
The Cops Security Checker System�

Purdue University Technical Report CSD-TR-993

Daniel Farmer

Computer Emergency Response Team

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

df@sei.cmu.edu

Eugene H. Spa�ord

Software Engineering Research Center

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907{1398

spaf@cs.purdue.edu

January 22, 1994

Abstract

In the past several years, there have been a large number of pub-
lished works that have graphically described a wide variety of security
problems particular to Unix. Without fail, the same problems have
been discussed over and over again, describing the problems with SUID
(set user ID) programs, improper �le permissions, and bad passwords
(to name a few). There are two common characteristics to each of
these problems: �rst, they are usually simple to correct, if found; sec-
ond, they are fairly easy to detect.

Since almost all systems have fairly equivalent problems, it seems
appropriate to create a tool to detect potential security problems as
an aid to system administrators. This paper describes one such tool:
Cops. (Computerized Oracle and Password System) is a freely-available,

� This paper originally appeared in the proceedings of the Summer Usenix Conference,

1990, Anaheim CA.

1

recon�gurable set of programs and shell scripts that enable system ad-
ministrators to check for possible security holes in their systems.

This paper briey describes the system. Included are the under-
lying design goals, the functions provided by the tool, possible ex-
tensions, and some experiences gained from its use. We also include
information on how to obtain a copy of the initial Cops release.

1 Introduction

The task of making a computer system secure is a di�cult one. To make a
system secure means to protect the information from disclosure; protecting
it from alteration; preventing others from denying access to the machine, its
services, and its data; preventing degradation of services that are present;
protecting against unauthorized changes; and protecting against unautho-
rized access.

To achieve all these security goals in an actual, dynamic environment
such as that presented by most Unix 1 systems can be a major challenge.
Practical concerns for exibility and adaptability render most formal secu-
rity methods inapplicable, and the variability of system con�guration and
system administrator training make \cookbook" methods too limited. Many
necessary security administration tasks can be enhanced through the use of
software and hardware mechanisms put in place to regulate and monitor ac-
cess by users and user programs. Those same mechanisms and procedures,
however, constrain the ability of users to share information and to cooper-
ate on projects. As such, most computer systems have a range of options
available to help secure the system. Choosing some options allows enhanced
sharing of information and resources, thus leading to a better collaborative
environment, where other settings restrict that access and can help make
the system more secure.

One of the tasks of a system and security administrator is to choose the
settings for a given system so that security is at an appropriate level|a level
that does not unduly discourage what sharing is necessary for tasks to be
accomplished, but that also gives a reasonable assurance of safety. This often
leads to problems when a system has a very wide range of possible settings,
and when system administrators lack su�cient training and experience to
know what appropriate settings are to be applied.

Ideally, there should be some kind of assistance for system administrators

1
Unix is a registered trademark of AT&T Technologies.

2

that guides them in the application of security measures appropriate for
their environment. Such a system needs to be con�gurable so it provides
the appropriate level of assistance based on the perceived need for security
in that environment. That system should be comprehensive enough so that
an untrained or inexperienced administrator is able to derive a high degree
of con�dence that all appropriate features and weaknesses are identi�ed and
addressed.

Unfortunately, such a tool may also present a danger to that same system
administrator. For instance, there could be a danger if the tool were to fall
into the hands of a potential attacker. The tool could be used to analyze the
target system or to provide clues for methods of attack. A second potential
danger is that the tool can be modi�ed by an unfriendly agent so that the
information it reports and the actions that it takes serve not to enhance
the security of the system, but to weaken it. A third possibility is that the
tool is not comprehensive enough, or that changes in system operation are
such that the tool does not expose the security aws made present by those
changes; the security administrator, by relying on the tool, fails to be aware
of the new dangers to his or her system.

A good example of all three dangers might be the development and
use of a tool that examines passwords to see if they can be easily guessed
by an attacker. Such a tool might consist of a fast implementation of the
password encryption algorithm used on a particular machine. Provided with
this tool would be a dictionary of words that would be compared against
user passwords. Passwords that match a word in the dictionary would be
agged as weak passwords.

Such a tool would enable a system administrator to notify users with
weak passwords that they should choose a password that is more di�cult
for an attacker to guess. However, such a tool is a danger to the very same
system it is designed to protect should it fall into the hands of an attacker:
the tool could be used to very rapidly search through the dictionary in an
attempt to �nd a password that could be compromised.

A second potential danger is that an attacker with su�cient privilege
might alter the encryption algorithm or the internal workings of the program
such that it would appear to run correctly, but would fail to match certain
passwords or certain accounts. This would allow a determined attacker to
plant an account with a known simple password that would not be detected
by the program. Alternatively, an attacker might modify such a program to
send its output to not only the administrator, but to the attacker as well.

The third problem is that the system administrator may grow compla-

3

cent by running this password tool if it continually reports that there are
no weak passwords found. The administrator may not make any e�ort to
enhance the quality or size of the dictionary, or to provide other tracking or
audit mechanisms to observe individuals who may be attempting to guess
passwords or break into accounts.

For all of these reasons, such a tool might be considered to lessen the
overall security of the system rather than to enhance it. That should not
prevent us from developing security tools, however. Instead, the challenge is
to build tools that enhance security without posing too great a threat when
employed by an enemy.

2 Design and Structure

2.1 Design

Although there is no reasonable way that all security problems can be solved
on any arbitrary system, administrators and systems programmers can be
assisted by a software security tool. Cops is an attempt to address as many
potential security problems as possible in an e�cient, portable, and above
all, in a reliable and safe way. The main goal of Cops is one of prevention;
it tries to anticipate and eliminate security problems by detecting problems
and denying enemies an opportunity to compromise security in the �rst
place.

The potential security hazards that Cops checks for were selected from
readings of a variety of security papers and books (see the references section
at the end of the paper), from interviews with experienced system adminis-
trators, and from reports of actual system breakins.

We applied the following important guiding principles to the design and
development of Cops:

� Cops should be con�gurable so that new tools could be added or the
existing tools altered to meet the security needs of the installation
on which it is run. Since Unix is so dynamic, it must be possible to
incorporate both new tools and methods in Cops as the need for them
becomes apparent.

� Cops should contain no tool that attempts to �x any security problems
that are discovered. Because Cops makes no modi�cations to the
system, it is not required that it be run with any particular privilege,
and many of the tools can be run with privilege less than or equal

4

to that of a regular user. As a result, this lessens the temptation for
an intruder to modify the code in an attempt to make surreptitious
changes to the system.

� While Cops should notify the administrator that there may be a weak-
ness, it does not describe why this is a problem or how to exploit it.
Such descriptions should be found in alternative sources that are not
embedded in the program. Thus, a determined attacker might run
the program, might be able to read the output, but be unaware of a
method to exploit anything that Cops reports it has found.

� Cops should not include any tools whose use by determined attackers,
either standalone or as part of the Cops system, would give them a
signi�cant advantage at �nding a way to break into the system beyond
what they might already have in their possession. Thus, a password
checking tool, as was previously described, is included, but the algo-
rithm utilized is simply what is already present in the system library
of the target system.

� Cops should consist of tools and methods that are simple to read,
understand, and to utilize. By creating the tools in such a manner,
any system administrator can read and understand the system. Not
only does this make it easier to modify the system for particular site
needs, but it allows reexamination of the code at any time to ensure
the absence of any Trojan horse or logic bomb.

� The system should not require a security clearance, export license,
execution of a software license, or other restriction on use. For maxi-
mum e�ectiveness, the system should be widely circulated and freely
available. At the same time, users making site-speci�c enhancements
or including proprietary code for local software should not be forced
to disclose their changes. Thus, Cops is built from new code without
licensing restrictions or onerous \copyleft," and bears no restriction
on distribution or use beyond preventing it from being sold as a com-
mercial product.

� Cops should be be written to be portable to as wide a variety of Unix
systems as possible, with little or no modi�cation.

In order to maximize portability, exibility, and readability, the pro-
grams that make up Cops are written as simple Bourne shell scripts using

5

common commands (awk, sed, etc.), and when necessary, small, heavily-
commented C programs.

2.2 Structure

Cops is structured as a dozen sub-programs invoked by a shell script. That
top-level script collects any output from the subprograms and either mails
the information to the local administrator or else logs it to a �le. A separate
program that checks for SUID �les is usually run independently because of
the amount of time required for it to search through the �lesystems. All of
the tools except the SUID checker are not meant to be run as user root or
any other privileged account.

Please note that the descriptions of the tools provided here do not contain
any detailed explanation of why the tools check what they do. In most cases,
the reason is obvious to anyone familiar with Unix. In those cases where it is
not obvious, the bibliographic material at the end of this paper may provide
adequate explanations. We apologize if the reasons are not explained to
your satisfaction, but we do not wish to provide detailed information for
potential system crackers who might have our system.

These are the individual the programs that comprise Cops:

dir.check, �le.chk These two programs check a list of directories and �les
(respectively) listed in a con�guration �le to ensure that they are not
world-writable. Typically, the �les checked would include /etc/passwd,
/.pro�le, /etc/rc, and other key �les; directories might include /, /bin,
/usr/adm, /etc and other critical directories.

pass.chk This program searches for and detects poor password choices.
This includes passwords identical to the login or user name, some
common words, etc. This uses the standard library crypt routine,
although the system administrator can link in a faster version, if one
is available locally.

group.chk, passwd.chkThese two tools check the password �le (/etc/passwd
and yppasswd output, if applicable) and group �le (/etc/group and yp-

group output, if applicable) for a variety of problems including blank
lines, null passwords, non-standard �eld entries, non-root accounts
with uid=0, and other common problems.

cron.chk, rc.chkThese programs ensure that none of the �les or programs
that are run by cron or that are referenced in the /etc/rc* �les are

6

world-writable. This protects against an attacker who might try to
modify any programs or data �les that are run with root privileges at
the time of system startup. These routines extract �le names from the
scripts and apply a check similar to that in �le.chk.

dev.chk checks /dev/kmem, /dev/mem, and �le systems listed in /etc/fstab
for world read/writability. This prevents would-be attackers from get-
ting around �le permissions and reading/writing directly from the de-
vice or system memory.

home.chk, user.chk These programs check each user's home directory
and initialization �les (.login, .cshrc, .pro�le, etc) for world writability.

root.chk This checks root startup �les (e.g., /.login, /.pro�le) for incorrect
umask settings and search paths containing the current directory. This
also examines /etc/hosts.equiv for too much accessibility, and a few
miscellaneous other tests that do not �t anywhere else.

suid.chk This program searches for changes in SUID �le status on a sys-
tem. It needs to be run as user root for best results. This is because
it needs to �nd all SUID �les on the machine, including those that are
in directories that are not generally accessible. It uses its previous run
as a reference for detecting new, deleted, or changed SUID �les.

kuang The U-Kuang expert system, originally written by Robert W. Bald-
win of MIT. This program checks to see if a given user (by default,
root) is compromisable, given that certain rules are true.

It is important to note once again that Cops does not attempt to correct
any potential security hazards that it �nds, but rather reports them to the
administrator. The rationale for this is that is that even though two sites
may have the same underlying hardware and version of Unix, it does not
mean that the administrators of those sites will have the same security
concerns. What is standard policy at one site may be an unthinkable risk at
another, depending upon the nature of the work being done, the information
stored on the computer, and the users of the system. It also means that the
Cops system does not need to be run as a privileged user, and it is less
likely to be booby-trapped by a vandal.

7

3 Usage

Installing and running Cops on a system usually takes less than an hour,
depending on the administrator's experience, the speed of the machine, and
what options are used. After the initial installation, Cops usually takes a
few minutes to run. This time is heavily dependent on processor speed, how
many password checking options are used, and how many accounts are on
the system.

The best way to use Cops is to run it on a regular basis, via at or
cron. Even though it may not �nd any problems immediately, the types of
problems and holes it can detect could occur at any later time.

Though Cops is publically accessible, it is a good idea to prevent others
from accessing the programs in the toolkit, as well as seeing any security
reports generated when it has been run. Even if you do not think of them
as important, someone else might use the information against your system.
Because Cops is con�gurable, an intruder could easily change the paths and
�les that it checks, thus making any security checks misleading or worth-
less. You must also assume intruders will have access to the same toolkit,
and hence access to the same information on your security problems. Any
security decisions you make based on output from Cops should reect this.
When dealing with the security of your system, caution is never wasted.

4 Experience and Evaluation

This security system is not glamorous|it cannot draw any pictures, it con-
sists of a handful of simple shell scripts, it does not produce lengthy, detailed
reports, and it is likely to be of little interest to experienced security admin-
istrators who have already created their own security toolkits. On the other
hand, it has proven to be quite e�ective at pointing out potential security
problems on a wide variety of systems, and should prove to be fairly valuable
to the majority of system administrators who don't have the time to create
their own system. Some administrators of major sites have informed us that
they are incorporating their old security checks into Cops to form a uni�ed
security system.

Cops has been in formal release for only a few months (as of January
1990). We have received some feedback from sites using the system, includ-
ing academic, government and commercial sites. All of the comments about
the ease of use, the readability of the code, and the range of things checked

8

by the system have been quite positive. We have also, unfortunately, had
a few reports that Cops may have been used to aid in vandalizing systems
by exposing ways to break in. In one case, the vandal used Cops to �nd
a user directory with protection modes 777. In the other case, the vandal
used Cops to �nd a writable system directory. Note, however, that in both
of these cases, the same vulnerability could have easily been found without
Cops.

It is interesting to note that in the sites we have tested, and from what
limited feedback we received from people who have utilized it, over half
the systems had security problems that could compromise the root user.
Whether that can be generalized to a larger population of systems is un-
known; part of our ongoing research is to determine how vulnerable a typical
site may be. Even machines that have come straight from the vendor are
not immune from procedural security problems. Critical �les and directories
are often left world-writable, and con�guration �les are shipped so that any
other machine hooked up to the same network can compromise the system.
It underscores this sad state of a�airs when one vendor's operational manual
harshly criticizes the practice of placing the current directory in the search
path, and then in the next sentence states \Unfortunately, this safe path
isn't the default." 2

We plan on collecting further reports from users about their experiences
with Cops. We would encourage readers of this paper who may use it to
inform us of the performance of the system, the nature of problems indicated
by the system, and of any suggestions for enhancing the system.

5 Future Work

From the beginning of this project, there have been two key ideas that have
helped focus our attention and re�ne our design. First, there is simply no
reasonable way for us to write a security package that will perform every task
that we felt was necessary to create a truly satisfactory security package.
Second, if we waited, no one else was going to write something like Cops
for us. Thus, we forged ahead with the design and construction of a solid,
basic security package that could be easily expanded. We have tried to
stress certain important principles in the design of the system, so that the

2We will not embarrass that one vendor by citing the source of the quote. At least

they noted the fact that such a path is a hazard; many vendors do not even provide that

much warning.

9

expansion and evolution of Cops will continue to provide a workable tool.
Cops was written to be rewritten. Every part of the package is designed

to be replaced easily; every program has room for improvement. The frame-
work has room for many more checks. It seems remarkable that a system
as simple as this �nds so many aws in a typical installation! Nonetheless,
we have thought of a number of possible extensions and additions to the
system; these are described in the following sections.

5.1 Detecting known bugs

This is a very di�cult area to consider, because there are an alarming num-
ber of sites (especially commercial ones) without the source code that is
necessary to �x bugs. Providing checks for known bugs might make Cops
more dangerous, thus violating our explicit design goals. At the same time,
checking for known bugs could be very useful to administrators at sites with
access to source code.

If we keep in mind thatCops is intended as a system for regular use by an
administrator, we conclude that checking for known bugs is not appropriate,
because such checks are ordinarily done once and not repeated. Thus, a
separate system for checking known bugs would be appropriate|a a system
that might be distributed in a more controlled manner. We are currently
considering di�erent methods of distributing such a system.

5.2 Checksums and Signatures

Checksums and cryptographically-generated signatures could be an excel-
lent method of ensuring that important �les and programs have not been
compromised. Cops could be enhanced to regenerate these checksums and
compare them against existing references. To build this into Cops will
require some method of protecting both the checksum generator and the
stored checksums, however. It also poses the problem that system adminis-
trators might rely on this mechanism too much and fail to do other forms of
checking, especially in situations where new software is added to the system.

5.3 Detecting changes in important �les

There are some �les that should change infrequently or not at all. The �les
involved vary from site to site. Cops could easily be modi�ed to check
these �les and notify the system administrator of changes in contents or

10

modi�cation times. Again, this presents problems with the protection of
the reference standard, and with possible complacency.

5.4 NFS and Yellow Pages

Many new vulnerabilities exist in networked environments because of these
services. Their recent development and deployment mean that there are
likely to be more vulnerabilities and bugs present than would be found in
more mature code. As weaknesses are reported, corresponding checks should
be added to the Cops code.

5.5 Include UUCP security checks

Because UUCP is very widely used, it is important to increase the number
and sophistication of the checks performed on all the di�erent varieties of
UUCP. This includes checking the �les that limit what programs can be
remotely executed, the USERFILE and L.sys �les, and the protections on
directories.

5.6 Con�guration �les

There are many problems that result from improper con�guration �les.
These occur not only from having the �les open to modi�cation, but because
of unexpected or misunderstood interactions of options. Having rule-based
programs, similar to kuang, which analyze these con�guration �les would be
an ideal way to extend Cops.

5.7 Checking OS-speci�c problems

There are a wide variety of problems that apply only to certain avors of
Unix. This includes not only the placement of key �les, but also syntactical
and logical di�erences in the way those systems operate. Examples include
such things as shadow password �les, di�erent system logging procedures,
shared memory, and network connectivity. Ideally, the same set of tools
would be used on every system, and a con�guration �le or script would
resolve any di�erences.

11

6 Conclusions

Over the last 18 months since the Internet worm, perhaps the most strongly
voiced opinion from the Internet community has been \security through
secrecy does not work." Nonetheless, there is still an appalling lack of com-
munication about security. System breakers and troublemakers, on the other
hand, appear to encounter little di�culty �nding the time, energy, and re-
sources necessary to break into systems and cause trouble. It is not that
they are particularly bright; indeed, examining the log of a typical breakin
shows that they follow the same methods that are publicized in the latest
computer security mailing lists, in widely publicized works on security, and
on various clandestine bulletin boards. The di�erence between them and
the system administrators on the Internet seems to be communication. It
is clear that the underground community has a well-established pipeline of
information that is relatively easy for them to tap. Many system adminis-
trators, however, have no access to an equivalent source of information, and
are thrust into their positions with little or no security experience. Cops

should be particularily helpful in these cases.
None of programs in Cops cover all of the possible areas where a system

can be harmed or compromised. It can, however, aid administrators in
locating some of the potential trouble spots. Cops is not meant to be a
panacea for all Unix security woes, but an administrator who examines
the system and its documentation might reduce the danger to his or her
system. That is all that can ever be expected of any security tool in a real,
operational environment.

Future work on Cops will be done at the CERT, and work on related
tools and approaches will be done at Purdue. People are encouraged to
get a copy of Cops and provide us with feedback and enhancements. We
expect that as time goes on, and as the awareness of security grows, Cops
and systems like it will be evolved through community e�ort. Increased
communication and awareness of the problems should not be limited to just
the crackers.

7 Acknowledgments

Thanks go to Robert Baldwin for allowing us to include his marvelous U-
Kuang system; to Donald Knuth for inspirational work on how not only
to write but to create a software system; to Je� Smith, Dan Trinkle, and

12

Steve Romig for making available their systems and expertise during the
development of Cops; and �nally, our beta testers, without whom Cops

might never have been.

Getting Cops

Cops has been run successfully on a large number of computers, including
Unix boxes from Sun, DEC, HP, IBM, AT&T, Sequent, Gould, NeXT, and
MIPS.

A copy ofCops was posted to the comp.sources.unix newsgroup and thus
is available in the UUCP archives for that group, as well as via anonymous
ftp from a variety of sites (uunet.uu.net and j.cc.purdue.edu, for example.)
We regretfully cannot mail copies of Cops to sites, or make tapes, as we do
not have the time or resources to handle such requests.

Biographies

Dan Farmer is a member of the CERT (Computer Emergency Response
Team) at the Software Engineering institute at Carnegie Mellon University.
He is currently designing a tool that will detect known bugs on a variety
of Unix systems, as well as continuing program development and design on
the Unix system.

Gene Spa�ord is an assistant professor at Purdue University in the De-
partment of Computer Sciences. He is actively involved with software en-
gineering research, including testing and debugging technology. He is also
actively involved in issues of computer security, computer crime, and pro-
fessional ethics. Spaf is coauthor of a recent book on computer viruses, is
in the process of coauthoring a book on Unix security to be published by
O'Reilly and Associates, and is well-known for his analysis of the Morris
Internet Worm. Besides being a part-time netgod, Gene is involved with
ACM, IEEE-CS, the Computer Security Institute, the Research Center on
Computers and Society, and (of course) Usenix.

References

1. Aho, Alfred V., Brian W. Kernighan, and Peter J. Weinberger, The
AWK Programming Language, Addison-Wesley Publishing Company,
1988.

13

2. Authors, Various, Unix Security Mailing List/Security Digest, Decem-
ber 1984-present.

3. Baldwin, Robert W., Rule Based Analysis of Computer Security,Mas-
sachusetts Institute of Technology, June 1987.

4. Grampp, F. T. and R. H. Morris, \Unix Operating System Security,"
AT&T Bell Laboratories Technical Journal, October 1984.

5. Kaplilow, Sharon A. and Mikhail Cherepov, \Quest|A Security Au-
diting Tool," AT&T Bell Laboratories Technical Journal, AT&T Bell
Laboratories Technical Journal, May/June 1988.

6. Smith, Kirk, \Tales of the Damned," Unix Review, February 1988.

7. Spa�ord, Eugene, Kathleen Heaphy and David Ferbrache, Computer
Viruses: Dealing with Electronic Vandalism and Programmed Threats,
ADPASO, 1989.

8. Spence, Bruce, \spy: A Unix File System Security Monitor," Proceed-
ings of the Large Installation Systems Administration III Workshop,
Usenix Association, September, 1988.

9. Thompson, Ken, \Reections on Trusting Trust," 27 (8), Communi-
cations of the ACM, August 1984.

10. Wood, Patrick and Stephen Kochran, Unix System Security, Hayden
Books, 1986.

11. Wood, Patrick, \A Loss of Innocence," Unix Review, February 1988.

14

