioned data structures are allocated.
There is a limit on the number of concurrent TCP connec-
tions that can be in a half-open connection state, called the

Operating System Backlog Backlog + Grace
FreeBSD 2.1.5 n.a. 128
Linux 1.2.x 10 10
Solaris 2.4 5 n.a.
Solaris 2.5.1 32 n.a.
SunOS 4.x 5 8
Windows NTs 3.51 6 6
Windows NTw 4.0 6 6

Table 1. Backlogs for some Operating Sys-
tems

SYN RECVD state (i.e., SYN received — see Appendix A).
Not enforcing this limit would lead to a different denial of
service attack: an attacker could request so many connec-
tions that the target machine’s memory is completely ex-
hausted by allocating data structures for half-open TCP con-
nections. When the maximum number of half-open connec-
tions per port is reached (see Table 1, [6]), TCP discards all
new incoming connection requests until it has either cleared
or completed some of the half-open connections. Overall
system resources are usually sufficient for several ports to
be flooded.

The TCP connection establishment process can be de-
scribed as a state machine. Detailed below is what happens
from the point of view of the destination machine (server):

1. A packet arrives at the destination machine when the
TCP state machine is in the LISTEN state.

2. If the datagram checksum is incorrect, the packet will
be discarded, and the client is expected to retransmit
it.

3. The tcpcb associated with
the connection is searched for. If it is not found, the
server will discard the packet and will send an RST
(i.e., inform the client that it reset the connection). If
the tcpcb exists, but the TCP state machine is not in
the LISTEN state, the server will discard the packet,
but will not send an RST (this would, for example, be
the case when the server is just coming up, but has not
yet started listening).

4. If the SYN packet arrives for a socket that is in the
LISTEN state, the above mentioned data structures
will be allocated. However, the server will also set a
flag indicating that it will destroy the connection and
associated memory structures if it encounters an error.
If the backlog queue is full, the server will consider
this an error and will terminate the connection.

5. The packet will be ignored if it contains an RST. If it
contains an ACK, it will be discarded and an RST sent

to the other side. The packet will be discarded if the
SYN bit is not set. Otherwise, the server copies infor-
mation, such as the client’s address information, into
a buffer, connects its tcpcb to the client, and initial-
izes its initial send sequence (ISS) number y.

6. The server now sends the second message of the
three-way handshake (SYNx+1 and ACKy) to the
client. The state changes to SYN RECVD. A con-
nection establishment timer is started for this half-
open connection. The connection remains in the
SYN RECVD state until either an ACK (the third
message of the handshake) is received or until the
timer expires. This timer is usually set to 75 seconds.
During this period of time retransmissions of the first
and second message of the three-way handshake may
occur. When the timer expires, all memory structures
associated with the connection are deallocated, and
the server goes back to the LISTEN state.

3. The SYN Flooding Attack

3.1. The Attack

As mentioned above, TCP implementations are designed
with a small limit on how many half-open connections per
port are possible at any given time. An attacker A initiates a
SYN flooding attack by sending many connection requests
with spoofed source addresses to the victim machine D. That
causes D to allocate resources as explained in Section 2.2.3
and, once the limit of half-open connections is reached, to
refuse all successive connection establishment attempts —
in particular legitimate attempts (see Figure 3). It is impor-
tant to note that neither outgoing connection attempts nor
connections that are already established are affected by this
attack.

DA

Port flooding occurs

Nonexistent spoofed SYN

SYN_RECVD

LISTEN

SYN+ACK

Figure 3. A system under attack

This condition exists until either the timer expires, or
some connections are completed or reset. If the timer ex-

pires for a particular half-open connection, the host will re-
set the connection and release all resources allocated for it.

If a spoofed SYN packet contains the source address of a
reachable IP host Si, that host will receive the second mes-
sage of the three-way handshake generated by D. Not ex-
pecting a SYN+ACK without having requested a connec-
tion, Si will send a RST packet to D, and consequently cause
D to reset the connection. It is therefore in the interest of an
attacker to forge source addresses that do not belong to hosts
that are reachable from the victim D.

If the attacker wants the denial of service condition to
last longer than the timeout period, he needs to continuously
keep requesting new connections from the victim machine.
The amount of CPU and network bandwidth required by an
attacker for a sustained attack is negligible.

The basis of the attack is that TCP/IP does not offer
strong authentication on its control packets. Furthermore,
there is a requirement for an inappropriately burdensome al-
location of memory and computation resources on the target
side.

3.2. Different Attack Modes

Typical SYN flooding attacks can vary several parame-
ters: the number of SYN packets per source address sent in a
batch (=: batch-size), the delay between successive batches
(=: delay), and the mode of source address allocation (=:
mode).

We consider only source addresses of hosts that are not
reachable from D, be it because the addresses are not yet al-
located, assigned, or the associated hosts are very slow in re-
sponse, virtually or physically disconnected, or down. We
classify three possible modes of source address allocation:
The attacker can be using a single address, a short list of ad-
dresses, or no list at all2.

Single address: The attack scripts published in the hacker
magazines Phrack [6] and 2600 [8] take as a parame-
ter a single spoofed address that is used as the source
address of all SYN packets. In the absence of any de-
fense, this mode of attack is as effective as the other
three modes described.

Short list: An attacker can generate a small pool of ad-
dresses and use them as source addresses to generate
SYN packets.

No list: The attacker can use a different, randomly gener-
ated source address for each successive batch of SYN
packets.

2We list the “single address” mode separately, because it represents an
important special case of the “list of addresses” mode.

4. Solutions

In our opinion a good solution should have the following
characteristics:

� independence of operating system and network stack
implementation of the protected end systems

� no requirement for IP or TCP protocol modifications

� capability to protect sets of machines, and not only a
single machine

� no special hardware requirements

� portability

� extensibility

� configurability

The countermeasures described in this section have been
proposed by others to date. None of these proposals pro-
vides all the characteristics we are looking for.

4.1. Configuration Optimization

There are several ways of reducing the likelihood and ef-
fects of an attack that involve changes in the configurations
of end systems and routers.

4.1.1 System Configuration Improvements

To defend against the exhaustion of resources in the systems
under attack, an obvious approach is to increase the number
of resources devoted to half-open TCP connections, and to
reduce the timeouts. These measures have been suggested
by different sources [11], and can be summarized as:

1. Reduce the timeout period from the default to a short
time, e.g., 10 seconds. This helps in pruning half-
open connections from the TCP queue.

2. Significantly increase the length of the backlog queue
from the default (see Table 1). This makes the system
able to cope with more simultaneous half-open con-
nections than before.

3. Disable non-essential services, thus reducing the
number of ports that can be attacked.

These measures help in dealing with attacks, but also
have severe shortcomings:

1. Lowering the timeouts may deny legitimate access for
machines to which the round trip times exceed the
timeout period.

2. Increasing the backlog leads to a potential increase in
resource usage. One vendor recommends upgrading
systems to a minimum of 128 MB RAM to allow them
to cope with attacks.

4.1.2 Router Configuration Improvements

The measures proposed in the first reactions to the recent at-
tacks [4], as well as several other sources [1, 9], attempt to
make it difficult for packets with spoofed source addresses
to traverse routers. The solutions proposed can be summa-
rized as follows:

1. Configure external interfaces on routers to block
packets that have source addresses from the internal
network.

2. Configure internal router interfaces to block packets
to the outside that have source addresses from outside
the internal network. This limits the ability to launch
a SYN flooding attack from that network, because the
attacker would only be able to generate packets with
internal addresses.

These measures can be effective, but only if taken in large
scale. As more Internet Service Providers (ISPs) configure
their routers appropriately, the fertile ground for launching
SYN flooding attacks may be reduced. It should be noted
that in mobile IP situations can be created in which legiti-
mate addresses appear at an apparently wrong interface, in
particular if a mobile node retains its IP identity while far
away from home.

4.2. Infrastructure Improvements

Router configurations can be improved if the address
spaces reachable over their various interfaces are disjoint
and well-defined [9]. This is the case for routers that at-
tach an organization or a local ISP to a backbone network.
The address prefixes separate the inside and the outside. An
example where this scheme is deployed is the international
telephone system. Phone number assignment is based on the
geographical location of the end system.

Currently, there are practical problems for this approach
to work: in general, routers in large backbone networks with
complex topology cannot make a clear distinction between
inbound and outbound traffic. Packets are routed in back-
bones based on current link availability and load and can
take numerous possible paths through the network. Genuine
packets from the same source address can reach a backbone
router legitimately over various interfaces.

As long as a significant number of sites can transmit
packets into the backbone networks without any source ad-
dress checking, hosts are still subject to untraceable attacks.

Therefore, additional backbone mechanisms should be im-
plemented to cope with a large number of network based at-
tacks.

The implementation and deployment of a scheme to cryp-
tographically sign IP source addresses of all packets would
allow tracing the physical transmission path of any IP packet
to its source. Although this wouldn not prevent SYN flood-
ing, the threat of tracing and subsequent prosecution should
serve as a deterrent to at least casual attacks. In this case,
online tracing mechanisms are especially useful, because a
successful SYN flooding attack requires sustained network
activity. The Internet infrastructure lacks basic mechanisms
that have been present and successfully used in telephone
networks for a long time.

4.3. Connection Establishment Improvements

This solution addresses the fact that TCP imposes asym-
metric memory and computation requirements on the two
endpoints during each connection establishment process.
The destination host needs to allocate large data structures
in response to any SYN packet, without any guarantee of its
authenticity.

The three-way handshake requires the sequence number
y to match between the second and third message to protect
against accidentally reopened old connections and unautho-
rized access (see [3]). The destination therefore needs to
either store its ISS y between sending the second message
and receiving the third message, or be able to regenerate y
at the time the third message of the three-way handshake is
received. If there were no mechanism to regenerate y and
the destination didn’t store y, any host could establish a con-
nection by sending only the third message.

One such mechanism is to calculate y as a cryptographic
hash value of source and destination IP addresses, ports,
the source’s ISS x, and a destination specific secret key. D
would calculate y in that manner and use it in its SYN+ACK
message. At the time D received the third message of the
three-way handshake it can recalculate y0 by using its secret
key, sequence number, the addresses, and the ports found in
that message. If y0 matches the y in ACKy+1, the connection
is legitimate, otherwise it is not. Note that this solution also
provides some protection against sequence number predic-
tion ([3]), because of the statistical properties of good hash
functions.

Although this approach prevents the SYN flooding at-
tack, it has considerable drawbacks. This solution requires
the modification of the TCP standard and consequently ev-
ery TCP implementation. It is impossible to provide the
fault tolerance that TCP currently offers without the desti-
nation keeping state about each half-open connection. Fur-
thermore, this mechanism makes it impossible for the source
to include data in the third message of the three-way hand-

shake, because x needs to be part of the hash function ar-
gument. As there are only 2

32 TCP sequence numbers, this
technique introduces a small probability that an old or a sin-
gle forged packet might open a connection. Section 4.4.1
discusses an extension of this approach.

4.4. Firewall Approach

As many sites connected to the Internet are already some-
what protected by firewalls, it makes sense to try to use fire-
walls to protect against SYN flooding. Several firewall ven-
dors have already made products available to increase pro-
tection against the attacks [14, 15], and some other solutions
have been proposed.

Firewall-based protection approaches are based on the
idea that every packet destined to a host inside the firewall
has to be examined by the firewall first, and thus decisions
can be made on its authenticity and actions can be taken to
protect the internal hosts. This can be effective if, apart from
the normal blocking done by the firewall, some other spe-
cialized mechanism is put in place to deal with SYN flood-
ing.

The drawbacks of this approach are delays on every
packet for additional processing. Not every firewall prod-
uct is capable of adding functionality, such as a module to
protect against SYN flooding.

The two main approaches are described below.

4.4.1 Firewall as a Relay

In this approach, when a packet for an internal host is re-
ceived the firewall answers on its behalf. Only after the
three-way handshake is successfully completed does the
firewall contact the host and establish a second connection.

1. In the case of an attack (see Figure 4), the firewall an-
swers to the SYN sent by the attacker. Because the
final ACK never arrives, the firewall terminates the
connection, and the host never receives the datagram.
This mode of protection is only effective if the firewall
itself is not vulnerable to SYN flooding.

2. In the case of a legitimate connection (Figure 5), after
the firewall receives the final ACK, it creates a new
connection to the internal host on behalf of the orig-
inal client. This makes the protected machines vul-
nerable to the new degradation of service attack de-
scribed in Section 2.2.3. Once the connection is es-
tablished, the firewall has to keep acting as a proxy
to translate the sequence numbers in the packets that
flow between the client and the server.

This method has the drawback of introducing new delays
for legitimate connections. Delays are introduced by extra

SYN x

SYN+ACK

FirewallA D

Figure 4. Attack scenario with a relay-firewall
protection

processing done at the firewall, both at connection establish-
ment time and for each data packet. The obvious advan-
tage is that the destination host never receives spoofed SYN
packets.

An alternative approach in which the firewall could pre-
dict the sequence number that is going to be used by the host
(see Section 4.3) would allow the firewall to intervene in the
same manner when establishing the connection, without the
need for translating sequence numbers for each data packet.

4.4.2 Firewall as a Semi-transparent Gateway

In this approach, the firewall lets SYN and ACK packets go
through, but monitors the traffic and reacts to it. We call this
the semi-transparent gateway approach.

The firewall passes SYN packets destined to internal
hosts. When the host responds with a SYN+ACK packet,
the firewall forwards it, but reacts by generating and send-
ing an ACK packet that seems to come from the client. This
has the effect of moving the connection out of the backlog
queue in the host, thus freeing the resources that were allo-
cated for the half-open connection.

1. In the case of an attack (see Figure 6), when the host
sends the SYN+ACK, the gateway lets it pass and
generates and sends the ACK that moves the con-
nection out of the backlog queue. If the firewall has
not received the legitimate ACK after some (arguably
short) period of time, it will send a RST packet, ter-
minating the connection.

2. In the case of a legitimate connection (Figure 7) the
firewall generates and sends an ACK packet. When
the legitimate ACK packet arrives, the firewall lets it
pass, and the “duplicate” ACK packet arrives at the
host. TCP is designed to cope with duplicate pack-
ets, so the duplicate packet is silently discarded. Now
data can flow freely in both directions, without further
firewall intervention.

Sequence
number
conversion

FirewallS D

SYN

SYN+ACK

ACK SYN

SYN+ACK

ACKData

Data

Data

Data

Figure 5. Legitimate connection with a relay-
firewall protection

The main advantage of this approach over the previous
one is that no delays are introduced for legitimate connec-
tions once they are established. The price to pay is a large
number of illegitimate open connections at the destination if
it is under attack. However, the limit on the number of open
connections is much higher on most systems (in the order of
thousands, limited only by the CPU and memory resources
available at the host), so it is an extra load that most server
class systems can withstand without many problems. Again,
this approach requires the timeout period to be very care-
fully selected, so as to not deny access to legitimate hosts
with long response times.

4.5 Active Monitoring

This category of solutions consists of using software
agents to continuously monitor TCP/IP traffic in a network
at a given place. An agent can collect communication con-
trol information to generate a view of all connections that
can be observed on a monitored network. Furthermore, it
can watch for certain conditions to arise and react appropri-
ately. This category offers a general approach to detecting
and reacting to a large class of network based attempts to
breach security.

The approach is attractive, because of its low costs and
high flexibility. It neither requires new hardware to be pur-

Firewall DA

RST

ACK

T
im

eo
ut

SYN

SYN+ACK

Figure 6. Attack with semi-transparent gate-
way firewall protection

chased and installed, such as a certain firewall router product
with the desired functionality, nor does it demand software
modifications to the protected end systems. On typical mul-
tiple access local area networks such a tool can only be re-
active in character, because it has no capability of blocking
any “offensive” traffic as a firewall does.

At the time of this writing, we know of one publicly avail-
able tool [12] that is claimed to perform active monitoring
(other than our tool called synkill). According to user-
definable parameters, the program monitors the local net-
work for SYN packets that are not acknowledged after a
certain period of time, and frees the allocated resources by
sending matching RST packets. Our tool called synkill
falls into the same category and is explained in the following
Section 5.

5. Active Monitor — synkill

We have developed a software tool that can lessen the im-
pact of SYN flooding attacks, and in many cases defeat at-
tacks completely. It provides all characteristics as described
in Section 4.

5.1. Description

The program requires the ability to monitor and inject
network traffic to and from the machines it is protecting.
Ethernet is an example for a networking technology that sat-
isfies this requirement. The program is called a monitor, be-
cause it reads and examines all TCP packets on the LAN af-
ter setting its network interface into promiscuous mode. The
program is called active, because it can generate TCP pack-
ets in response to observed traffic and inject them into the

Firewall

SYN

S D

SYN+ACK
ACK

ACK

Data

Data

Figure 7. Legitimate connection with semi-
transparent gateway firewall protection

network. In the following sections we will refer to the algo-
rithm, and its implementation as synkill.

5.1.1 Algorithm

The synkill algorithm classifies the source IP addresses
of TCP packets as never seen (=: null), belonging to cor-
rectly behaving (=: good) hosts, as potentially spoofed ad-
dresses (=: new), or as most certainly spoofed addresses
(=: bad). This classification is based on observed network
traffic and administratively supplied input. Addresses that
are administratively configured as good (bad) are called per-
fect (evil).
Synkill performs several processing steps on every

TCP packet that is observed on the local area network, and
handles asynchronous events, such as administrative input
and timer expirations. TCP packet processing can be di-
vided into:

� address prefiltering, where the program classifies the
observed address as impossible, unassigned, or ad-
ministratively configured as perfect or evil (see Sec-
tion 5.1.2)

� a decision process based on a state machine to deter-
mine correct state membership and actions (see Sec-
tion 5.1.3).

The program can take two possible actions:

� Synkill sends RST packets whenever it observes
connection establishment attempts from impossible,
bad, or evil IP addresses or networks (See Figures 8,
9, and 11). The purpose of this action is to release

SYN

D

SYN+ACK

A M

RST

Figure 8. Attack scenario: synkill gener-
ates RST packet in response to bad or evil IP
source addresses. The connection at D is im-
mediately moved into the CLOSED state and
resources are released.

the resources allocated at the destination machine for
connection establishments.

� Synkill completes TCP connections by generat-
ing the third message of the three-way handshake,
and sending it to the destination (See Figures 9, 10,
and 11). The purpose of this action is to move a con-
nection quickly from the SYN RECVD to the CON-
NECTED state. This is useful if synkill consid-
ers the connection establishment attempt to be illegiti-
mate. This approach is similar to the semi-transparent
gateway solution described in Section 4.4.2 and is
also potentially subject to the new degradation of ser-
vice attack described in 2.2.3. The execution of this
action is optional.

5.1.2 Operation

In addition to the address classification, synkill performs
the following processing steps.

� process administrative input (asynchronously)

� handle expiry events (asynchronously)

� handle staleness events (asynchronously)

� send RST for all impossible addresses (e.g., net
0.0.0.0 or 127.0.0.0)

� send ACK to complete observed SYN+ACK connec-
tions

� send RST for all evil addresses (e.g., nets 10.0.0.0,
172.16.0.0, and 192.168.0.0; see [18])

GOOD

PERFECT

NEW

EVIL

BAD

NULL
ACK RST∨

u

ACK RST∨
u

ACK RST∨------------------------------

ACK RST∨------------------------------

SYN
send RST

SYN
record

SYN
send RST

SYN
record u∧

SYN
u

Staleness
record u∧
--------------------------- Expiry----------------

SYN-----------

begin

ACK RST∨------------------------------

ACK RST∨
u

Figure 12. The synkill finite state machine. The diagram does not contain the optional action of
sending ACK packets.

DA M

SYN

SYN+ACK

ACK

RST

E
xp

ir
y

SYN_RECVD

CONNECTED

CLOSED

LISTEN

Figure 9. Attack scenario: synkill sends an
ACK packet to complete the connection. After
expiry has passed, synkill generates a RST.

5.1.3 State Machine

After the preprocessing steps are taken, synkill oper-
ates as a state machine (see Figure 12). The source address
of each TCP packet is examined to determine the set mem-
bership of the address (null, new, bad, or good). Null ad-
dresses are not saved explicitly, because it is not practical to
keep data structures for all possible IP addresses. If an ad-

dress is not present in the database, it is considered to be in
state null.

Figure 12 depicts the state machine. The symbol u de-
notes when the timestamp of a given address is updated.
These timestamps are used to generate timer events (see be-
low). Record denotes where datagram information (IP ad-
dresses, ports, and sequence numbers) is recorded, so that a
RST can be generated later if necessary. There are several
distinct sets of events: observed TCP packets, timer events,
and administrative commands:

1. Observed TCP packets

SYN TCP packets with the SYN bit set are the initial
message of any TCP connection establishment
attempt. The state machine is designed to ignore
SYNs for addresses that are in the new, good, or
perfect states. For addresses in the bad or evil
states, a RST packet is generated and sent.
The very first packet received from an address
with its SYN bit set is moved into the new state
to indicate suspicion. As soon as further valid
TCP traffic from that address is observed (ACK,
RST) the address is moved into the good state.

ACK, RST If synkill receives a valid ACK or
RST packets from an address, it means that the
host generates valid packets and the address can
be considered good. The address is moved into
the good state.

SYN

SYN+ACK
ACK

ACK

S DM

Figure 10. Normal access scenario: synkill
generates and sends an ACK packet to com-
plete the pending connection. The “dupli-
cate” ACK from the original source A reaches
D later and is ignored.

2. Timer events

expiry An expiry event occurs if the timer associ-
ated with an address in the new state expires.
This means that synkill has not observed any
valid TCP traffic from that address. The address
is therefore moved into the bad state and RST
packets are generated and sent for all SYN pack-
ets from that address that were observed while
the address was in the new state. Ideally, the ex-
piry timer should be much smaller than the cur-
rent 75 seconds timeout. The smaller the chosen
value the more likely it is for legitimate connec-
tions to be erroneously denied by synkill.

Because RSTs are sent after the SYN was ob-
served, the destination machine will respond
with a SYN+ACK and thus trigger the third
message of the three-way handshake. This third
message (an ACK) will cause synkill to
reclassify the observed address as good. Sub-
sequent connection establishment attempts will
therefore succeed.

staleness The notion of staleness was introduced as a
mechanism to allow addresses in the good state
to leave the good state after no TCP traffic was
observed from that address for a period of time,
i.e., the staleness period. This allows synkill
to correctly classify spoofed IP addresses as bad
even if they were once good — as long as they

LISTEN

S DM

SYN

SYN+ACK

RST

ACK

RST

SYN_RECVD

CONNECTED

CLOSED

Too late

Expiry

ACK

Figure 11. Normal access scenario: the con-
nection delay between a valid source machine
and the destination is large. Synkill will
generate a RST too early if the expiry timer
value is not chosen carefully!

first became stale.

This can be implemented either with explicit timer
events, or with a timestamp per address that is exam-
ined the next time the address is processed.

5.2. Implementation

We have implemented this algorithm in the programming
language C with a Tcl/Tk graphical user interface. The pro-
gram can execute in the foreground or as a daemon. Its out-
put can be redirected to syslog. Currently, the program’s
classification database can grow to over 47600 entries and
it garbage collects database entries if the database is filled
beyond a certain watermark. It utilizes the Packet Capture
library from the Lawrence Berkeley National Laboratory,
a high level interface to packet capture systems, to make
all packets on the monitored network accessible in a highly
portable manner.

There is a rich set of administrative commands to ma-
nipulate the address classification database, display statis-
tics and modify the configuration of synkill. Refer to the
manual page for details.

5.3. Discussion

The philosophy behind our approach was to build a tool
that can detect the conditions of a SYN flooding attack and

react appropriately to defeat, or at least lessen the impact of,
the attack. Synkill neither requires any special hardware
(such as particular firewall products), nor certain certain op-
erating systems, network stacks, or even modifications in the
protected end systems. Our software is highly portable, ex-
tensible, and easily configurable.

In our testbed, we successfully protected a set of hosts of
a wide variety of vendors and operating systems against the
attack. Section 6 details some of the operational character-
istics of the synkill application. Furthermore, the active
monitor approach allows for replication of the software to
improve reliability and performance because of decentral-
ized and distributed action.

6. Performance of Synkill

6.1. Experimental Evaluation

The performance of the synkill application was eval-
uated using the configuration illustrated in Figure 1. The at-
tacker A performs a SYN flooding attack against machine
D. The synkill application runs on machine M protect-
ing all hosts on the local area network. Host S2 evaluates
the accessibility of D in the following way: S2 starts 25
processes that attempt to establish connections to the target
computer simultaneously. Each of these processes performs
one hundred sequential attempts with a random delay be-
tween zero and four seconds. The machines utilized for the
evaluation environment are SUN Sparc Ultra 1 workstations
with 32 MB of RAM, running Solaris 2.5.1.

Two metrics are considered during the performance tests:
1) success rates and 2) average delays. A success was de-
fined as a connection attempt that succeeds, regardless of the
delay incurred. The success rate was determined by dividing
the number of successful connections by the number of con-
nections tried in a given time interval. Delay was defined as
the time that was required to establish a successful connec-
tion; hence, delays were only computed for successful con-
nections. The time intervals for both measures was deter-
mined by measuring the total time taken by each test case
and dividing this number by thirty (30).

Upon successful connection completion, the connection
is closed immediately. Typical TCP connections do not ex-
hibit this behavior. However, we are interested only in de-
termining how many connection establishments can succeed
under attack. To simulate maximum contention, we per-
formed all connection establishment attempts against a sin-
gle port on the server.

This simulates a scenario where 25 hosts perform, on the
average, one TCP connection establishment attempt every
two seconds. This means the accessed server must service
750 requests a minute — about an order of magnitude more
than the authors’ departmental Web server.

Test Defense Attack Configuration
mode delay batch-

sec. size

1 none None
2 none Single Addr. 10 100
3 synkill Single Addr. 10 100
4 synkill Single Addr. 1 20
5 synkill 20 Addrs. 1 2
6 synkill No list 1 10

Table 2. Summary of test cases used for per-
formance evaluation of synkill

6.2. Explored Evaluation Space

We use six test cases to evaluate the performance of the
synkill program. The test cases are summarized in Ta-
ble 2. The terms mode, delay, and batch-size are explained
in Section 3.2. They are used to characterize instances of
SYN attacks.

6.3. Evaluation Results

P

ro
ce

ss
es

Time (sec)

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20

Figure 13. Process growth for the attack in
case 6.

The first two test cases are included as points of refer-
ence. Test 1 executes the evaluation scripts without D be-
ing under a SYN flooding attack. The second test runs the
evaluation scripts with D being under attack, but without any
defenses. Figures 14 and 15 show the success rates and av-
erage delays for these two test cases.

In the second test case the attacker sends twenty batches
of one hundred spoofed SYN packets each with a delay of
ten seconds between batches. Note that the areas marked

0

20

40

60

80

100

0 50 100 150 200

Success Rate Test 1

0

10

20

30

40

50

60

70

0 50 100 150 200

Average Delay Test 1

{

This delay comes from the fact
that starting the test puts a large
load on the test machine. It takes
the machine a while to allocate
the resources needed to execute
the test. Expect similar delays on
all tests.

% Sec.

Sec. Sec.

Figure 14. Test case 1: Connection establishment success rates and average delays for normal
operation of D (without attack).

with the letter � correspond to a small window of opportu-
nity that the evaluation program has when the attacked ma-
chine releases the first set of blocked ports. The delay in this
case indicates that, on the average, these were successes in
the first TCP retry attempt. The area marked with the letter
� shows how once the attack has stopped the connections
succeed but only after a very large delay.

In test cases 3 and 4 synkill protects the target ma-
chine against a single address SYN flooding attack of dif-
ferent delays and batch-sizes. In both cases similar per-
formance results can be observed. Synkill learns the
spoofed address, classifies it as bad, and releases half-open
connections from that address as soon as they are observed.
All legitimate connections succeed, and only small delays
are observed.

Test case 5 evaluates access to a machine under SYN
flooding attack using a list of 20 spoofed addresses, 400
batches, a batch-size of 2 and a delay of 1 second. Figure 18
shows the success rates and average delays in this test case.
Note that the only noticeable effect the attack has on the ma-
chine protected by synkill is a small increase in the de-
lay experienced during connection establishment. A load in-
crease of the attacked machine is responsible for this delay.

Finally, test case 6 consists of evaluating the performance
of synkill during an attack in which spoofed addresses
are not repeated. The attack script sends one thousand
batches of ten SYN packets each, with a delay of one second,
using a new address for every batch. In some sense this is
the worst case scenario for synkill, because it cannot uti-
lize its learned knowledge of bad addresses and reset future
connections that use the bad addresses as spoofed source ad-
dresses.

The measurements of this test case are displayed in Fig-

ure 19. We observed considerable delays and some fail-
ures in connection establishment attempts. They happened
because the attacked machine ran out of swap space and
empty process table entries to handle further incoming con-
nections. For this attack the load in the attacked machine
increased dramatically and at one point had ten processes
waiting for attention in the ready queue. These observa-
tions suggest that even better performance of synkill
can be expected if the host-based configuration optimiza-
tions discussed in Section 4.1.1 are used in conjunction with
synkill.

At 32 MB or RAM and only 40 MB of swap space, our
test machine quickly reached the point where not enough
inetd processes could be started to handle all the arti-
ficially completed connections. At first it seems like no
amount of memory or disk space can resist the continuous
creation ofinetd processes to handle an attack of this type.
However, there is a maximum number of processes that will
be created, and for this particular attack, and assuming that
the time synkill waits to timeout a new IP address is ten
seconds, the number should be roughly 100. As shown in
Figure 13, each second ten new SYN packets appear and
these trigger the creation of ten inetd processes. After ten
seconds, IP addresses from the first batch will time out and
appropriate RST packets will be generated. These will re-
lease ten processes, just in time for the next batch of SYN
packets.

Typical SYN attacks have low packet rates, and part of
the attractiveness of this attack comes from the fact that a
small number of packets per minute (as little as 10) is suf-
ficient for a successful denial of service attack. As shown
here, the synkill approach can be an effective defense
for SYN packet rates close to a thousand SYN packets per

0

20

40

60

80

100

0 100 200 300 400 500

Success Rate Test 2

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Average Delay Test 2

Attack
Stopped

Attack
Stopped

α

β

α

% Sec.

Sec.Sec.

Figure 15. Test case 2: Connection establishment success rates and average delays while D is
temporarily under attack, without active defense by synkill.

0

20

40

60

80

100

120

0 50 100 150 200

Success Rate Test 3

0

10

20

30

40

50

60

70

80

0 50 100 150 200

Average Delay Test 3

}
Load on
attacked
machine

% Sec.

Sec. Sec.

Figure 16. Test case 3: Connection establishment success rates and average delays.

minute (roughly 20 per second) in which spoofed addresses
are not repeated. Higher volumes will result in a denial of
service similar to that of opening thousand of telnet connec-
tions, and the attractiveness of the SYN attack will be dimin-
ished, if not gone.

7. Future Improvements

This section describes future improvements tosynkill
that would make the tool more effective against improved
SYN flooding attacks.

7.1. Connection State Tracking

Currently, it is possible for an attacker to “teach”
synkill good addresses that are in fact spoofed, by spoof-
ing ACK or RST packets. That could be exploited to first
teach synkill a spoofed address and then use that same
address for a SYN flooding attack. Althoughsynkill arti-
ficially completes each connection, thus avoiding port flood-
ing, the attacker may still be able to start a large number of
server processes in the target machine. This again leads to
the degradation of service attack described in Section 2.2.3.
Synkill could respond to this improved attack by

keeping state about all observed TCP connections on the
LAN. That would make successful SYN flooding for an at-
tacker as hard as sequence number prediction attacks. Fur-

0

20

40

60

80

100

120

0 50 100 150

Success Rate Test 4

0

10

20

30

40

50

60

70

80

0 50 100 150

Average Delay Test 4% Sec.

Sec. Sec.

Figure 17. Test case 4: Connection establishment success rates and average delays.

0

20

40

60

80

100

120

0 50 100 150

Success Rate Test 5

0

10

20

30

40

50

60

70

80

0 50 100 150

Average Delay Test 5% Sec.

Sec. Sec.

Figure 18. Test case 5: Connection establishment success rates and average delays.

thermore, this approach would facilitate the detection of
other classes of network based attacks (see e.g., [3]).

7.2. Multiple-network Monitoring

Currently, synkill is implemented to monitor a sin-
gle network interface. It may be desirable to allow the tool
to monitor several network interfaces simultaneously, thus
allowing the sharing of the acquired address classification
database.

7.3. Attack Interval and Source Address Prediction

The basic idea of this approach is to protect against at-
tacks based on timing or random number generator artifacts
of the attack scripts, and not the generic attack method.

Our analysis of SYN flooding attack software showed
that the delays between successive SYN packets in one
batch, and between successive batches are almost constant.
This same timing behavior can be observed at the targeted
hosts, because all spoofed packets travel the same route over
the internetwork and in a stable internetwork only little jitter
is introduced.

The synkill software could therefore measure inter
arrival times and use statistical models to predict the most
likely arrival time of the next spoofed SYN packet. All
SYN packets that fit into the predicted arrival times would
be considered spoofed and immediately reset. The obvious
response of the attacker will be to vary the delay between
successive SYN packets.

Similarly, the random numbers used in many published
exploitation routines are generated by cryptographically
weak standard library routines. They do not follow good

0

20

40

60

80

100

120

0 200 400 600 800 1000

Success Rate Test 6

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

Average Delay Test 6% Sec.

Sec. Sec.

Figure 19. Test case 6: Connection establishment success rates and average delays.

cryptographicpractices as described in [7, 10, 13]. We could
implement a number of algorithms that automatically detect
and predict pseudo random number sequences generated
by simple common generators and use predicted pseudo-
random IP addresses to identify malicious packets quickly.
Again, there is an obvious countermeasure on the side of the
attacker to harden attack implementations against these ar-
tifacts.

7.4. Trusted Address Space Ranges

Once the source address filtering mechanisms discussed
in Sections 4.1.2 and 4.2 become more widely implemented
a limited IP address space will be available for spoofed
source addresses. Synkill could incorporate information
about these secured address space ranges and automatically
include them in its address preprocessing steps.

8. Conclusions

This paper has described and analyzed a network based
denial of service attack, called SYN flooding. It has con-
tributed a detailed analysis of this attack and a description
and discussion of existing and proposed countermeasures.
Furthermore, it has introduced a new solution approach, ex-
plained its design, and evaluated its performance.

The design is based on the philosophy that this active
anomaly detection tool can detect the conditions of a SYN
flooding attack and react appropriately to defeat, or at least
lessen the impact of, an attack. Synkill neither requires
any special hardware (such as particular firewall products),
nor certain operating systems, network stacks, or even mod-
ifications in the protected end systems. Our software is
highly portable, extensible, and easily configurable.

Our evaluation of the tool shows that synkill is capa-
ble of effectively protecting all machines on a LAN against
a wide range of attack configurations. Many of the lessons
learned from this study can be applied to the protection
against other denial of service attacks.

Acknowledgments

We would like to thank Gustavo Rodriguez-Rivera for
help with the design of the garbage collector and members
of the security seminar at the Department of Computer Sci-
ences at Purdue University for fruitful technical discussions.
Suggestions from the anonymous referees helped improve
the presentation.

References

[1] Cisco Systems Inc. Defining Strategies to Protect Against
TCP SYN Denial of Service Attacks, September 1996.

[2] D. E. Comer. Internetworking with TCP/IP. Prentice–Hall,
Englewood Cliffs, New Jersey, third edition, 1995.

[3] Computer Emergency Response Team (CERT), Carnegie
Mellon University, Pittsburgh, PA. IP Spoofing Attacks and
Hijacked Terminal Connections, Jan. 1995. CA-95:01.

[4] Computer Emergency Response Team (CERT), Carnegie
Mellon University, Pittsburgh, PA. TCP SYN Flooding and
IP Spoofing Attacks, Sept. 1996. CA-96:21.

[5] E. Corcoran. Hackers strike at N.Y. Internet Access Com-
pany. The Washington Post, Sep. 12, 1996.

[6] daemon9, route, and infinity. Project neptune. Phrack Mag-
azine, 7(48), 1996.

[7] D. E. Eastlake, S. D. Crocker, and J. I. Schiller. RFC–
1750 Randomness Recommendations for Security. Network
Working Group, Dec. 1994.

[8] J. Fairlane. Flood warning. 2600, 13(2):6–11, Summer 1996.

[9] P. Ferguson. Network ingress filtering. Internet draft, Cisco
Systems, Inc., September 1996.

[10] S. Garfinkel and G. Spafford. Practical UNIX & Internet Se-
curity. O’Reilley & Associates, Inc. Sebastopol, CA., second
edition, 1996.

[11] M. Graff. Sun Security Bulletin 00136. Mountain View, CA,
Oct. 1996.

[12] Internet Security
Systems. RealSecure User’s Guide and Reference Manual,
1996. Available at http://iss.net/RealSecure.

[13] D. E. Knuth. The Art of Computer Programming, Volume 2.
Addison–Wesley Publishing Company, Inc., second edition,
1981.

[14] L. S. Laboratories. Livermore Software Labs. Announces De-
fense agains SYN Flooding Attacks, October 1996.

[15] C. P. S. T. Ltd. TCP SYN Flooding Attack and the FireWall-1
SYNDefender, October 1996.

[16] J. Postel. RFC–791 Internet Protocol. Information Science
Institute, University of Southern California, CA, Sept. 1981.

[17] J. Postel, editor. RFC–793 Transmission Datagram Proto-
col. Information Sciences Institute, USC, CA, Sept. 1981.

[18] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. de Groot.
RFC–1597 Address Allocation for Private Internets. Net-
work Working Group, Mar. 1994.

[19] R. W. Stevens and G. R. Wright. TCP/IP Illustrated, Volume
2, The Implementation. Prentice–Hall, Englewood Cliffs,
New Jersey, 1995.

[20] B. Ziegler. Savvy Hacker Tangles Web For Net Host. The
Wall Street Journal, Sep. 12, 1996.

A TCP State Machine

Figure 20 depicts the TCP state machine (Figure courtesy
of Douglas E. Comer, [2]).

CLOSED

LISTEN

SYN
RECVD

SYN
SENT

ESTAB-
LISHED

FIN
WAIT-1

CLOSE
WAIT

CLOSING

FIN
WAIT-2

TIMED
WAIT

LAST
ACK

anything/ reset

begin

active open/ syn

closepassive open

send/ syn
syn / syn + ack

reset

ack

close/ fin

syn / syn + ack

syn + ack / ack

close/ fin

fin / ack

fin / ack

ack / fin-ack / ack

fin / ack

ack /

close/ fin

ack /

close /
timeout/

reset

timeout after 2 segment lifetimes

Figure 20. The TCP finite state machine

