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Abstract. Building models and learning patterns from a collection of
data are essential tasks for decision making and dissemination of knowl-
edge. One of the common tools to extract knowledge is to build a classi-
fier. However, when the training dataset is sparse, it is difficult to build
an accurate classifier. This is especially true in biological science, as
biological data are hard to produce and error-prone. Through empirical
results, this paper shows challenges in building an accurate classifier with
a sparse biological training dataset. Our findings indicate the inadequa-
cies in well known classification techniques. Although certain clustering
techniques, such as seeded k-Means, show some promise, there are still
spaces for further improvement. In addition, we propose a novel idea
that could be used to produce more balanced classifier when training
data samples are very limited.

1 Introduction

With the explosion of data, data mining techniques gain much attention for
their promise in building models and learning patterns from a collection of data.
These tasks are essential for decision making and dissemination of knowledge
in many areas. Well-known learning techniques such as association rule mining,
classification and clustering have been successfully applied in many applications.

Recently, biological science has emerged as a challenging area to apply data
mining techniques. One common problem in this field is that given a dataset
of which a small fraction has class labels, we need to identify class labels for
the other data items [1]. To solve this problem, we can either use supervised
(e.g., classification) or unsupervised (e.g., clustering) learning methods. To apply
classification techniques, the data with class labels can be treated as a training
dataset, and a classifier can be constructed from it. Then, the classifier is used
to predict class labels for the rest of unlabeled data items. On the other hand,
clustering techniques can also be adopted to achieve this task. For example,
assume the total number of class labels in the dataset is known. The dataset
can be clustered first, then each unlabeled data is assigned to the majority class
label in its cluster. (Thereafter, we term the set of data with class labels as a
training dataset and the rest of data as unlabeled data or dataset.)
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Although these techniques can be applied directly, different techniques pro-
duce various results. Therefore, how to choose the best method or design a
suitable method for a specific domain is challenging. Before making any deci-
sion, we first need to understand the characteristics of biological data. Generally
speaking, collecting biological data requires major efforts and years of research,
and biological data are noisy and error-prone. Thus, it is very likely that the
training dataset are sparse: either the size of the training dataset is small or the
training dataset contains incomplete class information.

For example, in cell wall genomics research, the mutants of cell wall synthesis
are extremely valuable to study the genes responsible for biosynthesis of the
cell wall and the genes that regulate the cell wall biosynthesis pathways. Tradi-
tional experimental methods to find the mutants are time consuming and labor
intensive. Although techniques such as Fourier Transform InfraRed microspec-
troscopy (FTIR) followed by Principle Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) has been successfully applied to rapidly identify
mutants [1], one common challenge biologists faced is the fact that certain mu-
tants might not have visually abnormal or known phenotypes. In other words,
there may not exist any training data for these mutants even though they are
detectable. These mutants that do not have known phenotypes are very valuable
to biologists because their mutations may be in the regulatory component of the
cell wall biosynthetic pathways. In addition, these unidentified mutants could
be much less common than the known mutants. The problem appears when the
training dataset has many data samples for common mutants but very few or
none for rare mutants that are potentially important. Consequently, classifiers
built on this kind of sparse training dataset are biased toward the common mu-
tants and could be useless in identifying rare mutants. It would be a great loss
for biological science if these potentially valuable mutants cannot be discovered.

Another issue that has not been addressed in data mining community is that
the training data may not be reliable and contain errors. Some biological exper-
iments (e.g., Yeast 2-hybrid Assay, Mass Spectrometry) are known to produce a
large number of false positives. If the results of these experiments are used as the
training data for supervised learning, the classifier could be defective because it
is built on unreliable training data. Another source of uncertainty comes from
the computational methods extensively used in bioinformatics. With the devel-
opment of high throughput experiment techniques, biologists more and more
rely on data mining and machine learning methods to rapidly and automatically
process the data. For example, Swiss-Prot is a curated protein function database
[2]. To alleviate the intense labor of manually curating protein function annota-
tions, scientists explore using decision tree to predict the functions of the protein
sequences [3]. The function annotations in the Swiss-Prot database are used as
training data. As Peter Karp points out in [4], some function annotations are
computed using computational methods such as BLAST [5] and may not be
reliable. Because of the complexity and inherent uncertainty of the biological
data, collected biological data samples are very unlikely to be complete and ac-
curate. Therefore, when training data samples are sparse, developing learning
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techniques that can discover rare important classes and tolerate the noise in the
training data has great value.

These examples highlight the nature of biological data in that the training
dataset portion is sparse and some rare data may have great value in biological
research. Under our problem domain, classification techniques generally perform
better than clustering techniques if sufficient and unbiased training data are
available. When training data are sparse, the computed classifier is likely biased.
We expect that such a classifier is likely to ignore rare class labels. This could
lead to potential loss in research. Therefore, with sparse training data, cluster-
ing techniques could be the better option in assigning more correct class labels
without ignoring rare class items.

Through empirical results, this paper shows challenges faced by biologists
in building an accurate classifier with a sparse training dataset. Our findings
indicate that when the training dataset is sparse, well known classification tech-
niques are inadequate in producing accurate classifiers. Using them to discover
rare classes is almost impossible. Semi-supervised clustering techniques, such as
seeded k-means, show some promise in identifying rare classes, but there are
still spaces for further improvement. Based on these observations, we also pro-
pose a novel idea that could be used to identify rare classes when training data
samples are very limited. The paper is organized as follows: Section 2 presents
a brief overview of related works. Section 3 provides empirical results showing
inadequacies of common classification techniques to detect rare classes when the
training dataset is sparse. Section 4 proposes a novel idea in hopes that better
learning techniques can be designed to produce unbiased classifiers. Section 5
concludes the paper with lessons learned and future research directions.

2 Related Work

Machine learning and data mining methods can be classified into supervised and
unsupervised learnings. Supervised learning requires a training dataset while un-
supervised learning does not. Lately, semi-supervised learning has gained increas-
ing attention [6,7] because semi-supervised learning promises the advantage of
both supervised and unsupervised methods. In particular, semi-supervised clus-
tering tries to use a small number of labeled data to guide the clustering process.
By incorporating the domain knowledge in the clustering process, one hopes that
the result of semi-supervised clustering will be better than totally ignoring this
information. In [6], unlike the traditional k-means algorithm, instead of using
random seed, the initial seeds are the mean of each class of the labeled data.

However, this approach cannot be applied directly to the problem presented
in this paper because they assume that every class labels are included in the
training dataset. In section 3, we leverage this work and show how to choose
the seeds when training data contain incomplete information. A related problem
often emerging in biological application is Single Class Classification (SCC). In
[8], SCC is defined as distinguishing one class of the data from the universal set
of multiple classes. In our problem domain, because we would like to identify
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rare classes from multiple classes, without training data for the rare classes,
single-class approaches cannot be applied.

3 Seeded k-Means vs. Classification Techniques

Here, we show that when training data is sparse, well-known classification tech-
niques rarely produce accurate and unbiased classifiers. We also point out that
with careful choice of seeds, seeded k-means (SkM) performs better in classifying
unknown data instances and identifying rare class instances with a sparse train-
ing dataset. By sparse training data, we mean that either the size of the training
dataset is small or the training dataset contains incomplete class informations
due to errors occurred during data collection process. For the rest of this section,
we distinguish these two cases and present our findings independently.

The experiments are done using two datasets, Ecoli and Yeast datasets from
UC Irvine Machine Learning Repository [9]. Ecoli dataset contains 336 instances,
7 numeric attributes and 8 classes: cp (143), im (77), pp (52), imU (35), om
(20), omL (5), imL (2) and imS (2) (the number in parentheses is the number of
instances belonging to that class). The Yeast dataset contains 1462 instances, 8
attributes and 10 classes: CYT (463), NUC (429), MIT (244), ME3 (163), ME2
(51), ME1 (44), EXC (37), VAC (30), POX (20) and ERL (5).

As stated in Section 1, different techniques produce various results. Our ex-
periments focus on three commonly used methods: decision tree (C4.5) [10],
k-nearest neighbor (kNN) [11,12], and seeded k-means (SkM) [6]. Based on our
own observations, the generic k-means did not produce better results than SkM.
Hence, we only show SkM’s results. In addition, when there are missing class
labels in the training data, SkM cannot be used directly because the number
of seeds it picks is equal to the number of distinct class labels in the training
dataset. To get around this issue, we propose two variations of SkM: SkMr and
SkMd. When there are missing class labels, SkMr chooses the rest of cluster cen-
ters randomly (as with the basic k-means) and SkMd chooses the rest of cluster
centers by picking the seed with largest Euclidean distance to the chosen cluster
centers, randomly choosing the seed if there are multiple candidates.

Both C4.5 and kNN were used in [13] to classify Ecoli and Yeast datasets,
where it was reported that the two classification techniques are most effective
for these datasets. We choose the same k values (for kNN) as those used in [13].
First, the training data and test data are generated using Weka [14] to create the
stratified n-fold cross-validation. Since we are interested in the situation when
little training data is available, we use one fold of data as the training data to
build the classifier and n-1 folds of data to test the classifier. In order to fairly
compare the clustering techniques with the classifiers, only the test data are used
to estimate the accuracy (or precision) and confusion matrices.

Fig. 1 shows the results for Ecoli dataset. Fig. 1 (a) is related to the orig-
inal Ecoli dataset, and it presents the accuracy changes with the number of
data samples varying from 16 to 168 (or 5% to 50%). Each error bar indicates
maximum, minimum and average values. Note that the label J48 in the fig-
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(e) Ecoli 10% training data (f) Ecoli 10% training data with
missing classes

Fig. 1. Ecoli dataset: Accuracy is computed based on test data only. Subfigures (a) and
(b) indicate overall accuracy of each algorithm, and the error bars indicate maximum,
minimum and average values across n-1 folds of test data. The rest of subfigures indicate
overall accuracy regarding each individual class.

ure indicates a Java implementation of C4.5. The figure shows when the number
of training data is small, C4.5 and kNN perform worse than SkMd and SkMr. As
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(d) Yeast 1% training data with miss-
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(e) Yeast 2% training data (f) Yeast 2% training data with miss-
ing classes

Fig. 2. Yeast dataset: Accuracy is computed based on test data only. Subfigures (a) and
(b) indicate overall accuracy of each algorithm, and the error bars indicate maximum,
minimum and average values across n-1 folds of test data. The rest of subfigures indicate
overall accuracy regarding each individual class. In addtion, subfigures (d) and (f) are
related to the case where class 8 (VAC), class 9 (POX) and class 10 (ERL) have been
removed from the training data.
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the number of the training data increases, the classifiers outperform both SkMd

and SkMr. This confirms that when training data are adequate, classification
techniques are well suited for the tasks. Since SkMd performs better than SkMr,
we can be certain that the choice of seeds does make a difference in the outcome.

Fig. 1 (c) and (e) present the accuracy in each class with 5% and 10% of the
training data respectively. The figures reveal that the classifiers fail to discover
the rare classes, such as class 6 (omL), class 7 (imL), and class 8 (imS), while
SkMd and SkMr successfully identify class 6 and class 7. For class 5 (om), SkMd

and SkMr substantially perform better than the two classifiers. In particularly,
the SkMd outperforms SkMr in rare classes. Since SkMd chooses the seeds that
are furthest away from the known seeds, it has a higher chance of picking a seed
that is close to the true center of the rare class. SkMr chooses a random seed for
the missing class, this random seed could be actually in a known cluster and is a
bad seed for the missing class. The reason that the classifiers does not perform
well is that when the training data is sparse, the training dataset contains none
or few data items belonging to rare classes.

In order to test the performance when the training dataset does not contain
some rare classes, we remove the most scarce classes from the dataset. In the case
of Ecoli dataset, the data of three classes 6, 7 and 8 are removed. The training
and test data are generated as described before. Then the rare classes are added
back to the test data. Fig. 1 (b)1 shows that the classifiers perform better as the
number of training data increases. Fig. 1 (d) and (f) show that the classifiers fail
to discover any rare classes as expected even when the size of the training dataset
increases. We conclude that SkMd and SkMr outperform classifiers for the rare
classes and that SkMd outperforms SkMr in rare classes. Fig. 2 shows the results
for Yeast dataset indicating similar trends as Ecoli dataset. Particularly, Fig. 2
(d) and (f) show that SkMd outperforms SkMr in class 9 (POX) and class 10
(ERL) but fails to identify class 8 (VAL). In [13], even when the whole dataset
was used to construct kNN classifier, VAL could not be identified. Thus, we
suspect that the training data related to class 8 are too similar to other classes.

4 Entropy-Based Semi-supervised Learning

As discussed in Section 3, when the training dataset is sparse (less than 70 data
samples), seeded k-means can classify data more accurate than C4.5 and kNN
algorithms. In addition, it can also identify more instances that belong to rare
classes. Seeded k-means only utilizes the labeled instances at the initial stage of
the algorithm, so here we propose a novel semi-supervised approach that uses
labeled instances during each execution round to make a more reasonable and
logical choice when assigning a data instance to clusters. We term this new
approach as entropy k-means (EkM).

1 Note that the numbers indicating the sizes of training data are slightly different
between the top two sub-figures. This is because the underlying datasets are modified
slightly to fit our experiments.
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The intuition behind the EkM is shown in Figure 3. In this example, the
broken line circle represents the clusters before one iteration and solid line circle
represents the clusters after the iteration. The distance from the A1

2 to the
center of cluster 1 is more than that of cluster 2. Under the k-means algorithm,
A1 will be assigned to cluster 2. However, since most data in cluster 2 have
class label B and most data in cluster 1 have class label A, it is apparently
more reasonable to assign A1 to cluster 1. Because class labels of some data are
known, we want the data having the same class labels stay in the same cluster
as much as possible. Having this goal in mind, we incorporate entropy into our
decision making process. EkM works as follows: given a small number of data
items having class labels, EkM decides a cluster for a data item based on a score
metric that combines both the distance-based similarity metric and the entropy
of the cluster to which the item is added. The metric is defined as:

sj
i = p · Dj

i + q · Ej
i (1)

Ej
i =

n∑

m=1

−P j
mi lg P j

mi (2)

In Equation 1, sj
i represents the score of data item ti related to the center of

cluster Cj , Dj
i is the Euclidean distance between Cj ’s center and ti; Ej

i is the
entropy of Cj when ti is added. If ti is labeled, Ej

i is calculated, otherwise the
entropy does not change. In Equation 2, P j

mi is the probability a given class

2 A1 has class label A. The subscription is used to identify data element.
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has been assigned to cluster Cj . n is the number of distinct classes in Cj . The
lowest sj

i value indicates ti is assigned to Cj during current iteration, and p, q
are coefficients to adjust the weight between distance and entropy. This score
function determines if the distances to the centers of different clusters are similar,
the cluster having lower entropy will win. Nevertheless, if the distance to a cluster
is very small and adding the data item to this cluster will increase its entropy,
this could indicate that the label actually is not correct. Consequently, EkM will
allow this item to go into a different cluster with the correct class label. We
expect that EkM will perform better in classifying and identifying rare classes.

The distance and entropy can offset each other. Fig. 3 shows a situation where
distance could dominate entropy. A2 and B1 are assigned to cluster 3. Although
we would like the data items having the same labels stay together, the distance
from A2 to cluster 1 is much larger than the distance to cluster 3. The same is
true for B1. In this case, the distance is too large to overcome and entropy has
little impact on the score metric; as a result, B1 and A2 should be assigned to
cluster 3 if we believe Euclidean distance is a good measure of similarity between
objects. On the other hand, if the distance from A1 to cluster 1 is close enough
to that from A1 to cluster 2, the entropy will guide A1 to cluster 1.

Our work is still in preliminary stage, but it did show some promise on cer-
tain datasets. Several issues need to be solved before giving a full evaluation of
EkM: using the score metric, convergence is not guaranteed because EkM is no
longer an EM based algorithm. Also, how to decide the values for p and q (in
equation 1) is another challenge. Our experiments conducted on Ecoli and Yeast
datasets show the magnitudes of distance and entropy are very similar, so we
set p = q = 0.5. In other words, distance and entropy have the same weight in
calculation of the score metric. In general, we think p and q are dataset depen-
dent. Furthermore, overfitting could cause potential problems in identifying rare
classes when using classification techniques. Since our proposed approach is a
combination of classification and clustering, our approach might be less likely to
cause overfitting. We will investigate this issue extensively in the future.

Another issue is that using this as an enhancement on k-means only affects
the center of the cluster. In reality, clusters may have different sizes or shapes;
using the (limited) class data to adjust size/shape of clusters as well as the cen-
ter would have even greater promise. We have started with a k-means basis due
to the success of k-means clustering in our problem domain, but K-means algo-
rithm assumes that K is known in advance, which may not be true for biological
applications. (e.g., the number of types of mutants are not known). Density-
based and hierarchical clustering algorithms are more suitable. We believe the
entropy-based idea can be used to guide density-based or hierarchical clustering
as well. The difficulty is to avoid over-reliance on the known data (leading to
the same problem of not recognizing rare classes that standard classifiers face),
while still getting full benefit. The simplicity of k-means makes this less of a
problem; further research is needed to see how this can affect other techniques.
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5 Conclusion / Future Work

We have shown that when rare classes have few instances or are completely
missing in the training data, classification techniques using this training data
perform poorly to identify rare classes. We also showed seeded k-means can be
adopted in our problem domain, but the choice of seeds makes a difference. In
the future, we will systematically and theoretically investigate the best ways to
choose these seeds. Under the semi-supervised learning framework, we proposed a
novel idea that incorporates entropy into the score metric to guide the clustering
process. The preliminary results show some promise in identifying rare classes,
and we will thoroughly investigate this idea and apply it to a real application in
cell wall genomics. Since many clusters in biological data do not have a spherical
shape, we will extend this idea into density-based clustering techniques.
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