
CERIAS Tech Report 2007-38

NEW DESIGNS FOR IMPROVING THE EFFICIENCY AND
RESILIENCE OF NATURAL LANGUAGE WATERMARKING

by Mercan Karahan Topkara

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

NEW DESIGNS FOR IMPROVING THE EFFICIENCY AND RESILIENCE OF

NATURAL LANGUAGE WATERMARKING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mercan Karahan Topkara

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2007

Purdue University

West Lafayette, Indiana

ii

To my mom Nuriye (anneme), my dad Mustafa (babama), and my brother

Çag̃rı(karde sime) for the love and support, and to the strong women in my family

(anneanneme, babaanneme, halalarima, teyzelerime ve yengelerime) for the

inspiration...

iii

ACKNOWLEDGMENTS

Thanks to Mikhail J. Atallah (for being the strongest inspiration and for the

laughs and the great stories); Cristina Nita-Rotaru (for believing in me when I

needed it the most, and for caring); Edward J. Delp (for the great support, for the

Viper lab where I first learned what a lab group means, and for introducing me to

the watermarking community); Giuseppe Riccardi (for creating the first push that

taught me how to walk as a scientist, and raise my voice); Dilek Hakkani-Tür (for

being there when it all started, for encouraging me to do a research internship which

changed the way I look at many things). Thanks to you all for actively serving on my

PhD committee. Thanks to Cuneyt Taskiran (for always energizing me and killing

the inertia in me, and for teaching me how to write a scientific paper), and Eugene

T. Lin (for the smiling face and the calm voice when I panicked the most). Thanks

to all of the above names for the great mentoring.

Thanks to Turkish Student Association for being my big family away from home,

for the food, and the laughs.

Thanks to my friends for keeping me sane and making me believe that I am

alive: Burak Bitlis, Ilter Saygin, Ferit Erin, Ali Kumcu, Mehmet Derya Arikkan, Ilke

Mollaoglu, Irem Zeynep Yildirim, Mehmet Koyuturk, Gunnur Karakurt Koyuturk,

Sibel Sayili-Hurley, and Sinem Senol. To the Turkish folk dance team for sharing

all the excitement, and for dancing in front of a big crowd hand in hand: Eda

Unlu, Emre Unlu, Celeste Akin, Derya Akin, Deniz Akin, Demir Akin, Irem Zeynep

Yildirim, Ilter Saygin, Tamer Cakici, Levent Ergun, Umut Topkara.

Thanks to my fellow CS graduate students Sundararaman Jeyaraman, Ronaldo

A. Ferreira, Asad K. Awan, Hyojeong Kim, Jing Dong, and David Zage for being

great friends, and for being there when I needed to talk to someone.

iv

Thanks to William J. Gorman, Amy J. Ingram, Renate Mallus, Janice Thomas,

Debbie Frantz and Tammy Muthig for being very good in their job, for helping me

in many things that seem too hard without their help, for being very understanding,

and making me feel like a part of a family in the department.

Many thanks to Umut Topkara for the love, the joy, the support, and the friend-

ship; for sharing the adventure of life; for always encouraging me to believe that I

can achieve everything I want; and for being the person he is.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1 Introduction . 1

1.1 Natural Language Watermarking . 2

1.2 Equmark: Natural Language Watermarking through Robust
Synonym Substitution . 9

1.3 MarkErr: Information Hiding through Lexical Errors 12

1.4 Enigmark: Sentence Level Watermarking using Orthogonal Features . 13

1.5 Contributions of this Dissertation . 15

1.6 Organization of this Dissertation . 18

2 Background on Information Hiding and Natural Language Processing . . . 20

2.1 Information Hiding . 21

2.1.1 Overview of Steganography 21

2.1.2 Digital Watermarking . 26

2.2 Statistical Natural Language Processing 30

2.2.1 Statistical Language Models 40

2.3 Technical Challenges in Building a Natural Language Watermarking
System . 43

3 Lexical Natural Language Watermarking: Equmark and MarkErr 46

3.1 Equmark: Information Hiding through Robust
Synonym Substitution . 47

3.1.1 The General Framework of Equmark 48

3.1.2 Synonym Substitution Based Watermarking System 51

3.2 MarkErr: Information Hiding through Errors 56

vi

Page

3.2.1 Computationally Asymmetric Embedding with
Typographical Errors . 62

3.2.2 Watermarking with Typographical Errors 64

3.2.3 Steganography with Typographical Errors 70

3.2.4 Experiments of MarkErr . 73

3.2.5 Related Work for MarkErr . 75

3.3 Summary . 79

4 Sentence Level Natural Language Watermarking: Enigmark 81

4.1 Algorithm for Multiple Feature Based Information Hiding 82

4.2 Sentence Level Watermarking . 88

4.2.1 Selection of sentences . 89

4.2.2 Embedding . 89

4.3 System Implementation and Experiments 90

4.3.1 Sentence Level Linguistic Transformations 99

4.3.2 Resilience Discussion . 101

4.4 Evaluation of Natural Language Watermarking 101

4.4.1 Evaluation of Perceptibility 102

4.4.2 Evaluation of Robustness . 105

4.4.3 Evaluation of Capacity . 107

4.5 Summary . 108

5 Improving Stealthiness by Adaptive Embedding 110

5.1 General Framework for Adaptive Embedding 112

5.1.1 Hierarchical Representation of the Cover-Document 113

5.1.2 Advantages of the Hierarchical Representation 114

5.1.3 The Protocol . 116

5.1.4 The Upper Bound on Detectability: A Complexity Analysis . 119

5.2 Experimental Results for Adaptive Embedding 122

5.3 Summary . 129

vii

Page

6 Applications of Information Hiding to Private Communication and Defense
against Phishing . 131

6.1 Watermarking for Private Communication: WaneMark 131

6.2 Watermarking for Phishing Defense: ViWiD 134

6.2.1 Related Work on Defense Against Phishing 139

6.2.2 Proposed Approach . 145

6.2.3 Experimental Setup and Results 148

6.2.4 Security Analysis and Discussion 151

6.2.5 Summary . 153

7 Previous Work in Information Hiding into Natural Language Text 155

7.1 Previous Approaches to Natural Language Steganography 155

7.1.1 Using Probabilistic Context-Free Grammars to Generate Cover
Text . 156

7.1.2 Information Embedding through Synonym Substitutions . . . 156

7.1.3 Generating Cover Text using Hybrid Techniques 159

7.1.4 Translation Based Steganography 159

7.2 Previous Approaches to Natural Language Watermarking 160

7.2.1 Synonym Substitution Based on Quadratic Residues 160

7.2.2 Embedding Information in the Tree Structures of Sentences . . 160

7.2.3 Linguistically Analyzing the Applicability of Sentence Level
Transformations for Natural Language Watermarking 162

8 Conclusion . 164

LIST OF REFERENCES . 165

VITA . 174

viii

LIST OF TABLES

Table Page

2.1 Properties of some of the well known corpora 34

2.2 Wordnet2.0 Database Statistics . 35

2.3 Some common syntactic transformations in English. 36

2.4 Properties of commonly used syntactic parsers that are freely available. . 39

4.1 The cumulative evaluation of performance of the presented system on di-
rect conversion from English back into English sentences. 1804 sentences
from Reuters corpus are used. 96

4.2 Review of linguistics transformation success on the dataset of 1804 sen-
tences from Reuters corpus. 99

5.1 Classification results. 128

ix

LIST OF FIGURES

Figure Page

1.1 A generic natural language watermarking system 8

1.2 Equmark System Diagram . 11

1.3 MarkErr System Diagram . 14

1.4 Enigmark System Diagram . 16

2.1 Glance at Information Hiding . 20

2.2 An example sentence from the Penn Treebank. 32

2.3 An example sentence from the Penn Treebank. 33

2.4 Dependency tree for the sentence, “Pierre Vinken, 61 years old, will join
the board as a nonexecutive director Nov. 29.” 38

2.5 Components of a typical natural language generation system. 41

2.6 An example of text paraphrasing using a finite-state approach 42

3.1 A sample watermarked version of the first three sentences of Section 3.2.
This text is carrying 16 bits, and changed words are shown in bold font. 73

3.2 An example of applying proposed steganography techniques on the first
three sentences of Section 3.2. This text is carrying 16 bits, and changed
words are shown in bold font. 74

4.1 A sample sentence taken from the Reuters Corpus. Its publication day is
8th of January 1997. 90

4.2 Syntactically parsed sentence, output of XTAG Parser on the sentence
given in Figure 4.1 . 91

4.3 Sentence Dependency Structure, output of XTAG. See Figure 4.4 for a
depiction of this tree. 91

4.4 Depiction of the dependency tree in Figure 4.4 for the sentence in Fig-
ure 4.1. 91

4.5 Sentence dependency structure for the watermark carrying sentence in
Figure 4.8 generated by passivization process. 92

x

Figure Page

4.6 Partial DSyntS format for the watermark carrying sentence shown in 4.8.
This is generated by the result of using the original sentence’s XTAG
parse output and the dependency tree generated by the passivization
transformation(shown in Figure 4.5). 92

4.7 Final DSyntS format for the watermark carrying sentence shown in 4.8,
generated by the passivization process when the dsynts file in Figure 4.6
is given. 93

4.8 Watermarked version of the sample sentence in Figure 4.1. In this exam-
ple, passivization is used for watermarking. 93

4.9 The DSyntS format generated for the sentence in Figure 4.1, if it was
directly processed by conversion process without any transformation pro-
cess’ interference. 94

4.10 A schema of the system that is being developed and tested for the baseline
evaluations of the proposed sentence-level natural language watermark-
ing system. This implementation extracts features, generates parse and
derivation trees with XTAG parser and uses RealPro for surface realization. 98

5.1 Hierarchical representation in the form of a quad-tree for a two-dimensional
stego-document. Lower levels of the tree correspond to finer partitioning
of the cover object. 114

5.2 Example of how the hierarchical representation efficiently keeps track of
the changes done in the cover document for the one-dimensional case. . 119

5.3 Three basic types of regions at a fixed height h of a quad-tree T that are
used to decompose any arbitrary region at this height. 120

5.4 Decomposition of a type R1 region . 122

5.5 A sample cover image. 125

5.6 Variances of elementary blocks of the sample image. Higher values are
represented by lighter regions. Note that variance values are inversely
proportional to detectability. 125

5.7 Initial suitability map for sample image. The regions shown in white are
the ones that are labeled as unsuitable for embedding. 126

5.8 Final suitability map for sample image. The regions shown in white are
the ones that are labeled as unsuitable for embedding. 126

5.9 Error of RS-Analysis for the green channel using LSB embedding only
and using LSB embedding with hierarchical protocol 127

xi

Figure Page

5.10 Error of RS-Analysis for the red channel using LSB embedding only and
using LSB embedding with hierarchical protocol 127

5.11 Difference of cover image and stego image generated using LSB embed-
ding only . 128

5.12 Difference of cover image and stego image generated using LSB embed-
ding with hierarchical protocol . 129

6.1 A generic login page with a watermarked logo image, scaled to half of its
original size for space requirements. 145

6.2 Logo images watermarked with ImageMagickTM : (a) time only water-
mark (b) watermark with both time and mnemonic, in this image the
mnemonic is Kakkajee. 147

6.3 Logo images watermarked with ImageMagickTM using various p values . 149

6.4 Logo images watermarked with ImageMagickTM parameter p = 0.40 (a)
a white background and (b) a dark background 151

6.5 Logo images watermarked with Mohanty et al.’s watermarking algorithm
(a) a white background and (b) a dark background 152

6.6 Logo images watermarked with modified version of Mohanty et al.’s wa-
termarking algorithm (a) Time only watermarked logo image (b) Water-
marked logo image with Time and Mnemonic 153

xii

ABSTRACT

Topkara, Mercan Karahan. Ph.D., Purdue University, August, 2007. New Designs
for Improving the Efficiency and Resilience of Natural Language Watermarking.
Major Professors: Mikhail J. Atallah, and Cristina Nita-Rotaru.

Contributing our own creativity (in the form of text, image, audio, and video) to

the pool of online information is fast becoming an essential part of online experience.

However, it is still an open question as to how we, as authors, can control the way

that the information we create is distributed or re-used.

Rights management problems are serious for text since it is particularly easy for

other people to download and manipulate copyrighted text from the Internet and

later re-use it free from control. There is a need for a rights protection system that

“travels with the content”. Digital watermarking is a mechanism that embeds the

copyright information in the document. Besides traveling with the content of the

documents, digital watermarks can also be imperceptible to the user, which makes

the process of removing them from the document challenging.

The goal of this thesis is to design practical and resilient natural language wa-

termarking systems. I have designed and implemented several natural language

watermarking algorithms that use the linguistic features of the cover text in order

to embed information. Using linguistic features provides resilience through making

the message an elemental part of the content of the text, and through the judicious

use of ambiguity in the usage of natural language and richness of features of natural

language constituents. In this thesis, I propose several practical and resilient natural

language watermarking systems for a variety of genres of text (short, long, edited

and cursory text) and analyze their resilience and feasibility.

xiii

Significant by-products of this research are as follows: a protocol for improving

the stealthiness of information hiding systems; systems for using the proposed in-

formation hiding mechanisms to solve the problems of private communication and

phishing defense; analysis of the evaluation methodologies and detection techniques

for information hiding systems that use natural language text as cover.

1

1. INTRODUCTION

Even though being able to search and access immense amount of knowledge online

has become a part of everyday life, the owner or the authors of digital text do not

have control on how their data is distributed or re-used. Rights management pose a

serious problem for text, since it is easy for any user to download copyrighted text

and re-use it free from control.

There is a need for a rights protection system that “travels with the content”,

i.e., a technology that can protect the content even after it is decrypted, or after the

digital signature is separated from the document in some other way. In this thesis,

we investigate the ways of solving the rights protection problem for natural language

text by using digital watermarking, an information hiding mechanism that embeds

the copyright information within the document. Besides traveling with the content

of the documents, digital watermarks are also imperceptible, making the process of

removing them from the document challenging.

Digital watermarking technology is very well studied and developed for image,

video, and audio. In these environments, imperceptibility of the watermark is

achieved by exploiting the redundancy in the data representation format and the

limitations of the human perceptual system. We cannot directly apply the infor-

mation hiding techniques that were developed, for signal-based domains, to natural

language text. Unlike images, video and audio, natural language has a discrete

nature and follows syntactical and semantical constraints. Natural language has a

combinatorial syntax and semantics, and the operations on natural language con-

stituents (e.g., phrases, sentences, paragraphs) are constrained by the grammar of

the natural language. In addition, it is very easy for a human to detect differences

between an original and modified version of a natural language text document. This

makes information hiding in general and digital watermarking in particular, very

2

challenging in the context of natural language text and may explain why to date

work in information hiding in natural language text has been scarce.

1.1 Natural Language Watermarking

In this thesis we propose and evaluate techniques for hiding information in nat-

ural language text. Our focus is on using the linguistic features of the sentence

constituents in natural language text in order to insert information (i.e., watermark,

meta-data, fingerprint etc.) [1]. The goal of this work is to design practical and

resilient watermarking systems for natural language text.

This approach is different from techniques, collectively referred to as “text wa-

termarking,” which embed information by modifying the appearance of text ele-

ments, such as lines, words, or characters [2]. Text watermarking, in that context,

is achieved by altering the text format or fonts, such as modifying inter-word and

inter-letter spacing in text. Watermarks inserted by most of these systems are not

robust against attacks based on performing optical character recognition on a scan

of the document, or re-formatting a digital version of the document. Text water-

marking based on visual modifications of the digital text documents is outside the

scope of this study.

Publicly available methods for information hiding in natural language text can be

grouped under two branches. The first branch of methods are based on generating

a new text document that will carry a given message. These methods are most

commonly used for steganography where the cover text do not have any value and

the adversary is passive. Spammimic [3] is an example of this first group. These

methods are comparable to automatically generating images, videos or audio files to

carry a given information.

The second branch of methods for information hiding into natural language text

are based on linguistically modifying a given cover document in order to encode a

given message in it. These methods are used for both steganography and water-

3

marking. Natural language watermarking systems fall under this second branch of

methods, where there is also a need for robustness against an active adversary who

is attempting to destroy the mark without destroying the value of the watermarked

document in order to be able to re-use it. In this thesis, we aim to design information

hiding systems that modify a given cover document.

A major challenge in watermarking natural language text is assuring impercep-

tibility (i.e., stealthiness) and preserving the value of the text while being resilient

against attacks from an active adversary. The stealthiness requirements and the

notion of value depend on the genre of the text, on the writer and on the reader

characteristics. The common requirements can be summarized as follows:

• Meaning : The meaning of the text is the most important component that

determines its “value”, and it had to be preserved during watermarking in order

not to disturb the communication. This is not the case for steganography [4],

unless there is a concern of a human warden reading the marked document to

check for the existence of a covert communication.

• Grammaticality : The embedding process should not generate a text that

violates the grammar rules of the language. This is mainly due to preserv-

ing the readability and the meaning of the text. In addition, an information

hiding system will be vulnerable to statistical attacks unless the grammatical-

ity is preserved. Statistical attacks use statistical modeling techniques to find

anamolies in a given object [5]. The aim is to decide whether the object is

carrying hidden information (in case of steganography) and if so, which parts

are used for embedding the message (in case of watermarking).

• Fluency : Fluency is required to represent the meaning of the text in a clear

and a readable way. Preserving the fluency of the document is not a common

concern for steganography.

• Style : Preserving the style of the author is important for certain genres such

as literature writing or newspaper columns. It is also important for robustness:

4

attacks that are based on author detection might be successful in detecting the

information carrying items in the document unless the style is preserved [6].

We base our work on well-established research in the area of statistical Natural

Language Processing (NLP), in order to build a system that can perform fully auto-

matic and stealthy information hiding in natural language text without destroying

the value of the original text.

Compared to other media, natural language text presents unique challenges for

information hiding. These challenges require the design of a robust algorithm that

can work under the following constraints: (i) low embedding bandwidth, i.e., number

of sentences is comparable with message length, (ii) not all transformations can be

applied to a given sentence or a word (iii) the number of alternative forms for a

sentence or a word is relatively small, a limitation governed by the grammar and

vocabulary of the natural language, as well as the requirement to preserve the style

and fluency of the document. In addition, almost all of the linguistic transformations

defined at sentence level are reversible, which make natural language watermarking

systems at this level vulnerable to removal attacks. The adversary can also permute

the sentences (i.e., the information carriers), or select and use a subset of them, or

insert new ones; a similar attack is harder to achieve with an image, audio or video

even for tech-savvy users.

The algorithms presented in this thesis are applicable to any language that allows

linguistic transformations on the language constituents (such as synonym substitu-

tion, typographical errors or sentence paraphrasing). For the sake of easy access

to highly accurate off-the-shelf NLP tools and rich data resources, we apply our

algorithms to the English language.

Even though NLP tools are very accurate in performing their isolated tasks (e.g.,

parsing, part-of-speech-tagging), they were not designed for building an information

hiding system. For example, in order to modify a given cover document and re-write

it, we need a robust natural language generation system that can perform text-

to-text generation. Research in generic text-to-text generation systems is recently

5

emerging [7]. During the implementation phase of this thesis there were not any

off-the-shelf generic text-to-text generation systems available. Most of the available

natural language generation systems required the use of a complex input representa-

tion language, or they use application-specific models [7]. For testing the feasibility

of our sentence level watermarking system, we used a natural language generation

system, RealPro, [8] that takes as input a special form of deep sentence structure

representation (i.e., DSyntS). The sentence level watermarking system we propose

will perform better as the accuracy and coverage of NLP tools and resources improve.

Most of the natural language watermarking systems [9–14] and some of the lin-

guistic steganography systems [4,15] that insert the message into a given cover doc-

ument perform the generic steps listed below:

1. Linguistic Analysis : A typical watermarking system needs to get infor-

mation about the syntactic and semantic structure of the given document in

order to be able to perform the embedding transformations. This step includes

either Part-of-Speech tagging [12, 14], syntactic parsing [9, 11, 16] or semantic

analysis [10]. Usually original document is the only input to this step. But,

in a few information hiding systems, training corpus of this analysis system is

part of the secret key and is chosen separately for every session of information

embedding [4].

2. Selection : At this step, the words or sentences that will carry information are

selected. Inputs to this step are the encrypted watermark message, the secret

key and the user parameters. User parameters are usually set by the author

in order to preserve the value of the text such as certain style features. For

example, the author of a meal recipe would not mind changes in the style of

the sentences, but s/he would set the system so that the order of the sentences

are preserved.

3. Embedding : The watermark message is embedded by applying linguistic

transformations. This step varies very widely for every system.

6

4. Generating the surface form : At this step the deep structure is converted

into natural language sentence form. Natural Language Generation (NLG)

is used in some of the systems that make changes to the forms of the words

and linguistic properties of the sentences during the embedding transforma-

tions [16]. For example, use of an NLG system is required when the sentence

“this frank discussion will close this chapter” is converted into “this chapter

will be closed by this frank discussion”. However, NLG is not required when

embedding is performed by a transformation that either reorders the words in

a sentence, inserts new words (without any need for linguistic restructuring)

or removes some words. For example, the following sentence,“In seconds,

Greg made his decision.” can be converted into “Greg made his decision in

seconds.” directly by re-ordering the words [14, 17].

5. Verification of Embedding : As a last step, the newly generated text is

analyzed to make sure that the embedding was successful. This step is usually

performed after each embedding operation. The actual process of verification

depends on the design of the system: in the sentence level watermarking system

we proposed [16], this step consists of feature extraction on the watermarked

sentence and verifying if the features are carrying required selection and embed-

ding values (e.g., the sentence is passive and it has more than one preposition).

T-Lex system [15], a synonym-based steganography system, checks if the sys-

tem successfully replaced the selected word with its synonym that carries the

exact mixed radix code required by the secret message (e.g. the word “won-

derful” is replaced by “fine”). In addition to the automatic verification of the

success of embedding, the author (i.e., the owner of the document) can also be

involved in this step in order to audit the changes: (i) if there are more than

one option for replacing an original sentence or word, the author can pick which

one she/he prefers; (ii) if none of the embedding transformations is applicable

on a sentence or a word, the author can be asked to re-write the sentence or

replace the word.

7

See Figure 1.1 for a sketch of a generic natural language watermarking system.

Digital signatures may seem an adequate solution for rights protection for natural

language text [18]. However, a major drawback of this approach is that digital signa-

tures are “separable from” the documents because they are not part of the content.

Another relevant technology is duplicate detection and document fingerprinting [19].

These methods are limited to detecting duplicates, whereas watermark messages

can carry additional information such as meta-data (except in the case of 1-bit wa-

termarks). Another difference between the capabilities of watermark methods and

duplicate detection methods is that the duplicate detection methods cannot tell who

had the original document first; they just detect duplicates. This is sufficient for the

purpose of detecting plagiarism, but fails short of being useful in applications where

ability to assert priority is essential.

Steganography applications dominate the previous work in information hiding to

natural language text [3,4,15,20]. As mentioned above, in steganography preserving

the meaning is less of a concern than being stealthy against a passive warden. This

relaxation creates room for high bandwidth embedding. The number of publications

in natural language watermarking has been increasing since 2000. To the best of the

author’s knowledge, using sentence-level syntactic transformations for information

hiding (mainly for steganography) in natural language text was first proposed in [21].

When we started this thesis work there were only three papers on natural language

watermarking [9, 10, 22]. First one of these three systems uses ASCII values of

the words for embedding watermark information into text by performing synonym

substitution. This system was vulnerable against random synonym substitution

attacks. Both [9] and [10] modify the deep structure of sentences in order to embed

the watermark message. The first one modifies syntactic parse trees of the cover

text sentences for embedding the watermark message, while the second one uses

semantic tree representations. The last two systems use the same feature (the tree

structure) for both selection and embedding, which results in using two sentences for

embedding 1 bit: first sentence selects, and second sentence (the successor of the first

8

Fig. 1.1. A generic natural language watermarking system

9

in the cover text) embeds the bit. For this reason, they are vulnerable to re-ordering,

insertion, and deletion attacks. Since the exact tree structure is used for embedding

information, a change in one of the sentences has a |M |/n chance of damaging an

embedded bit, where |M | is the message length and n is the number of sentences in

the text. In addition, the second system requires automated semantic parsing and

co-reference resolution, which is a very challenging problem [23]. See Chapter 7, for

more detailed information about previous work in information hiding into natural

language text. We also discuss relevant details of these systems as needed throughout

this document.

Our work overcame most of the above-mentioned drawbacks. A brief introduction

to the three watermarking systems that were developed during this thesis work will

be given in the following sections.

Equmark’s core technology, robust synonym substitution, is explained in detail

in [24]. Robust synonym substitution is used in Equmark to make the natural

language watermarking system more resilient to removal attacks. Details of Equmark

has been published in [12]. We will briefly mention its main principles as these

principles are essential to understand the merits of the other two systems.

1.2 Equmark: Natural Language Watermarking through Robust

Synonym Substitution

Equmark is a lexical watermarking system [12] that achieves good embedding

and resilience properties through synonym substitutions. When there are many

alternatives to carry out a substitution on a word (that was selected as a message

carrier), Equmark prioritizes these alternatives according to their ambiguity, and

uses them in that order. In order to measure the “ambiguity” of a candidate word,

Equmark uses several measures, including the number of senses of that word.

Equmark builds a weighted undirected graph, G, of (word,sense) pairs based on

an electronic dictionary such as Wordnet. Each node in G represents one of the

10

(word,sense) pairs from the given dictionary. An edge between two nodes shows that

they are synonyms. Edge weights show the measure of the similarity between its two

endpoints. There are several metrics defined in NLP literature for measuring the

similarity between two words [25]. See Figure 1.2 for a sketch of how the Equmark

system works.

The algorithm proceeds as follows: A sub-graph, GW , of G is selected using

a secret key. Later, GW is colored in three different colors corresponding to the

one bit information carried by these words, (i.e., they are either carrying a “0”, or

a “1” or they are “non-encoding”). This coloring is performed in a way that the

homographs in the same synonym set get opposite colors. At the embedding time a

similarity metric is used to quantify the distortion, d1, on the meaning of the text due

to the transformations. In addition, Equmark quantifies the estimated distortion,

d2, that will be done by the adversary in case s/he decides to perform random

synonym substitutions on the marked text in order to damage the watermark. The

candidate message carrying word that maximizes d2 while keeping d1 below a user-

set threshold is picked for embedding replacement [12]. While implementing these

distortion metrics Equmark follows the information theoretic principles described

in [26].

The main idea behind the design of Equmark is using Computationally Asymmet-

ric Transformations (CAT) for embedding, where the process can easily be performed

automatically without any time or CPU cost but reversal requires disproportionately

larger computational resources or human intervention. Equmark uses the original

text and the author’s help for deciding on the sense of the words, however the ad-

versary who is willing to un-do the embedding changes will need to perform word

sense disambiguation on a more ambiguous text.

11

Fig. 1.2. Equmark System Diagram

12

1.3 MarkErr: Information Hiding through Lexical Errors

Natural language watermarking traditionally targets grammatical, or even edited

text where preserving the grammaticality and style is one of the main concerns. The

concern for quality of the watermarked text forces systems to perform at a low

embedding bandwidth and to put emphasis on the accuracy of natural language

processing components.

However, a large percentage of daily exchanged digital text is in the form of

e-mails, blogs, text messages, or forums. This type of text is usually written spon-

taneously and is not expected to be grammatically perfect, nor to comply with a

strict style. The freedom from being error-proof and from following a style, creates

an opportunity for improved information hiding. This embedding process does not

create much distraction in the ongoing communication since humans adapt to errors

in this type of text and they are good in spelling correction.

MarkErr [13] uses the typographical errors for embedding information (both for

steganography and watermarking) into a given cover text. For the case of existence

of a passive adversary (i.e., steganography), MarkErr replaces a selected word with

an ambiguous probable typo of it. For example, the word “world” is replaced by

“worod”, which is similar to the words “wood, word or world”. Typos are ambiguous

if they are equally similar to many vocabulary words. The probability of a typo is

calculated by using a model generated by Kernighan et al. [27] using Associated

Press Newswire corpus. MarkErr merges a word and its typos into one set, and uses

these sets in a way that any word from these sets can equally be used to encode the

same bit at a given position.

When an active adversary (i.e., watermarking) is present, MarkErr replaces a

selected word with a probable typo that is also a word in the dictionary, such as

replacing “party” with “patty”. MarkErr increases the sizes of word-sets for the

case watermarking, by merging a word, its synonyms, and their possible typos into

one set. This precaution is taken in order to be robust against an adversary that

13

adds random spelling errors to the text or performs random synonym substitutions.

See Figure 1.3 for a sketch of how MarkErr system works.

1.4 Enigmark: Sentence Level Watermarking using Orthogonal Features

While word-level watermarking techniques provide robustness, high-bandwidth

and ease of use; they suffer from the un-avoidable distortion in the meaning of the

cover text. In addition, unless the embedding process is adjusted to author’s unique

style of vocabulary usage, the style of the text may suffer from the substitutions

made by the watermarking system.

We propose combining the powers of word-level and sentence-level watermarking

techniques by devising a watermarking system, Enigmark [16], that uses orthogonal

features of sentences separately for selection and embedding. The use of orthogonal

features make it possible to embed multiple bits into one sentence depending on the

richness of its features. A simple example of changing a sentence using orthogonal

features is as follows: “I bought milk and cereal from the grocery store” changed

into “I purchased cereal and milk from the grocery store”, where the word “buy” is

replaced with a synonym “purchase”, and the places of words “milk” and “cereal” are

swapped. This way we are able to embed at least 2 bits into this example sentence.

Enigmark generates a feature space for the sentences in the given cover text, and

divides them into two sets: one for selection features and the other for embedding

features. After the feature space is generated, the secret key is used for picking which

features will be used for selection and embedding of each bit.

Enigmark uses a set of sentences to embed one bit. Note that one sentence can

be used for embedding several bits if its part of several sets of sentences, or sets can

have any number of sentences (including 1). Two sentences are in the same set if

they have a common selection feature. Depending on the size of the cover document

the sizes of the sets can be increased to gain robustness.

14

Fig. 1.3. MarkErr System Diagram

15

The algorithm we propose provides a way for using a lower-level (in this case

word-level) marking technique to improve the resilience and embedding properties

of a higher level (in this case sentence-level) marking technique. This is achieved

by exploiting the orthogonality between some of the word-level features and some

of the sentence-level features (i.e., using the word-level marking methods as a sep-

arate channel from the sentence-level methods). See Figure 1.4 for a sketch of how

Enigmark system works.

Enigmark uses Equmark to assign bit values to the words of the sentences in

the cover text (see Section 1.2 for details), and use the value of these bit values for

selection. If need be, the robustness of this selection can be improved by performing

synonym substitution using Equmark, which would come with the cost of damaging

the style and meaning. Embedding features (e.g., the voice of the sentence, or the

number of prepositions in a sentence) are modified using meaning preserving syntac-

tic transformations. The complexity of marking process can be lowered by picking

embedding features that would not require complex sentence analysis such as pars-

ing. Part-of-speech tagging would be enough for evaluating most of the embedding

features.

Unlike Equmark, whose resilience relied on the introduction of ambiguities, Enig-

mark provides more room for tuning to situations where very little change to the

text is allowable (i.e., when style is important and slight changes to the meaning is

not allowed.) and strong robustness is needed (where even one bit change to the

watermark is not tolerable or the channel is very noisy). The drawback of Enigmark

is the need for a rather long text and more complex sentence analysis at embedding

time.

1.5 Contributions of this Dissertation

The focus of this thesis work is designing practical and resilient watermarking

systems for natural language text. We use meaning-preserving linguistic transforma-

16

Fig. 1.4. Enigmark System Diagram

17

tions and statistical natural language processing technology in order to achieve this

goal. Natural language watermarking systems modify a given text in order to embed

the mark, where there is also a need for robustness against an active adversary who

is attempting to destroy the mark without degrading the value of the watermarked

document.

We summarize the main contributions of this thesis work as follows:

• We design practical and resilient natural language watermarking algorithms

that embed the watermark information into the content of the document. In

the meanwhile, we analyze the challenges in and the requirements for building

natural language watermarking systems.

• We design mechanisms to preserve the meaning and the grammaticality of

the cover text while embedding information. Our mechanisms rely on syntax

based linguistic transformations such as synonym substitution, spelling error

injection, or sentence level transformations.

• We design and implement natural language watermarking systems for a several

genres of text, such as edited text and cursory text.

• We design and implement several natural language watermarking architectures

for the algorithms we propose. Our architectures make use of existing natural

language processing tools and resources such as Wordnet [28], XTAG parser [29]

and Realpro [8], as well as new mechanisms that enables compatibility between

these components.

• We quantify the effect (i.e. distortion) of our lexical watermarking systems us-

ing several word-similarity metrics and spelling error models. We evaluate the

coverage of our sentence level watermarking architecture with BLEU metric,

a well known evaluation metric for machine translation. We discuss several

approaches to the evaluation of natural language watermarking systems.

18

• We propose two new applications for watermarking: one for private communi-

cation and another for phishing defense.

1.6 Organization of this Dissertation

Chapter 2: Background on Information Hiding and Natural Language

Processing: This chapter provides the necessary background in information

hiding and natural language processing in order to make the reader more com-

fortable with the terms and concepts related to natural language watermarking.

The main goals of natural language watermarking and the challenges involved

in building a natural language watermarking system are also discussed in this

chapter.

Chapter 3: Lexical Natural Language Watermarking: In this chapter, we

introduce the two systems, Equmark and MarkErr, that perform natural lan-

guage watermarking at the word level.

Chapter 4: Sentence Level Natural Language Watermarking: In this chap-

ter, we propose a rather generic information hiding algorithm, Enigmark, into

natural language text at the sentence level, where the carrier medium and the

adversary model presents unique challenges.

Chapter 5: Improving Stealthiness by Adaptive Embedding: This chapter

presents a new protocol that utilizes a tree-structured hierarchical view of the

cover object and determines regions where changes to the object for embedding

message data would be easily revealed by an attacker, and are thus to be

avoided by the embedding process.

Chapter 6: Applications of Information Hiding: In this chapter, we introduce

two systems we have contributed to during the development of this thesis by

applying watermarking to new problems, namely a private communication and

a phishing defense system that uses watermarking.

19

Chapter 7: Previous Work in Information Hiding into Natural Language

Text: This chapter gives detailed information about existing information hid-

ing systems for natural language text.

Chapter 8: Conclusion This chapter summarizes the contributions of this thesis

work, briefly points out the limitations as well as the future directions of this

work.

20

2. BACKGROUND ON INFORMATION HIDING AND

NATURAL LANGUAGE PROCESSING

This chapter provides the necessary background in information hiding and natural

language processing in order to make the reader more comfortable with the terms

and concepts that are related to natural language watermarking. In addition to

providing this background, and its relevance to natural language watermarking, this

chapter also includes discussions on several new topics that were studied during the

course of this thesis work such as steganalysis for lexical steganography and adaptive

embedding. The main goals of natural language watermarking and the challenges

involved in building a natural language watermarking system are also discussed in

this chapter in Section 2.1.2 and Section 2.3.

Fig. 2.1. Glance at Information Hiding

21

2.1 Information Hiding

Even though Information Hiding is a general term used for a wide range of prob-

lems, in the context of this thesis the term Information hiding refers to “making the

information imperceptible or keeping the existence of information secret” [30]. See

Figure 2.1 for a simple chart of the areas classified under information hiding.

Applications of information hiding include: (i) covert communication, (ii) au-

thenticating the source of an object, (iii) proving or denying ownership on an object,

(iv) controlling distribution and reuse of intellectual property, (v) meta-data binding,

(vi) tamper-proofing, (vii) traitor tracing, (viii) fingerprinting.

2.1.1 Overview of Steganography

The goal of steganography is to send a message M, using a stego object S, in a

covert manner such that the presence of the hidden M in S cannot be discovered

by anyone except the intended recipient. S does not have any value besides carrying

M and hiding the covert communication. S is either generated by altering a given

cover object C or it is generated from scratch using a steganography algorithm (e.g.,

mimic functions [3]). Any type of digital object can be potentially used as a cover.

For example, images, audio, streaming data, software or natural language text have

been used as cover objects.

In steganography, there are two parties, who can exchange digital objects through

a public communication channel, and they would also like to exchange a secret

message M. However, they do not want the existence of this secret communication

to be noticed by others. Hence, they do not want to achieve confidentiality through

encryption, because the exchange of encrypted messages would reveal the existence

of their secret communication. For this reason, they use a steganography algorithm

to embed M into a cover object, C, to obtain a stego-object, S, and exchange S
through the public communication channel.

22

The objective of the adversary, is to construct a method for distinguishing stego-

objects from unmodified objects with better accuracy than random guessing. Attack

methods generally use statistical analysis to examine a suspicious object and search

for characteristics which may indicate that some information has been embedded in

the object. For example, the adversary might be looking for an unusual value in a

characteristic of S. Studies show that such statistical attacks are very successful on

well-known image steganography systems [31–35].

One way to defend against attacks is to inflict as little change to the object as

possible [36–38]. To this end, steganography systems try to minimize changes in the

cover object C when C is converted to corresponding message-carrying stego object

S. Due to their statistical nature, some regions in the cover object experience non-

significant change in their statistics after embedding. These message-carrying regions

will be harder to identify for the adversary. Conversely, some regions will easily

reveal their message-carrying characteristics. For example, in the case of an image

steganography algorithm that uses random bit flipping, message-carrying regions are

easier to identify when the algorithm is applied to smooth regions compared to the

case when it is applied to regions with high texture. In this case a region with natural

noise is more suitable for message embedding than a smooth region.

Statistical Attacks and Countermeasures to Steganography

Steganalysis is the study of methods and techniques to detect and extract hid-

den data in stego-objects that are created using steganography techniques. These

techniques generally introduce some amount of distortion in the stego-object during

message embedding, even though this distortion may not easily be detected by a

human observer. Steganalysis methods aim to exploit this fact by detecting statisti-

cal effects caused by the distortion to distinguish between cover objects and stego-

objects. The challenge of designing a steganography technique is to introduce the

distortion in such a way as to minimize its statistical detectability by steganalysis.

23

One approach, which was taken by early steganography methods, was to try to min-

imize the detectability of data hiding by introducing as little distortion as possible

during embedding. However, as pointed out by Fridrich and Goljan [39], advances

in steganalysis have shown that this approach does not guarantee robustness against

steganalysis.

One of the first practical works on robustness against statistical attacks was [31]

by Pfitzman and Westfeld. This study introduced a statistical attack on stego-

objects. This attack is based on the chi-square test, where the estimated color

histogram distribution is compared with its observed values. Then the chi-square

value, which shows the deviation from the expected values, is used to estimate the

probability that a given image has information embedded in it.

Provos [32] proposed a generalized chi-square attack that is capable of detecting

more subtle changes in stego-objects. He introduced two methods for decreasing the

distortion of the embedding process and for defending against generalized chi-square

attack. A pseudo-random number generator is used to create multiple groups of bit

selection for embedding. The selection that causes the fewest changes to the cover

object is used for embedding. Later, error correction is applied to compensate for

detectability caused by the embedding process. Provos incorporated these ideas in his

steganography system, Outguess, that embeds bits in the LSBs of DCT coefficients

for JPEG images. He used a two-pass algorithm, where bits are embedded in the first

pass and changes are made to coefficients in the second pass to match the histogram

of DCT coefficients of the stego-image with that of the cover image. Since chi-square

attacks rely on the first order statistics of the image, this makes the Outguess system

immune to such attacks.

Westfeld, in his steganography system F5 [40], decrements the DCT coefficient’s

absolute values instead of overwriting the LSBs, in order to defend against chi-square

test proposed in [31]. F5 also uses matrix encoding to restrict the necessary changes

on the cover object to embed the message. Matrix encoding helps to improve em-

bedding efficiency significantly. Embedding efficiency is the ratio of embedding rate

24

and necessary changes per message bit. Besides these, message bits are distributed

over the whole cover image using permutative straddling.

Later a number of steganalysis algorithms successfully attacked these steganogra-

phy systems. Fridrich et al. discuss a general methodology for developing attacks on

steganography systems using the JPEG image format, which is also effective for the

Outguess and F5 system [41]. Their approach is based on the assumption that there

is a macroscopic quantity that predictably changes with the length of the embedded

secret message for a given embedding method. Lyu and Farid [34] propose an attack

that universally works for any steganography system using images. It is based on

higher-order statistical models of natural images, where use is made of a wavelet-like

decomposition to model images and train a classifier with this model. This classifier

is then used for classifying images as a cover image or a stego-image.

Sallee [42] proposed an information-theoretic method for both steganography and

steganalysis. A statistical model of the cover media is used to estimate P̂Xβ |Xα
(Xβ|Xα =

xα) where xβ is the part of the cover object that is used for embedding and xα is the

remaining part which is unperturbed. Then this model is used to select the value

x′
β that conveys the intended secret message and is also distributed according to

estimated P̂xβ |xα
. This steganoghraphy method works for any type of cover media.

Moreover, if this system is used, capacity of a cover medium can be measured using

the entropy of the conditional distribution P̂xβ |xα
for a given xα.

Fridrich et al. in [43] introduced wet-paper codes to provide a mechanism for

embedding throughout the cover text while letting the user to mark several places

in the cover object as untouchable. Wet-paper codes achieve stealthy steganography

by allowing the sender to use an arbitrary selection channel (that inflicts minimum

distortion on the cover object) for embedding a secret message without letting the

receiver know about the selection channel. In [43], Fridrich et al. shows that the

embedding efficiency improves when random linear codes of small codimension is

used as wet-paper codes.

25

For in-depth discussion of other work on steganalysis and steganography tech-

niques the reader is referred to [35] and [44].

Improving Stealthiness by Adaptive Embedding

In [38], we propose a new protocol that utilizes a tree-structured hierarchical

view of the cover object and determines regions where changes to the object for

embedding message data would be easily revealed by an attacker, and are thus to be

avoided by the embedding process. This protocol is designed to work in conjunction

with information hiding algorithms during the process of embedding in order to

systematically improve their stealthiness. It is designed to work with many digital

object types including natural language text, software, images, audio, or streaming

data.

The protocol requires the existence of a heuristic detectability metric which can

be calculated over any region of the cover object and whose value correlates with

the likelihood that a steganalysis algorithm would classify that region as one with

embedded information. By judiciously spreading the effects of message-embedding

over the whole object, the proposed protocol keeps the detectability of the cover

object within allowable values at both fine and coarse scales of granularity. Our

protocol provides a way to monitor and to control the effect of each operation on

the object during message embedding. More detailed discussion about this scheme

is provided in Chapter 5.

Steganalysis on Lexical Natural Language Steganography

The increase in the significance of electronic text in turn creates increased con-

cerns about the usage of text media as a covert channel of communication. These

concerns are especially urgent for text media since it is easier for non-tech-savvy users

to modify text documents compared to other types of multimedia objects, such as

images and video.

26

Since the theory and practice of information hiding into natural language is still

in its infancy, there has been little emphasis in previous literature on testing the

security, stealthiness and robustness of the proposed methods using various attacks.

Natural language steganography methods employ lexical, syntactic, or semantic

linguistic transformations to manipulate cover text and embed a message. In this

section we will focus on a steganalysis method for lexical steganography. Lexical

steganography is based on changing the words and other tokens in the cover text in

order to hide a secret message.

In [45], we proposed a lexical steganalysis system that exploits the fact that

the text manipulations performed by the lexical steganography system, though they

may be imperceptible, nevertheless change the properties of the text by introducing

language usage that deviates from the expected characteristics of the cover text.

This method may be summarized as follows: First, the cover-text and the stego-text

patterns are captured by training language models on unmodified and steganograph-

ically modified text. Second, a support vector machine (SVM) classifier is trained

based on the statistical output obtained from the language models. Finally, a given

text is classified as unmodified or steganographically modified based on the output

of the SVM classifier. The SVM classifiers were previously used successfully for text

classification [46] and were proven to be effective as a universal steganographic attack

when images were used as cover objects [34,47]. The performance of this steganalysis

approach was tested on a lexical steganography system proposed by Winstein [48].

2.1.2 Digital Watermarking

The hidden information in a object can serve several purposes, a common one

is to ensure the genuineness of that information. One way of hiding information is

digital watermarking, a mechanism which allows imperceptible, robust and secure

information embedding directly into original data. Digital watermarking aims to

embed information by modifying original data in a discreet manner, such that the

27

modifications are imperceptible when the watermarked data is consumed and the

embedded information is robust against possible attacks. Digital watermarking is

applied to several types of cover media such as image, video, audio, software, nu-

merical databases and natural language text. Applications of digital watermarking

include content protection, meta-data binding, tamper-proofing and traitor tracing.

Readers are referred to [30, 44] for more in depth information about the general

principles of digital watermarking.

Although it is not very common to sign an image or an audio file after creating

it, signing a natural language text, such as e-mail messages, is very common. There

are many secure e-mail tools such as Privacy Enhanced Mail (PEM), Secure Multi-

purpose Internet Mail Extension (S/MIME) and Pretty Good Privacy (PGP) 1. But,

still the creator or the owner loses control on how the document is distributed after

it is separated from the digital signature. There is a strong need for an alternative or

complement to these methods, a technology that can protect the content even after

it is decrypted or digital signature is separated from the document [30]. Besides

being inseparable from the documents, watermarks are also imperceptible.

More specifically, we would need watermarking for natural language text for the

following reasons:

• Watermarking provides a robust solution when we want to combine meta-data

information with the document in a way that they are not separable. Meta-

data can be the information about the source of the content of the document,

the security level of the document, the creator of the document, the original

physical features of the document i.e. size of the document or the time stamp

on the document. Watermarking will also be better than a header or a footnote

that is separable from the document. We have used a similar idea of combining

the content with a watermark in order to provide a mechanism to authenticate

the owner of a web page to the users of the page [50]. See Chapter 6 for

1A good discussion of certificate based security is provided in [49].

28

a defense system we have build for mitigating phishing attacks using visible

watermarking.

• Fragile watermarking is needed for tamper-proofing. Tamper-proofing is re-

quired when the owner of the document needs to be aware of or prove any

tampering with the document. For example, manuals of nuclear submarines

are in the class of documents where tampering would create highly dangerous

results.

• Since watermarking is imperceptible, it can be used for traitor-tracing. In this

case, the document is marked with a different watermark for each recipient.

This idea was used by Margaret Thatcher, in early 1980s, to find out who was

leaking information about the confidential cabinet documents to the English

press.

• The text document and the digital signature can be separated. After the

signature is removed, there is no information in the content of the document

that can be used for proof of ownership or authentication. Moreover, the

adversary can re-sign the document with his own signature. The document

or the digital signature must carry a time-stamp for resolving a conflict of

ownership in this case.

• It is not always expected from readers to have the capability to verify digital

signatures when they are reading a web page. They may not as well be will-

ing to deal with managing the overhead of approving the owner of a digital

signature in their “leisure Internet surfing”.

Achieving robustness and imperceptibility while embedding information, creates

different challenges for different kinds of data. Throughout the rest of this section,

we will discuss how natural language as an information carrier differs from other

multi media objects that are used for information hiding.

29

We will mainly focus on image watermarking as a representative of watermarking

non-text multimedia data, significant exceptions of audio and video watermarking

will be mentioned at places that apply.

In image watermarking imperceptibility is achieved by exploiting the “redun-

dancy” in images and the limitations of the human visual system. Similar approaches

are used in other multimedia watermarking domains, such as video and audio. On

the other hand, natural language has a syntactical structure that makes such tech-

niques more difficult to apply. Specifically, natural language, and consequently its

text representation, has several important properties that differ from image repre-

sentations.

• Sentences have a combinatorial syntax and semantics. That is, structurally

complex representations are systematically constructed using structurally sim-

ple (atomic) constituents, and the semantic content of a sentence is a function

of the semantic content of its atomic constituents together with its syntac-

tic/formal structure.

• The operations on sentences are causally sensitive to the syntactic/formal

structure of representations defined by this combinatorial syntax. Not ev-

ery embedding operation (linguistic transformation) can be performed on any

given sentence (e.g., it is not possible to passivize a sentence with an intransi-

tive verb: “I run every morning”).

• The number of alternative (transformed) forms for a sentence is relatively small,

a limitation governed by the grammar and vocabulary of the natural language,

as well as the requirement to preserve the meaning, style and fluency of the

document.

• The embedding bandwidth is very low compared to other multimedia domains.

For example, the number of sentences in a typical document are comparable

with the length of a typical watermark message.

30

• The adversary can permute sentences or words, insert new ones or delete some

of the existing ones from the information carrying text. In fact, even a non-

tech-savvy person can perform this kind of attacks on watermarked text.

Images in general do not lend themselves to a syntactical decomposition similar

to the one for language 2.

Besides being perceptible, even small local changes (e.g. randomly swapping the

places of two words) in a sentence can change its meaning and/or make it ungram-

matical. This is not exactly the case in other multimedia domains, where small local

changes will not necessarily effect the meaning or cohesiveness of the document.

Natural language watermarking is not possible without making perceptually sig-

nificant changes to the content of the text (when a machine or a human compares

a cover text and the information carrying version of it, it will be easy for them to

point out the differences). For this reason, non-blind watermarking is extremely vul-

nerable to attacks in natural language watermarking. For example, take the Least

Significant Bit (LSB) embedding used in image watermarking as a rough analog to

synonym substitution technique used for natural language watermarking. When the

user is given the original image and the image watermarked with LSB embedding,

s/he will not be able to tell the difference between the two images by just looking

at it. But it will be easy for the user to tell the difference between the watermarked

and the original copies of the natural language text even when synonym substitution

is used.

2.2 Statistical Natural Language Processing

The techniques developed in the field of natural language processing (NLP) aim

to design algorithms that analyze, understand, and generate natural language auto-

matically. Since some of the NLP terminology and techniques that will be referred to

2Although syntactic approaches to image analysis gained some success in the analysis of some
simple, highly structured images, such as electrical circuits and maps, for the most part they have
been abandoned since they are not robust for natural images [51].

31

in the rest of the thesis (and occasionally referred without definition in the natural

language watermarking and linguistic steganography literature) may not be familiar

to all, in this section we will briefly introduce terms and outline some techniques

and resources used in NLP that are of interest for information hiding in natural lan-

guage text. For an in-depth treatment of the NLP field the reader is referred to [52]

and [53].

Data Resources

Success of an information hiding system depends on obtaining good models of the

cover medium which requires large data sets. A statistically representative sample

of natural language text is referred to as a corpus. Since most of NLP research is

based on statistical analysis and machine learning systems, large corpora in machine

readable form are essential. Therefore, a number of corpora in electronic form have

been created and are commonly used in NLP research to train models or for bench-

marking purposes, many of them are available from Linguistic Data Consortium [54].

Information about some of the frequently used English text corpora are provided in

Table 2.1.

In order to make a corpus more useful for NLP research, the content of it is

usually annotated with metadata. An example of such annotation is part-of-speech

tagging where information about each word’s part of speech (such as verb, noun,

adjective) is added to the corpus in the form of tags. PennTreebank corpus has

three version of sentence: raw, tagged, and parsed. An example from an entry in

PennTreeBank is shown in Figures 2.2 and 2.3

In addition to corpora, there are also electronic dictionaries available that are

designed as large databases of lexical relations between words. The most widely

known such dictionary is Wordnet [28]. In Wordnet English nouns, verbs, adjectives,

and adverbs are organized into synonym sets, each set representing an underlying

lexical concept. There are also several semantic relations that link the synonym

32

Raw sentence (taken from Reuters Corpus):

‘‘The House voted to boost the federal minimuma wage for the first time

since early 1981, casting a solid 382-37 vote for a compromise

measure backed by President Bush.’’

Tagged with Penn Treebank Part-of-Speech Tags and marked noun phrases:

[The/DT House/NNP]

voted/VBD to/TO boost/VB

[the/DT federal/JJ minimum/JJ wage/NN]

for/IN

[the/DT first/JJ time/NN]

since/IN

[early/JJ 1981/CD]

,/, casting/VBG

[a/DT solid/JJ 382-37/CD vote/NN]

for/IN

[a/DT compromise/NN measure/NN]

backed/VBN by/IN

[President/NNP Bush/NNP]

./.

Fig. 2.2. An example sentence from the Penn Treebank.

33

Parsed Sentence:

((S (NP-SBJ-1 The House)

(VP voted

(S (NP-SBJ *-1)

(VP to

(VP boost

(NP the federal minimum wage))))

(PP-TMP for

(NP (NP the first time)

(PP-TMP since

(NP early 1981))))

,

(S-ADV (NP-SBJ *-1)

(VP casting

(NP (NP a solid 382-37 vote)

(PP for

(NP (NP a compromise measure)

(VP backed

(NP *)

(PP by

(NP-LGS President Bush)))))))))

Fig. 2.3. An example sentence from the Penn Treebank.

34

Table 2.1
Properties of some of the well known corpora

Name of the Corpus Size (app.) Properties

Brown 1,000,000 words American English

15 different categories of text

printed in 1961 (balanced corpus)

Lanchester-Oslo-Bergen 1,000,000 words British English counterpart

of the Brown corpus

Susanne 130,000 words Freely available subset

of the Brown corpus

Wall Street Journal 40,000,000 words American English financial news

articles from 1987 to 1993

Reuters 810,000,000 words British English

810,000 articles printed

from 1996 to 1993

Penn Treebank II 1,000,000 words Parsed sentences of

1989 Wall Street Journal articles

sets in WordNet such as “is-a-kind-of”, or “is-a-part-of” relations. The content of

Wordnet is summarized in Table 2.2 [52].

VerbNet [55] is another electronic dictionary which is a verb lexicon with syn-

tactic and semantic information for English verbs, using Levin verb classes [56] to

systematically construct lexical entries.

Linguistic Transformations

In order to embed information in a given natural language text, a systematic

method for modifying or transforming the content of the text is needed. These

transformations should preserve the grammaticality of the sentences to be robust

35

Table 2.2
Wordnet2.0 Database Statistics

Category Unique Strings Number of Senses

Noun 114648 141690

Verb 11306 24632

Adjective 21436 31015

Adverb 4669 5808

Total 152059 203145

against statistical attacks. Ideally, we also require that the differences in sentence

meaning caused by such transformations should be imperceptible, in order not to

interfere with the readers’ experience and to be stealthy against a human warden.

Three types of linguistic transformations are commonly used for modifying a given

text: i) lexical transformations, where words are substituted for synonyms [12,13,15],

ii) syntactic transformations, where the syntax of sentences are modified [9, 11, 14,

16, 57], iii) semantic transformations, where the meaning structure of the sentences

are transformed [10].

Lexical transformation (especially the synonym substitution) is the most widely

used linguistic transformation for information hiding systems [12,15]. The Wordnet

electronic dictionary is commonly used for this task. The challenge in using synonym

substitution is determining the correct sense (i.e., meaning) of the word to be sub-

stituted so that the meaning is preserved during embedding [58]. For example, the

noun “bank” has 10 different senses listed in Wordnet, including depository financial

institution, sloping land, and a flight maneuver. Determining the correct sense of a

given word from context, referred to as the word sense disambiguation task in NLP,

is a challenging problem in general [59].

Syntactic transformations, such as passivization and clefting, change the syntactic

structure of a sentence with little effect on its meaning [17]. Some of the common

36

Table 2.3
Some common syntactic transformations in English.

Transformation Original sentence Transformed sentence

Passivization The slobbering dog kissed ⇒ The big boy was kissed

the big boy. by the slobbering dog.

Topicalization I like bagels. ⇒ Bagels, I like.

Clefting He bought a brand new car. ⇒ It was a brand new

car that he bought.

Extraposition To believe that is difficult. ⇒ It is difficult to

believe that.

Preposing I like big bowls of beans. ⇒ Big bowls of beans

are what I like.

There-construction A unicorn is in the garden. ⇒ There is a unicorn

in the garden.

Pronominalization I put the letter in ⇒ I put it there.

the mailbox.

Fronting “What!” Alice cried. ⇒ “What!” cried Alice.

syntactic transformations in English are listed in Table 2.3. Many natural language

watermarking methods use syntactic transformations for embedding [9, 14, 16, 57]

The third type of linguistic transformation that has been used for natural lan-

guage watermarking is semantic transformation. These transformations are based

on the semantic (i.e., meaning) relations among the words. The semantic relations

usually span several sentences. One way of performing a meaning-preserving se-

mantic transformation is using noun phrase coreferences [10]: two noun phrases are

coreferent if they refer to the same entity. Based on the coreference concept different

transformations may be introduced. One such transformation is coreferent pruning,

where repeated information about the coreferences is deleted. The opposite of this

37

operation is coreferent grafting where information about a coreference is intention-

ally repeated in another sentence, or extra information about this concept is added

to the text using a fact database. As an example of these semantic transformations,

consider the following news story.

Yet Iceland has offered a residency visa to ex-chess

champion Bobby Fischer in recognition of a 30-year-old

match that put the country on the map. His historic win

over Russian Boris Spassky in Reykjavik in 1972 shone the

international spotlight on Iceland as never before.

The focus of the analysis is the reference item “‘Bobby Fischer”. Pruning is

applied to the first sentence and the extracted information is used to perform a

substitution at the second sentence. The modified text is given below.

Yet Iceland has offered a residency visa to Bobby Fischer

in recognition of a 30-year-old match that put the country

on the map. Ex-chess champion’s historic win over Russian

Boris Spassky in Reykjavik in 1972 shone the international

spotlight on Iceland as never before.

One challenge in using the semantic transformations is performing accurate coref-

erence resolution, which is one of the hardest tasks in NLP [23]. Furthermore, two

phrases may be coreferent but may have different connotations; in these cases they

cannot be substituted without significantly altering the semantic structure of sen-

tences. The phrases Spiderman and Peter Parker in the following sentences illustrate

such a case.

Spiderman just saved us from death.

Peter Parker just saved us from death.

Natural Language Parsing

In NLP parsing is defined as processing input sentences and producing some sort

of structure for them [52]. The output of the parsing may either be the morphologic,

syntactic, or semantic structure of the sentence or it may be a combination of these.

38

Parsing is essential to get more information about the sentence structure and the

roles of the constituent words in this structure. Most parsers use part-of-speech

taggers, which categorize words into predetermined classes (such as noun, adjective,

or verb), and morphological analyzers, which break up words into their morphemes

in pre-processing steps. Properties of some of the commonly used parsers are listed

in Table 2.4. Accuracy of the parsers are tested on WSJ corpus. All parsers, except

Link parser, were tested with the standard methodology, where Penn Wall Street

Journal tree-bank sections 2-21 is used for training, section 23 is used for testing

and section 24 is used for development (development and tuning) [60–62]. Link

parser was tested on Switchboard corpus of conversational English. As reported by

Grinberg et al.’s [63], even though only 22% of the sentences were grammatical Link

parser was able to parse all sentences.

Vinken

Pierre

years

61

will board

the

as

director

a nonexecutive

29

Nov.

join

old

Fig. 2.4. Dependency tree for the sentence, “Pierre Vinken, 61 years
old, will join the board as a nonexecutive director Nov. 29.”

The parser output may be viewed as a transformed representation of the given

text. Various transforms used in image data hiding may be used as a simple analogy

to parsing. The input text and the tree relationships produced by the parser are

conceptually similar to the time and frequency domain representations of an image.

There are many tools that can convert phrase structures generated by syntactic

parsers into dependency trees, which illustrate the argument or modifier relation

39

Table 2.4
Properties of commonly used syntactic parsers that are freely available.

Parser Input Format Output Format Accuracy

(≤ 40 words)

Link, 1995 Raw sentence Phrase level parse in

PennTreebank Format NA

Collins, 2000 Sentence with Word level parse in

part-of-speech tags PennTreebank Format 90.1%

Charniak, 2000 Raw sentence Word level parse in

PennTreebank Format 90.1%

XTAG, 2001 Raw sentence Word level parse in

Tree-Adjoining 87.7%

Grammar Format

between words in the sentences [64]. The dependency tree generated for the sentence

“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”

is shown in Figure 2.4.

Word Sense Disambiguation

Word Sense Disambiguation is the process of resolving the meaning of a word,

words with more than one meaning are referred as “ambiguous” words. Homograph

is a more specific linguistic term used for the “ambiguous” words. Two or more words

are homographs if they are spelled the same way but differ in meaning and origin,

and sometimes in pronunciation. For example the word “bank” is a homograph, and

means either a financial institution, the edge of a stream, or a slope in the turn of a

road.

Determining the correct sense of a given word from context, referred to as the

word sense disambiguation task in NLP, is a challenging problem in general [59].

40

2.2.1 Statistical Language Models

A language model (LM) is a statistical model that estimates the prior prob-

abilities of n-gram word strings [65]. Language models were previously used for

steganalysis to generate a model of word usage patterns for unmodified and stegano-

graphically modified text [45]. They can also be used for improving the robustness

of watermarking systems [13].

An n-gram LM models the probability of the current word in a text based on the

n − 1 words preceding it; hence, an n-gram model is a n − 1th order Markov model,

where, given the probability of a set of n consecutive words, W = {w1, . . . , wn}, the

LM probability is calculated using

P (w1, . . . , wn) =
n

∏

i=1

P (wi|w0, . . . , wi−1), (2.1)

where the initial condition P (w1|w0) is chosen suitably.

In the NLP field, the goodness-of-fit of a LM to a given text data is usually

measured using a quantity referred to as the perplexity, rather than using model

entropy, as is common in signal processing. The perplexity for a LM, L, is calculated

using

perplexity(L) = 2−
1
N

∑

log2 P (data|model) (2.2)

Natural Language Generation

The natural language generation (NLG) task is defined as the process of con-

structing natural language output from non-linguistic information representations

according to some communication specifications. NLG maps meaning to text. NLG

process can be divided into three phases [66]:

1. Discourse Planning : To select information and organize it into coherent para-

graphs

41

Discourse Planner

Surface Realizer

Communicative Goal Knowledge Base

Natural Language
Output

Discourse
Specification

Fig. 2.5. Components of a typical natural language generation system.

2. Sentence Planning : To choose words and structures to fit information into

sentence-sized units

3. Surface Realization : To determine surface form of output including word order,

morphology and final formatting or intonation

The input to NLG systems varies according to the domain specified by the NLG

tool. The components of a typical NLG system are illustrated in Figure 2.5. A good

example of a fully functional NLG system is the Forecast Generator (FOG) [67], a

weather forecast system that generates bilingual text in English and French. This

system takes raw meteorological data and generates weather forecasts. There are

several fully implemented NLG systems freely available for research purposes [68].

As far as NL information hiding is concerned, NLG is a crucial component. After

information is added to a sentence by modifying its structural representation, this

altered representation needs to be converted back to natural language using NLG

42

systems. NLG systems also play a crucial part in natural language steganography

systems as cover text generation mechanisms.

12

twelve

people

persons were killed

died

Merge

Linearization

Tree 1 Tree 2

Parse Forest

FSA / Word Lattice

BEG END

+

S

NP VP

CD
12

NN
persons

AUX
were

VP

VB
killed

S

NP VP

CD
twelve

NN
people

VB
died

NP VP

CD NN
AUX VP

VB

12

twelve

people

persons

...
were

...
killed

...
died

Fig. 2.6. An example of text paraphrasing using a finite-state approach

43

Natural Language Paraphrasing

The task of text paraphrasing entails changing text parameters such as length,

readability, and style for a specific purpose without losing the core meaning of the

text. Therefore, text paraphrasing is directly related to NL watermarking. Text

paraphrasing is also similar to machine translation; however, rather than converting

text from one language to another, it is modified from one form to another within

the same language. Paraphrasing systems are mainly based on creating or collecting

sets or pairs of semantically equivalent words, phrases, and patterns. For example,

the sentences
After the latest Fed rate cut, stocks rose across the board.

Winners strongly outpaced losers after Greenspan cut interest rates

again.

form such a semantically related pair. Such training sentence pairs may be lo-

cated in news stories covering the same event by using multiple sequence alignment

techniques [69].

After the system is trained, given a sentence, it is possible to create a paraphrase

using the best matching template pair. An example of text paraphrasing using a

finite-state approach [70] is shown in Figure 2.6(c).

2.3 Technical Challenges in Building a Natural Language Watermarking

System

Natural Language Processing (NLP) techniques are used for analyzing a natural

language text, modifying it, or generating a new text for a given deep structure.

NLP techniques are needed for all steps of embedding information into a given text,

and in most cases NLP is also needed for extracting the message. Natural language

analysis tools have to be accurate and consistent over time in generating the infor-

mation vital for the functioning of the information hiding systems. One challenge

for natural language analysis is the problem of ambiguity, which results in multi-

44

ple interpretations. The following are commonly used examples of ambiguity at the

lexical, syntactic, and semantic levels, respectively:

• Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo. (This is a gram-

matical sentence, where word buffalo is used in the same sentence with its

different senses. It means that [Those] buffalo(es) from Buffalo [that are in-

timidated by] buffalo(es) from Buffalo intimidate buffalo(es) from Buffalo. [71])

• I saw a woman with a telescope. (The prepositional phrase can be attached to

both the noun phrase or the verb phrase in the syntactic structure.)

• Iraqi head seeks arms. (The word head can be interpreted as ‘chief’ or ‘body

part’ and arms can be interpreted as ‘weapons’ or ‘body parts’, respectively.)

Large amount of data is required to be able to build models that disambiguate

generic natural language sentences.

Another challenge for NLP research is the flexibility and variety of language

usage. For example, the vocabulary used in one domain (e.g. sports) varies highly

from the vocabulary used in another domain (e.g. finance). Another example is the

change in the complexity of the grammatical construction, the syntactic structure

of the sentences in a Jane Austen novel is much more complex than the syntactic

structure of the sentences in a typical news wire article.

The ultimate goal of NLP systems is to be able to process any natural language

input. However, as a result of ambiguity and data coverage, the state-of-the-art

tools’ accuracies vary widely with the type of analysis. For example, for part-of-

speech tagging of English, the best accuracy is around 98% for a given domain [72],

for syntactic parsers the accuracy based on labeled precision and recall is around

91% [62].

These inaccuracies are limiting the bandwidth of information hiding. In the case

of sentence level watermarking, certain sentence forms or contents that can not be

accurately parsed or generated are avoided, or more sophisticated transformation

rules are engineered to overcome these in-capabilities.

45

Note that, the inaccuracies in NLP tools are not always against the aims of

information hiding tools. In some cases the in-capabilities of NLP tools are even

used to the benefit of information hiding mechanisms [4, 12]. More information

about these systems is provided in Chapter 3 and Chapter 7.

Another technical challenge involved in constructing a watermarking system, is

the integration of NLP tools. Existing off-the-shelf NLP tools are not designed for

the purpose of being part of a watermarking system. For example, natural language

generation (NLG) tools are designed for specific purposes, such as converting raw

meteorological data into human readable weather forecasts [67] or producing indi-

vidual letters out of questionnaire results. NLG tools that are designed for specific

generation tasks have a limited expression power. Text-to-text NLG is an emerging

area [73]. Powerful NLP tools will make it possible to design more flexible natural

language watermarking systems, since it will relax the restrictions on the selection

of information carrying language constituents and increase the variety of embedding

transformations. Following chapters give more details on the experimental results of

building natural language watermarking systems using existing NLP resources and

tools.

46

3. LEXICAL NATURAL LANGUAGE

WATERMARKING: EQUMARK AND MARKERR

Text can be seen as a combination of units of several sizes from words to full document

sizes, or even groups of documents. Any of these units can be used as an information

carrier while embedding information, as there are several ways to change features of

each: we can substitute a word with its synonym or inject typos in it, or merge some

of them into an acronym; we can re-write phrases or sentences; we can change the

number of sentences in a given paragraph; we can change the style of a document,

or the number of paragraphs in it, or use the coreferences in it to change the flow of

information.

In this chapter, we will introduce two systems that perform natural language

watermarking at the word level. Ideas about one of these systems, Equmark, came

out during the studies of this thesis when we were looking for a way to perform

hard to undo meaning preserving changes on edited text. Equmark achieves good

embedding and resilience properties through synonym substitutions. When there

are many alternatives to carry out a substitution on a word (that was selected as a

message carrier), Equmark prioritizes these alternatives according to their ambiguity,

and uses them in that order. Besides having this one-wayness feature, Equmark

allows the owner of the document to set a distortion threshold. Embedding process

stays within this threshold, while maximizing the expected distortion that has to be

applied by an adversary that is trying to remove the embedding. The second system,

MarkErr, exploits the idiosyncrasies of cursory text in order to embed information.

The challenge in performing embedding through idiosyncrasies is that they are easily

detected and can be undone if the changes are not performed in a stealthy way. We

overcome this difficulty by using spelling errors that convert the original word again

into a word from vocabulary using a human spelling error model as a guide.

47

3.1 Equmark: Information Hiding through Robust

Synonym Substitution

Even though there is a growing interest in information hiding into natural lan-

guage, there has not been much movement in the direction of quantification that

makes possible using the considerable theoretical work on the analysis of the com-

munication channel established by information hiding. To avail oneself of the infor-

mation hiding model proposed by Moulin et al in [26] requires quantification of the

distortion effect of each linguistic transformation. In this work we carry out such

an analysis, using a natural language watermarking system based on a novel twist

on the old idea of synonym substitution. Section 3.1.1 will discuss how we use the

existing information hiding model for the natural language domain.

Equmark is based on improving resilience of synonym substitution based embed-

ding by ranking the alternatives for substitution according to their ambiguity and

picking the one that has maximum ambiguity within the synonyms (subject to not

exceeding the maximum cumulative distortion limit). The encoding is designed in a

way that the decoding process does not require the original text or any word sense

disambiguation in order to recover the hidden message. This system follows the

Kerckhoff’s rule, namely, that the decoding process depends only on the knowledge

of the secret key and public domain information (no “security through obscurity”).

Refer to Section 3.1.1 for a discussion of the model of adversary. The details of the

proposed watermarking system are explained in Section 3.1.2.

Even though we have focused our attention directly on synonym substitution

based watermarking, the analysis and discussions made in this work shed light on

the information theoretic analysis of other systems that achieve information hiding

through approximately meaning-preserving modifications on a given cover text.

Equmark’s core technology, robust synonym substitution, is explained in detail

in [24]. Robust synonym substitution is used in Equmark to make the natural

language watermarking system more resilient to removal attacks. Details of Equmark

48

has been published in [12]. We will briefly mention its main principles as these

principles are essential to understand the merits of the other two systems presented

in this thesis, namely MarkErr and Enigmark.

3.1.1 The General Framework of Equmark

This section discusses the general framework we use, including our model of

the adversary. Where appropriate, we explain how the peculiarities of the natural

language application domain pertain to the framework.

Review of Distortion Quantification

Here we briefly review the general model proposed by Moulin et al in [26] and use

the same notation, as applicable. In this notation, random variables are denoted by

capital letters (e.g. S), and their individual values are donated by lower case letters

(e.g. s). The domains over which random variables are defined are denoted by script

letter (e.g. S). Sequences of N random variables are denoted with a superscript N

(e.g. SN = (S1, S2, ..., SN)).

Natural language watermarking systems aim to encode a watermark message, M ,

into a given source document, SN , using a shared secret, KN , where KN is the only

side information shared between the encoding and decoding processes. The goal of

the encoding process is to maximize the robustness of watermark against possible

attacks while keeping the distortion inflicted on SN during watermarking within

allowable limits. There are two distortion constraints on a given natural language

watermarking system.

The first distortion constraint is introduced to capture the fact that the water-

mark encoding process, fN : SN ×M×KN → XN , has to preserve the “value” of

the source document, while creating the watermarked document XN . Moulin et al

formalizes this constraint as below:

49

∑

sN∈SN

∑

kN∈KN

∑

m∈M

1

|M|p(sN , kN)dN
1 (sN , fN(sN , m, kN)) ≤ D1 (3.1)

where p is the joint probability mass function and d1 is a nonnegative distor-

tion function defined as d1 : S × X → R+. The distortion functions di, where

i ∈ {1, 2}, are extended to per-symbol distortion on N -tuples by dN
i (sN , xN) =

1
N

∑N
k=1 di(sk, xk).

The second constraint denotes the maximum distortion an adversary can intro-

duce on the modified document, Y N , without damaging the document’s “value” for

the adversary. The constraint on the attack channel for all N ≥ 1 is formalized as

below:

∑

xN∈XN

∑

yN∈Y

dN
2 (xN , yN)AN(yN |xN)p(xN) ≤ D2 (3.2)

where AN (yN |xN) is a conditional probability mass function that models an ad-

versary who maps XN to YN , and d2 is the adversary’s distortion function (similar

to d1). The decoder process receives Y N .

For image, video or numeric databases, the space can be modeled as a Euclidean

space and the effect of changes on the objects can be quantified as a continuous

function [26, 74]. However, it is rather hard to model the natural language text

input. The value of a natural language document is based on several properties

such as meaning, grammaticality and style. Thus, there is a need for designing a

distortion function that measures the distortion in these circumstances.

In fact we cannot even talk of a distance in natural language processing, as the

triangle inequality need not be satisfied. For example, both “lead” and “blend” are

synonyms of different senses of the word “go”.

The difference between the word “lead” and the word “go”, and the difference

between the word “blend” and the word “go”, are rather low, whereas the difference

between “blend” and “lead” is high.

50

We cannot use the part of Moulin et al.’s model [26] that assumes a Euclidean

distance, since the triangle inequality does not hold in the natural language frame-

work of our application. However, the other requirements that the difference function

must obey, are satisfied, namely

Boundedness This is the requirement that the distortion is finite. This holds in

our case, because no matter how different two sentences are, our difference

function between them will produce a finite outcome.

Symmetry This is the requirement that d(a, b) = d(b, a). The numbers we use for

differences are weights of edges in an undirected graph (as will become apparent

in section 3.1.2).

Equality This is the requirement that d(a, b) = 0 if and only if a = b. This holds

in our case.

Model of the Adversary for Equmark

Our model of the adversary is one who fully knows our scheme (except the key)

and has the same knowledge and computational capabilities (including automated

natural language processing tools, and access to all the databases used by the en-

coding and decoding processes).

The approximately meaning-preserving changes that we make are in the direction

of more ambiguity, and automated disambiguation is harder for the adversary than

it is for us because we start with a less ambiguous (original) document than the one

in the hands of the adversary (watermarked document). A human, however, is able

to quickly disambiguate when reading the marked text [75].

We carry out substitutions not only for the purpose of encoding the mark in the

text, but also for the purpose of getting as close as possible to the allowable cumula-

tive distortion limit, an idea that was previously suggested in a broader framework

(see [76]). That is, we keep doing transformations even after the mark is embedded,

51

for the sole purpose of accumulating enough distortion to get close to the allowable

limit. This is crucial: The adversary, not knowing the key, does not know where we

carried out the modifications (as that choice is key-based), and trying to “un-do”

them by wholesale application of transformations will cause the adversary to exceed

the allowable distortion limit (because s/he started out close to it in the first place).

In practice the adversary is not limited to synonym substitutions; s/he can also

make meaning-preserving syntactic changes which effect the ordering of words with-

out altering them [1]. The watermarking mechanism can use an auxiliary fixed

syntax with a fixed word order for watermark embedding and detection purposes

(e.g. subject, object, verb).

Note that the adversary in our scheme uses an automated process to attack the

watermark. Our aim is to raise the bar for the cost of removing the watermark

message. In this sense, our scheme can be considered successful if it forces the

adversary to manually process the document for removing the watermark.

3.1.2 Synonym Substitution Based Watermarking System

Whereas previous work in this area typically benefits from progress in natural lan-

guage processing, we propose a watermarking system that benefits from the difficulty

of automated word sense disambiguation, as it increases the adversary’s complexity

of removing the hidden message.

We propose a lexical watermarking system that is based on substituting certain

words with more ambiguous words from their synonym set. Here by ambiguous

word, we mean a word that is a member of several synonym sets and/or has many

senses. The difficulty of the adversary’s task of automated disambiguation is widely

accepted in the natural language processing community.

As also explained in Chapter 2, homograph is a more specific linguistic term used

for the “ambiguous” words; two or more words are homographs if they are spelled

the same way but differ in meaning and origin, and sometimes in pronunciation.

52

We have implemented our system to consider the words with more than one sense

as homographs, and only homographs within a synonym set are considered as the

target words for synonym substitution.

An example of what our system does carry out today is when we encounter the

word “impact” as a verb in our cover text: We will find that it is a member of {affect,

impact, bear upon, bear on, touch on, touch} synonym set. Let’s assume that the

verbs “affect” and “touch” are possible alternatives for replacing the verb “impact”

(they both carry the same bit). Our system favors replacing the word “impact” with

the word “touch” over the word “affect”, because the expected distortion that will

be imposed by the verb “touch” on the adversary, E(d2(touch; impact, s2)), is higher

than the expected distortion, E(d2(affect; impact, s2)), that will be imposed by the

verb “affect”. E(d2(wc; wo, so)) is the average difference of every sense of watermark

carrying word, wc, to the original (word,sense) pair, (wo, so).

In our scheme, more information is available about the sense (meaning) of the

words at the watermark embedding time, since the original document and the author

is available. The watermarking process presented here, replaces as many as possible

words with one of the homographs in their synonym set. Hence the watermarked text

has “blurred” meaning and it becomes harder for an adversary to perform word sense

disambiguation on it (i.e., the ambiguity has increased in such a way that it is harder

to find the correct synonym of the words without human intervention). In such a

setting, the adversary will not be willing to replace every homograph word with a

non-homograph automatically and the watermark will be successfully retained.

As an example, consider the sentence “he went without water and food for 3 days”

coming from a watermarked text. If the adversary had replaced the word “went”

with the word “survived” then the change in the meaning is minimal. However, if

he had replaced “went” with “died”, the meaning of the sentence would be taken

very far from its original meaning. Yet both “survive” and “die” are synonyms of

different senses of the word “go”.

53

The decoding process is not dependent on the original text and there is no need to

know the sense of a word in order to decode the message. This simplicity of decoding

process makes it computationally light, and it enables the copyright infringement

detection to be performed by a web crawler on a large number of online documents.

The details of the encoding and decoding processes are explained in the next

subsection.

The Encoding and Decoding Algorithms of Equmark

Our system is based on building a weighted undirected graph, G, of (word,sense)

pairs, where an edge between two nodes represents that they are synonyms. In

our experimental implementation, the synonym sets of words are taken from Word-

Net [28]. Each weight on a graph’s edge is a measure of the similarity between its

two endpoints.

Several different techniques and similarity functions have been proposed in the

natural language processing literature to quantify the similarity of two words. A large

number of these techniques are based on WordNet, which is an electronic dictionary

that organizes English nouns, verbs, adjectives and adverbs into synonym sets, each

representing one underlying lexical concept [28]. There are several semantic relations

that link the synonym sets in WordNet such as “is-a-kind-of”, or “is-a-part-of”

relations. Some of the word similarity functions are available as a Perl Library called

WordNet::Similarity [25, 77]. WordNet::Similarity package implements six different

similarity measures that are in some way based on the structure or the content of

WordNet.

After graph G is formed, we select a subgraph, GW of G using the secret key

k. This subgraph selection is performed over the words that have homographs in

their synonym sets. After this, we use k once more to color the graph in such a way

that approximately half of the homograph neighbors of a non-homograph word are

colored with blue to represent the encoding of “1”, and the other half are colored

54

with green to represent the encoding of “0”, while non-homographs are colored with

black to represent “no-encoding”.

At encoding time, we calculate the expected distortion value for the adversary,

which in some sense measures how hard it would be for the adversary to find the

original word, wo, given the mark carrying word, wc. Note that, if the adversary

can replace wc with wo, then not only the mark bit encoded by that word will be

removed, the distortion introduced by the watermarking process will also be undone.

In our implementation, E(d2(wc; wo, so)) is calculated by summing up the differences

of every sense of wc to the original (word,sense) pair, (wo, so) normalized over the

number of senses of wc, which is denoted with |S(wc)|. This is formalized as below:

E(d2(wc; wo, so)) =

∑

si∈S(wc) sim(wc, si; wo, so)

|S(wc)|
(3.3)

where so is the sense of the original word, wo, in the original document, and

sim(wc, si; wo, so) is the similarity based difference between (word,sense) pairs, it

increases as the words get more dissimilar.

If there are more than one candidate homograph with the same color (the color

that is required to encode the current bit of the message, m) then the one with the

maximum E(d2()) value is picked. The following are summaries of the encoding and

decoding algorithms, based on the above discussion.

Steps of the encoding algorithm:

• Build graph G of (word,sense) pairs. Use WordNet to find synonym sets of

(word, sense) pairs. Two nodes are neighbors of they are synonyms of each

other. In addition, connect different senses of the same word with a specially

marked edge in order to follow the links to every neighbor of a word independent

from its senses.

• Calculate distances between the (word,sense) pairs, d(wisensek
, wjsensel

), using

a similarity measure. Assign these values as edge weights in G.

• Select a subgraph GW of G using the secret key k.

55

• Color the graph GW . Detect the pairs of words (wi, wj), where wi and wj are

in the same synonym set with one of their senses, and have more than one

sense. In other words, these words act as homographs. Color wi and wj with

opposite colors in graph GW , using k to decide which one gets to be colored

in blue (i.e, encodes a “1”) and which one gets to be colored in green (i.e.,

encodes a “0”). Color non-homographs as black.

• c = 1

• For each word wi in the cover document S

– bitc = M [c]

– if wi ∈ GW then replace wi with the neighbor that carries the color that

encodes bitc (coloring makes sure that every word either itself encodes

“0” or has at least one neighbor that encodes “0”, same for encoding “1”,

refer to [12] for details.)

if there are more than one neighbor that encodes bitc

for each, wj, of these neighbors calculate

E(d2(wj; wi, sk)) =

∑

sl∈S(wj)
sim(wj ,sl;wi,sk)

|S(wj)|

pick the neighbor with the maximum E(d2(wj ; wi, sk)) value and replace

wi with that neighbor

Increment c (if c = |M | + 1 then set c = 1)

If the cover document’s size is long enough the message, M is embedded multiple

times. (The cover document is rejected, if its size is not long enough to embed

the message.) We assume that the message M , that is input to the watermarking

system, has already been encrypted and encoded in a way that it is possible to find

the message termination point when reading it sequentially from an infinite tape.

The encrypted M could have an agreed-upon fixed length (symmetric encryption

preserves length, so we would know how to chop the decoded message for decryption).

Or, alternatively, if the length of M is unpredictable and cannot be agreed upon

56

ahead of time, the encrypted M could be padded at its end with a special symbol, i.e.

#, that would act as a separator between two consecutive copies of the encryption.

Steps of the decoding algorithm:

• Build graph G using just the words. Note that there is no need for sense

information or weights of edges between synonyms, only the coding color of a

node is needed.

• Select a subgraph GW of G using the secret key k (This is a symmetric key

algorithm. The same key, that was used in the encoding process, has to be

used in order to generate the same sub graph.)

• Color the graph GW using k

• c = 1

• For each word wi in the cover document S

– if wi ∈ GW then check the color of the node that represents wi.

if it is black, move to the next word

if it is blue, assign 1 to M [c] and increment c

if it is green, assign 0 to M [c] and increment c

The decoding algorithm is simply a series of dictionary lookups. We envision

that this simplicity will enable our system to be used for watermarking online text

documents. Then, web crawlers that are indexing web pages can also check for

watermarks or metadata embedded using our system in the pages they visit.

3.2 MarkErr: Information Hiding through Errors

A substantial portion of the text available online is of a kind that tends to contain

many typos and ungrammatical abbreviations, e.g., emails, blogs, forums. It is

therefore not surprising that, in such texts, one can carry out information-hiding

57

by the judicious injection of typos (broadly construed to include abbreviations and

acronyms). What is surprising is that, as this work demonstrates, this form of

embedding can be made quite resilient. The resilience is achieved through the use of

computationally asymmetric transformations (CAT for short): Transformations that

can be carried out inexpensively, yet reversing them requires much more extensive

semantic analyses (easy for humans to carry out, but hard to automate). An example

of CAT is transformations that consist of introducing typos that are ambiguous in

that they have many possible corrections, making them harder to automatically

restore to their original form: When considering alternative typos, we prefer ones

that are also close to other vocabulary words. Such encodings do not materially

degrade the text’s meaning because, compared to machines, humans are very good

at disambiguation. We use typo confusion matrices and word level ambiguity to carry

out this kind of encoding. Unlike robust synonym substitution that also cleverly used

ambiguity, the task here is harder because typos are very conspicuous and an obvious

target for the adversary (synonyms are stealthy, typos are not). Our resilience does

not depend on preventing the adversary from correcting without damage: It only

depends on a multiplicity of alternative corrections.

Natural language watermarking traditionally targets grammatical, or even edited

text where preserving the grammaticality and style is one of the main concerns [10,

16]. The concern for quality of the watermarked text forces systems to perform at a

low embedding bandwidth and to put emphasis on the accuracy of natural language

processing components.

However, a large percentage of daily exchanged digital text is in the form of e-

mails, blogs, text messages, or forums; which we will call cursory text. This type

of text is usually written spontaneously and is not expected to be grammatically

perfect, nor to comply with a strict style. The freedom from being error-proof and

from following a style, creates an opportunity for improved information hiding by

applying completely new approaches tailored for cursory text, or by adapting the

existing mechanisms that were proposed for edited text.

58

It is possible to use many idiosyncrasies of cursory text for information hiding,

by modifying them or judiciously injecting them to the text. Such idiosyncrasies

include:

• Unintentional typographical errors (character typing errors such as “teh” in-

stead of “the”).

• Well-known abbreviations and acronyms (e.g. using “ur” instead of “you are”

or “omg” for “oh my god”, “b4” for “before”).

• Transliterations such as leet-speak (e.g. “l33t” for “leet”), pig latin, gyaru-

moji or inversion of syllables such as verlan (e.g. “my nopia is kenbro” instead

of “my piano is broken”).

• Free formatting, such as unnecessary carriage returns or arbitrary separation

of text into paragraphs, or varying line sizes.

• Usage of emoticons to annotate text with emotions or attitudes (e.g. “:)” for

annotating a pun).

• Colloquial words or phrases (e.g. “gonna” or “ain’t nothin”’).

• Jargon specific to the age or interest group (e.g. “DCT” is used for “Discrete

Cosine Transform” in engineering jargon, and it is used for “Divine Command

Theory” in philosophy jargon.)

• Free usage of capitalization and fonts for richer annotation (e.g. “I AM jok-

ing”).

• Mixed language use, where words from several different languages are used

together in the same text (e.g. “We always commit the same mistakes again,

and ’je ne regrette rien’ !”).

• Replacing native characters of an alphabet with latin characters such as writing

in “faux cryllic” or writing “sh” instead of letter “ş” in Turkish.

59

• Grammatical errors.

In this work, we focus on using the typographical errors (henceforth referred to

as typos), broadly construed to include the above-mentioned acronyms and abbrevi-

ations, for increasing the bandwidth of natural language information hiding. When

resilience is important (as in watermarking), we make use of ambiguity to make it

harder for the adversary to correct the typo. To illustrate this, consider the follow-

ing example, based on the “lol” acronym that is uncommon, if not unacceptable, in

formal text, but very common in cursory text. According to Wikipedia, “lol” has

17 different meanings that depend on the context in which it is used, including the

following few:

• Internet slang: “lots of laughs”.

• Legal and financial texts: “limits of liability”.

• Culinary texts: “Land O Lakes” butter.

• Travel texts: “Derby Field Airport” (less strange than “ord” for O’Hare airport

– Derby Field is located in Lovelock, Nevada)

Our current implementation has not yet automated the use of hard-to-reverse

acronym substitutions such as “lol” (we used it as an example because it has such

a high degree of ambiguity1 to a text analysis software, yet practically no ambiguity

for a human reader).

As mentioned above, another way to introduce ambiguity is using latin characters

while writing in a non-latin language. The short sentence “iyi isitir” written in ASCII

characters, has three different meaningful and grammatical mappings in Turkish

script. One mapping is “iyi işitir” (“he/she/it hears well”), another is “iyi ısıtır”

(“it heats well”), and the last one is “iyi ışıtır” (“it illuminates well”). This ambiguity

occurs due to the many-to-one mapping of Turkish characters to ASCII characters.

1The list of different meanings of “lol” can be made even longer – “acronymfinder.com” lists 62
different meanings for “lol”.

60

In its context, a human reader would not have any problem in disambiguating the

correct Turkish script of above phrase when written in ASCII. Even though currently

available automatic “de-asciifying” techniques [78] have an impressive average case

performance on real text, they will not resolve the ambiguities that have been injected

with the intention to confuse an automated “de-asciifying” system, such as the one

in the above example.

Typos have the advantageous property of being common to all types of cursory

text, e.g. emails, text messages, forum posts, etc.; hence an information hiding

system based on this notion has a wide range of applications. They are usually

injected into the text by their authors as a result of speed typing (e.g “teh” instead

of “the”), or incorrect spelling knowledge (e.g. “principal” instead of “principle” or

“tommorow” instead of “tomorrow”) among other reasons. Typos can occur at any

part of the text. However some words are naturally harder to spell or type with

keyboard, hence typos occur more frequently with them.

Spelling checkers usually use the edit distance of typos between vocabulary words

to suggest corrections. In some cases several corrections are viable for the typo,

and spelling correctors use additional side information such as previously observed

regularity of typos and models of the underlying natural language or similarity of

pronunciation to prioritize this correction list [79, 80]. The regularities in typos are

usually due to proximity of key locations on the keyboard, or mental proximity of

syllables or words resulting from phonetic similarity. See Section 3.2.5 for more

information about spell checkers.

Humans are usually better than automated spelling correctors in typo correction,

for this reason, spelling correctors are usually insufficient to completely correct typos,

and the author’s intervention is required for the final decision. Human fluency in

spelling correction also plays a role in the implicit correction of typos by readers

of cursory text. Humans use a combination of pattern matching (e.g., resolving

“imlipcit” stands for “implicit”) and a wide variety of side information that surpass

the boundaries of one message exchange, such as shared experience with the author

61

(e.g., a reference to “Jerry” as “Gary”), and real life knowledge (“bear footprint”

caption under a human bare footprint picture).

While designing an information hiding system for cursory text using the typo-

graphical errors, the following challenges should be taken into account:

• Preserving the value of the document. Even though the editorial quality, gram-

maticality or fluency of text are less of a concern in cursory text, the result

of the information hiding process still has to be easily comprehensible by a

human reader. Furthermore, some portions of the text may not tolerate any

variations since they are central to the meaning of the cover text, such as the

meeting place in a memo.

• Automatic spelling checkers can be used to reduce the possibility of using typos

for information hiding.

• The adversary might have access to a good model of cover text including a

model of the text that was previously generated by each author. The message

exchanges can be strictly monitored, such as in company mail accounts, or in

blogs.

• The embedding bandwidth in natural language text is lower when compared

to that of image, video or audio, i.e., the number of words or sentences are

comparable with the message length. For this reason the hidden messages are

embedded more densely in the cover text documents when compared to cover

objects of other media types.

We have designed two methods of embedding, one for an active adversary (which

can be used for watermarking applications), and one for a passive adversary (which

can be used for steganography applications). The methods use individual words to

embed bits of the secret message. The only information required to read the hidden

message is the shared key that was used to embed the message in the first place.

Both of the embedding methods spread the modifications evenly throughout the

62

cover text. They also provide the author with the flexibility to exclude parts of the

text from being modified by the embedding process. We will discuss these methods

in Section 3.2.2 and Section 3.2.3. See Section 3.2.4 for examples of marked text.

Section 3.2.5 briefly covers the literature on the evolution of written language use

on the Web, as well as the literature on spelling correction, and other relevant work

in information hiding.

3.2.1 Computationally Asymmetric Embedding with

Typographical Errors

Robust synonym substitution cleverly uses sense ambiguity to insert watermarks

into text that are resilient against an adversary who uses automated synonym sub-

stitution to remove a watermark [12]. This resilience is achieved through the use

of computationally asymmetric transformations (CAT for short): Transformations

(modifications to a cover document to embed a mark) that can be carried out inex-

pensively, yet reversing them requires much more extensive analyses that necessitates

strong artificial intelligence (easy for humans to carry out, but hard to automate).

The task of robust watermarking with typo injection is harder than that using

synonym substitution. There are two major difficulties: i) typos are very conspicuous

and an obvious target for the adversary (synonyms are stealthy, typos are not) ii)

adversaries can use spelling correction tools to undo the effect of embedding. In order

to overcome these difficulties we construct CATs with typos. We replace words with

typos such that a spelling checker will produce a long list of possible “corrections”,

hence force the adversary to achieve the capability to understand the underlying text

to single out the original word from this list. The resilience of such CATs depend

on a multiplicity of alternative typo corrections.

For instance, a spelling checker will easily point the typo in the sentence “Don’t

forget to bring the ake”. However, the correction list will be rather long (ispell

version 3.1.18 lists “Abe, ace, age, AK, AK e, AK-e, ale, ape, are, ate, Ave, awe,

63

axe, aye, bake, cake, eke, fake, Ike, jake, lake, make, rake, sake, take, wake” as

alternative corrections that are 1 unit edit-distance away from “ake”). Unless the

context in which this sentence appears is known, it is hard even for a human to

figure out the original word for the typo. Note that some of the alternative words

in this list are 2 units edit distance away from the original word “cake”. Eventually

the adversary is likely to end up choosing a replacement word for the typo, which is

further away in terms of edit distance from the original word.

Typos whose correction processes are hard to automate are preferred in robust

information embedding. Their correction lists contain several words that have same

part of speech and have similar meaning as the original word.

Using the same example as above: an embedding system based on the CAT

principle will prefer to use the typo “ake” to the typo “cakw” in the sentence “Don’t

forget to bring the cake”. There are two reasons for this: i) “cakw” has a smaller

correction list (ispell version 3.1.18 lists “cake, caw” as alternative corrections for

“cakw”) ii) while words “ale”,“sake” (from correction list of “ake”) have a similar

meaning with “cake” and can be used in the same context, it is unlikely that “caw”

(from correction list of “cakw”) could be used in this sentence instead of “cake”.

Furthermore, CATs can be used to achieve stealthiness of typos, besides achieving

resilience. We do this by choosing typos that are themselves legal words from the

vocabulary (English vocabulary in this case). This deliberate choice for typos forces

the adversary to perform the complex task of detecting such typo words that are

used in the wrong context.

The sentence “It’s going to be a great party” can be changed to “It’s going to

be a great patty” by the typo injection mechanism. Since the typo “patty” is also

a vocabulary word, a spelling checker will not detect this typo. The adversary does

not know which word(s) in this sentence is not from the original sentence. Hence,

from the point of view of the adversary, the original sentence is only one of a long list

of possible sentences that could have been used to create this watermarked sentence.

In order to remove the watermark, the adversary will need to first come up with

64

this long list of sentences (which is expected to include the original sentence before

watermarking). Then the adversary will need to make a best guess among these

sentences to select the original sentence. This last step of the adversary is similar

to the hypothesis ranking problem of automated speech recognition and machine

translation [52]. It is known that automated solutions to this problem perform well

most of the time in practice. However, in this case, as an important difference from

the average case behavior of natural language text or speech, the watermarking pro-

cess will deliberately choose the typos which will make sure the automated ranking

process will perform at its worst. In order to foil the automated adversary, the water-

marking system is designed to pick the vocabulary words that create the maximum

ambiguity (i.e., longest list of alternative corrections with similar probability).

3.2.2 Watermarking with Typographical Errors

Without loss of generality, we will describe the method assuming one bit is em-

bedded per word. For now we assume that there are no untouchable word occurrences

in the text (words that the user forbids to be modified in the encoding process). At

the end of this section we generalize the scheme to work for untouchable words as

well.

Let V be the vocabulary from which the words in the cover text D are picked.

Let K be the shared secret key. Let M be the secret message.

Embedding Algorithm

1. Replace V by another vocabulary V ′ obtained from V by merging all words,

their synonyms and their possible typos (that are not a word from V) into

groups, where each group is represented by one (key-selected) word in V ′. The

representative word that corresponds to w is denoted by G(w) and it is same

for all words in a group. For example, {aircraft, airplane, airliner, jetliner,

aeroplane, . . ., airpane, arplane, airplan, aiplane, . . ., aircaft, arcraft, aircrft,

aicraft, . . ., etc. } are grouped together and only one of them (say, airplane) is

65

chosen as the group’s representative. If a word is eligible to appear in multiple

groups then ties are broken arbitrarily using the key K to flip a coin.

2. A word token w in D, is denoted by a pair (w, s), if this corresponds to the

sth instance of the group represented by G(w) in D.

3. (w, s) is used for information carrying only if the least significant bit of HK(G(w)||s)
is 1, where HK denotes a keyed cryptographic hash with K as key, and || de-

notes concatenation. We make sure that any word from the same group will

encode the same bit at a given sequence order (by always using the representa-

tive of the group to compute the keyed hash). If the adversary uses synonym

substitution, the bit value encoded by the word can still be successfully recov-

ered since all synonyms carry the same bit value. If the adversary chooses to

inject non-word typos, it is highly likely that the replacement string will be in

the same group as the original word. Otherwise there is a 50% chance to flip

the encoded bit value.

4. Process each bit mi in the message M in the following way:

(a) Scan through the message and find the leftmost information carrying

(w, s) in D that has not yet been processed.

(b) Use the second least significant bit of HK(G(w)||s) to determine the mes-

sage bit value carried by (w, s). w already carries mi with 50% probability;

in this case we are done and we move on to embed the next message bit

mi+1.

(c) If w does not carry mi, then we try injecting different typos into w and

collect, in a set of candidates C, the following two types of outcomes

for these typo-injections: (i) the resulting typo word w̄ is such that the

least significant bit of HK(G(w̄)||s̄) is 0; (ii) the resulting typo word w̄

is such that the least significant bit of HK(G(w̄)||s̄) is 1 but its second

least significant bit matches mi. A central technical issue is: Which of

66

the candidates in C to select? This is tackled separately in the Candidate

Selection algorithm given below. For now we note that if a type (i) can-

didate is selected, w̄ is not used to carry any message bits, and in such a

case we skip to next information carrying word to encode mi. If on the

other hand, a type (ii) candidate is selected then it corresponds to using

w̄ to carry the message bit mi, and in such a case we continue to embed

mi+1.

The next algorithm explains how we select from candidate set C the best alternative.

Candidate Selection Algorithm

1. Partition the typos, that were used to produce the candidate words, into 2

classes: Conspicuous typos, and stealthy typos. A candidate word w̄ that is

not in the dictionary (such as “imlipcit” instead of “implicit”) is considered

to be conspicuous. Respectively, a candidate that is in the dictionary (such as

“mat” instead of “man”) is considered to be stealthy.

Note that, some of the conspicuous typos of a word are already in the group

of the word, and do not change the encoded bit if they are used; the previous

steps of the algorithm does not include such words in the list of candidates.

The conspicuous typos that are considered at this step come from other groups;

they were assigned to another group as a result of a random coin flip when they

were eligible for more than one group.

2. If there are candidates in C whose typo is of the stealthy kind, then we prune C
by removing from it all the candidates whose typo is of the conspicuous kind.

Note that the remaining candidates in C are all stealthy or all conspicuous. In

either case, the next step uses the same criteria for selecting the best candidate.

3. For each candidate typo w̄ in C, compute the following function h(w̄) for it.

(a) Let N(w̄) be the set of neighbors of w̄: Word a is in N(w̄) if the edit

distance from a to w̄ is no more than a user set threshold, let’s say 2.

67

Intuitively, a is in N(w̄) if w̄ could have resulted from a mis-typing of

a. In fact the probability of occurrence of such a typo, the conditional

probability Pr(a|w̄), is obtained from confusion matrices that quantify the

probabilities of various mis-typings [79]. Assume this has been done for

all a ∈ N(w̄). Note that the user set threshold can also be given for the

Pr(a|w̄), the probability of w̄ being the result of a typo in a.

(b) Having obtained Pr(a|w̄) for all a ∈ N(w̄), we compute h(w̄) as follows:

h(w̄) = −
∑

a∈N(w̄)

Pr(a|w̄) log Pr(a|w̄)

which is the entropy that we should seek to maximize (thereby maximiz-

ing the adversary’s uncertainty about where w̄ could have come from).

Note that, here we have assumed that the adversary will only use the

knowledge about typo confusion matrices. A more advanced adversary

could use n-gram language models, and in that case ambiguity measure

of the watermarking algorithm should be changed accordingly.

4. Select from C the candidate w̄ with the largest h(w̄).

Typos are injected in a way that maximizes the possible correction alternatives,

while staying within a distortion threshold that captures the damage incurred on the

cover document after the injection. The distortion threshold is defined by the owner

of the document. Viable typos are generated with respect to the confusion matrices

used by the spelling checkers, which yields all typos of the cover word that could be

typed by a human user. See the next subsection for other objective functions that

can be used in watermark embedding.

The decoding is a simple key-based reading of the bit values of the (also key-

selected) words in the watermarked text.

We note that extending our system so it can handle 3-letter acronyms such as

“lol” would require checking (by pattern matching) whether the current word and

68

its 2 successors (predecessors are not used, since they might have been already used

for encoding) can form a 3-letter acronym: If so then replacement by the acronym

provides one of the alternative “typos” that we could use.

Extending the above system to include the conversion of non-latin characters into

latin characters is straightforward, since such conversions can be treated as typos.

In this method, every typo gives away some information to the adversary about

encoding words (i.e., they indicate that one of the dictionary words listed by the spell

checker in the correction list is an encoding word). The adversary can use this list

to flip some of the message bits by injecting typos into occurrences of all the words

in the correction list. We can prevent this damage by inserting unnecessary typos

into the watermarked document. This measure also helps to increase the amount

of distortion incurred on the document by the watermarking process, hence limiting

the error tolerance of the adversary.

Candidate Selection Heuristics

The heuristic introduced in step 3.b of the Candidate Selection Algorithm max-

imizes the possible correction alternatives for encoding words. This increases the

uncertainty about the original versions of encoding words, and make it harder for

the adversary to revert the watermarked text back into original form.

We can alternatively use another heuristic to maximize the probability that the

encoded bit will stay the same even if the adversary chooses to randomly replace the

encoding word:

For all the candidate words that are encoding the desired bit mi, pick the infor-

mation carrying neighbors of w̄ that encode mi and put them into set N ′(w̄), then

compute Pr(mi|w̄) as follows:

Pr(mi|w̄) =
∑

a∈N ′(w̄)

Pr(a|w̄)

69

Then pick the candidate word that maximizes Pr(mi|w̄). Here we seek to max-

imize the probability that adversary will pick a word that is still encoding mi even

though s/he replaces w̄ with a word from its neighbors N(w̄).

Extension to Untouchable Words

One of the disadvantages of information hiding in text is the low bandwidth of

the medium. Since the document units (e.g., words, phrases, etc.) that carry the

embedded bits is scarce, every available unit is used for message carrying. Cursory

text tolerates such saturation of the text with modifications for most of the time.

However, it is not uncommon to have parts of the text which are too sensitive

and modifications to the original are not tolerable (such as a date, a salary figure,

a military rank). It is important that information hiding systems have a way of

accommodating “untouchable document areas” by avoiding modifications to such

portions.

It is possible to avoid untouchable areas if “untouchable words” are known be-

forehand, by skipping the individual words or the phrases and sentences that they

occur. However this is not a practical approach for a general purpose information

hiding system.

Untouchable words are like the “defective memory cells” in Wet-Paper Codes

(WPC), and hence efficient wet-paper codes can be used to handle them [43] for text

steganography, see Section 3.2.3 for more details.

In our algorithm, “untouchable words” are problematic only if the word is used

to carry the watermark (i.e., least significant bit of HK(G(w)||s) is 1). An alterna-

tive encoding could easily solve this problem when untouchable words are rare and

isolated (as opposed to occurring in chunks of text): Encode a message bit mi (i.e.,

the bit value carried by jth information carrying word wj in D) as the XOR of the

third least significant bit of HK(G(wj−1)||sj−1) with the second least significant bit

of HK(G(wj)||sj).

70

This may entail having to backtrack and modify wj−1 for the sake of encoding bit

mi in wj while still satisfying the old requirement imposed on wj−1 by its encoding

of mi−1 or of the (non)information carrying property of wj−1. The drawback of this

approach is that it will cause a substantial decrease in the number of candidates in

C for wj−1 (approximately by a factor of two), and hence a lower conditional entropy

for the chosen candidate from that C. Of course no such burden is imposed on wj−1

if wj is not untouchable. Note that the bandwidth is also largely unchanged – it

does not go down by a factor of 2 because, when we get to mj , we do not need to

backtrack to mj−1 because the 3rd bit of HK(G(wj−1), sj−1) is already fixed by then

and its presence in the XOR makes no difference to the success (or lack thereof) of

encoding mi in wj. Also note that the bandwidth would have dropped by a factor

of 2 if we had used the second bit of HK(G(wj−1), sj−1) in the XOR.

3.2.3 Steganography with Typographical Errors

In steganography, stealthiness of the marked document is a more important con-

cern than the robustness of embedding against modifications by an adversary or the

value of the cover document. Here the adversary is passive and only interested in

detecting the covert communication.

We use the same notation that the watermarking algorithm uses in Section 3.2.2:

V is the vocabulary from which the words in the cover text D are picked; K is the

shared secret key; M is the secret message.

Let T be the user defined total distortion threshold. We define distortion, d()

to be the probability of a typo word, w̄, occurring in a text as a result of a typing

error made by a human typist that intended to write the original word, w. Hence

d(w̄, w) = Pr(w) Pr(w̄|w). We use the spelling error probability metric defined by

Kernighan et al. in [79]. See Section 3.2.5 for more details on this spelling error

correction method. The steganography process ensures that
∑

w∈D d(w̄, w) stays

below T . Note that this distortion measure assumes an adversary would know the

71

original word w, and use this information to detect a steganography. Hence the

adversary model of the steganography system we describe in this section is more

sophisticated than an automated system.

We propose a steganography system that has the flexibility to let the user forbid

some of the words from being modified. Such words are considered “untouchable”

and the marking process finds a way to encode the secret message without touching

these words in the cover text. This way, users may i) conserve the value of the cover

document from being destroyed by the embedding process, ii) achieve stealthiness to

the human eye, which would not tolerate extensive typing errors at critical words.

Usually, preserving the value of the cover document is not a primary concern in

steganography. However, there might be automated and manual filtering systems

that have been installed to remove the documents that do not serve the purpose of

the communication channel (e.g., spam filters, or a collaborative filtering system in

a forum in which other users vote to remove posts with no relevant information).

Our steganography algorithm uses efficient Wet-Paper Codes (WPC) technique

presented in [43] to achieve minimum distortion while allowing the user to mark

certain sections of the cover text as untouchable. These untouchable sections will

act as “defective memory cells” in WPC.

Let L denote the sections that are untouchable.

Embedding Algorithm

1. Replace V by another vocabulary V ′ obtained from V by merging all words

and their possible typos into groups, where each group has a (key-selected) rep-

resentative word for that group. For example, {word, owrd, wrod, wodr . . .etc.

} would be grouped together and only one of them is chosen as the group’s

representative. The representative word that corresponds to w is denoted by

G(w) and it is same for all words in a group. If a word is eligible to appear in

multiple groups then ties are broken arbitrarily using the key K to flip a coin.

72

2. A word token w in D, is denoted by a pair (w, s), if this corresponds to the

sth instance of the group represented by G(w) in D.

3. (w, s) is used for information carrying only if the least significant bit of HK(G(w)||s)
is 1, where HK denotes a keyed cryptographic hash with K as key, and || de-

notes concatenation.

4. Read the bit string that D carries (before the message embedding) into the

string B as follows:

(a) For each information carrying word w in D, assign the second least sig-

nificant bit of HK(w||s) to bi in B. (Note that the word w is directly

included in the hash in this case.)

5. Use the efficient wet-paper code technique [43] to generate a set of bit strings,

B, that can encode M without using the bits that fall into the sections marked

by L and whose hamming distance to B is below a threshold (this threshold is

set a priori).

6. For each B′ ∈ B use the embedding transformations defined in the watermark-

ing algorithm in Section 3.2.2 to embed B′ into D and get the marked text

D′. The only difference here is the candidate selection criteria: while picking a

typo from the possible candidates in the set C, we pick the candidate, w̄, that

is the most probable typo (i.e. w̄ = argmaxw Pr(w̄|w)) in the list of typos that

can encode the desired bit, mi.

7. Pick the B′ that inflicts minimum total distortion on D, and output the cor-

responding stego text, D′ that carries B′.

The decoding process is similar to watermark reading, where the bits encoded by

the key-selected words in the stego text is read using the keyed hash.

See Section 3.2.4 for an example.

73

A substantial portion of the text available online is of a kind that tends

to contain mane typos and ungrammatical abbreviations, e.g., emails,

blogs, forums. It is therefore not surprising chat, in suck tests, one

can tarry out information-hiding by the judicious injection of tyros.

The resilience is achieved through the use of computationally asymmetric

transformations (CAT for short): Transformations that can be married out

inexpensively, yet reversing them requires much mere extensive semantic

analyses (easy for humans to carry out, but hark to automate).

Fig. 3.1. A sample watermarked version of the first three sentences
of Section 3.2. This text is carrying 16 bits, and changed words are
shown in bold font.

3.2.4 Experiments of MarkErr

The current implementation of MarkErr has two main characterizing inputs: i)

the vocabulary of words ii) distortion measure. The vocabulary determines which

words are eligible to be considered for message carrying. The vocabulary also de-

termines the words that can be used as replacement words by the watermarking

algorithm. The user can limit the choice of words that can be injected to the cover

document (i.e., by removing such words from the vocabulary if they are inappropri-

ate). We used the master English word list of Aspell Version 0.50.5 as the vocabulary

in our implementation.

We use two different distortion measures to quantify the cost of a unit trans-

formation of the cover text for watermarking and steganography. The distortion

measure of steganography is based on a model of typos that have been extracted

from AP newswire text in 1988 [79]. It is −log(P (t|w)), logarithm of the probability

of a particular error given the correct word. A stego embedding with a lower cost

should be similar to a human-made typo, hence be less detectable by an adversary.

The watermarking distortion measure should quantify the distortion of the value

of the text for human readers. Even though we cannot perfectly capture this as a

74

A substantial potion of the text available onlne is of a kind that tends

to conain many typos and ungrammatical abbreviations, e.g., emals, blgs,

forums. It is therefore not surprisng that, in sich texts, one can carrsy

out infomation-hiding by the judicious injection of tpyos. The resilience

is achieved through the use of computationally asymmetric transformations

(CAT for hsort): Transformations that can be carried out inexpensively,

yet reversing them requirs much more extensive semantic analsyes (esasy for

humas to carrsy out, but harsd to uatomate).

Fig. 3.2. An example of applying proposed steganography techniques
on the first three sentences of Section 3.2. This text is carrying 16
bits, and changed words are shown in bold font.

number, we believe that the similarity of the alternative corrections of a typo may

capture the confusion of the readers when faced with a typo and hence approximate

the degradation in the value of the cover text. The entropy, h(w̄) in step 3.b of the

Candidate Selection Algorithm in Section 3.2.2 quantifies this confusion of the user.

In this implementation, we did not use context information when computing the

entropy of the correction word (i.e., an injection of hat to replace that is less con-

fusing than when hat is used to replace cat). A more sophisticated implementation

should use side information (e.g., language models, word clusters, part of speech,

etc.) to determine words which are commonly used in similar contexts and can be

accidentally typed in place of each other.

Figure 3.1 shows a watermarked version of the first three sentences of Section 3.2.

We embedded 16 bits into this text. Note that the embedding transformations were

performed by using “stealthy” typos where the mark carrying word is a vocabulary

word. (Changed words are shown in bold font.)

In our implementation for steganography we used the conspicuous typos as em-

bedding transformations. These typos are generated by applying letter changes to

the original words in the cover text which usually yield non-vocabulary tokens in

75

the marked text. Even though these transformations can easily be detected by the

adversary, they still have the CAT property as the adversary has to find out the

original correct wording of the typographical error among many viable alternatives

in order to revert the transformation. For instance a deletion transformation of

“change” into “chage” will force the adversary to choose one of “achage, cage, chafe,

Chaga, Chane, change, chape, chare, charge, chase, cha ge, cha-ge, phage” to revert

the typo. An example of this embedding is shown in Figure 3.2. The original text

is the same as the watermarking example (first three sentences of the abstract) and

again we embedded 16 bits into this text.

3.2.5 Related Work for MarkErr

In her 1995 book [81], Turkle published the results of her analysis on the be-

havior of users in a multi-user game (e.g. Multi-User Dungeon (MUD)) that allows

players to chat. She states that onomatopoeic expletives and a relaxed attitude

toward sentence fragments and typographic errors suggest that the new writing is

somewhere between traditional written and oral communication. This type of lan-

guage used online is commonly referred as “NetSpeak” [82]. While Turkle’s focus

is mainly on the psychological effects of the Internet environment, Crystal’s work

focuses on analyzing the evolution of the language used in chatgroups, emails, and

text messages send over mobile phones [83, 84]. Crystal mentions that due to the

160 character limitation in text messages, users tend to shorten many words, and

these acronyms or abbreviations stick in a community. Crystal also discusses the

ambiguity in NetSpeak in his article [84]. He mentions that there is a two way

ambiguity in this language, one way is while interpreting what an acronym stands

for, for example “N” can mean “no” and “and”, “Y” can mean “why” or “yes”. It

is up to the receiver to decode a sender’s message when it involves an ambiguous

acronym, “GBH” can mean “great big hug” or “grievous bodily harm”. The other

way of ambiguity occurs when shortening a term, for example, “good to see you”

76

can be “GTCY”, “GTSY”, “G2CY” or “G2SY”, and “thanks” can be “THNX”,

“THX”, “TX” or “TNX”. Even though usage of acronyms are two-way ambiguous,

embedding information through them forms CAT type of a transformation, where

computational complexity of forming an acronym out of a word or a phrase is much

more lower than disambiguating the meaning of an acronym.

The studies in spelling error detection and correction research have focused on

three problems [52, 85]:

• Non-word Error Detection This problem involves finding out whether a

word is not in a given dictionary. Several efficient pattern matching and n-

gram analysis techniques have been proposed for solving this problem, which

requires correctly parsing a given word into its stem and its suffix; a fast search

capability and a well-designed dictionary. The Unix R©spell program is one of

the commonly used non-word error detection tools.

• Isolated-Word Error Correction Analysis of word typing errors occurring

in several applications such as newswire text, search engine queries or optical

character recognition data has shown that error rate and error type (e.g. single

or multiple character errors) varies from application to application. There

have been several techniques designed for detecting and proposing corrections

for a misspelled word, such as minimum edit distance technique, rule-based

techniques, n-gram based techniques, or probabilistic techniques–such as the

one we have used in our experiments [79]. All of these techniques have proven to

be successful in a given domain, but an isolated word error correction technique

that works efficiently for any given domain has not yet been introduced.

• Context-Dependent Word Correction This problem involves dealing with

errors where an actual word is substituted for another actual word. This can

happen in many forms: due to typos (e.g typing “form” instead of “farm”,

“lave” instead of “leave”); due to cognitive or phonetic mistakes (e.g. “there”

instead of “their”, or “ingenuous” instead of “ingenious” or typing “f” instead

77

of “ph”); due to use of wrong function word (e.g. “of” instead of “on”); due

to improper spacing (e.g. “my self” instead of “myself”); due to insertion

or deletion of whole words (e.g. “I cut myself when while cooking.”); due to

grammar errors (e.g. “he come” instead of “he comes”) etc. Devising a solution

for correcting this type of errors requires strong natural language processing

capabilities including the challenging topics of robust natural language parsing,

semantic understanding, pragmatic modeling and discourse structure model-

ing. Only a few spell correction tools attempted to perform context-dependent

word correction, and so far none of them have been successful in solving this

problem beyond a domain dependent setting that allows only a very restricted

type of errors (e.g. at most one misspelled word per sentence, each misspelling

is the result of a single point change, and the relative number of errors in the

text is known) [86].

As also mentioned in Section 3.2.4, while implementing MarkErr, we used the

probabilistic spelling correction technique introduced by Kernighan et al. [79] This

technique uses a Bayesian argument that one can often recover the intended cor-

rection, c, from a typo, t, by finding the correction that maximizes Pr(c) Pr(t|c).
Pr(c) is the word probability learned from a corpus by using the frequency count of

a word, and Pr(t|c) is a model of the noisy channel that accounts for spelling trans-

formations on letter sequences (i.e. insertion, deletion, substitution and reversal).

There is one confusion matrix for each spelling transformation. This confusion ma-

trix shows the probabilities of the transformation occurring between the two letters

such as count(sub(tp, cp))/count(chars(cp)) shows the probability of a character cp

being substituted by tp. The matrix for Pr(t|c) is computed using the four confusion

matrices computed for each spelling transformation. Kernighan et al. used Associ-

ated Press Newswire corpus for training these probability models. Given the typo

word “acress”, this spelling correction method (when trained on AP newswire cor-

pus) produces the following list where the correction words are sorted according to

their scores: {acres (0.45), actress (0.37), across (0.18), access (0.00), caress (0.00),

78

cress (0.00)}. Confusion matrices for all four spelling transformations are provided

in [79].

Besides the above mentioned challenges spelling correction for cursory text –

similar to spelling correction for search engine queries [86] – has unique challenges

such as maintaining a dynamic dictionary which should be updated to include terms

emerging in daily life: acronyms (e.g. “asap”, “lol”), emoticons (e.g.”:-D”), new

terms (e.g “blogging”, “googling”, “phishing”, “pwned”), uncommon person names

(e.g. “Suri”, “Shiloh”), newly generated words for marketing purposes (e.g. a recent

movie directed by Gabriele Muccino is titled “The Pursuit of Happyness”, one of the

popular songs performed by Avril Lavigne is titled “Sk8er Boi”). Such requirements

make devising a highly accurate spelling correction tool for cursory text very hard.

Most of the studies in information hiding into natural language text is based

on re-writing the cover document using linguistic transformations such as synonym

substitution [15, 22], or paraphrasing [10, 16]. T-Lex is one of the first implemented

systems that embed hidden information by synonym substitution on a cover docu-

ment [15, 87]. T-Lex first generates a database of synonyms by picking the words

that appear only in the same set of synonym sets from WordNet. The intersections

between distinct synonym sets are eliminated to avoid usage of ambiguous words for

encoding. This filtering causes the use of uncommon words (e.g. replacing “noth-

ing” with “nada”) due to the fact that common words tend to span through several

unrelated synonym sets and this property can easily be exploited by steganalysis

techniques that use language modeling such as the one introduced in [45].

In [87], Bergmair provides a survey of linguistic steganography. He also discusses

the need for an accurate word sense disambiguator for a fully automated synonym

substitution based steganography, where sense disambiguation is required both at

decoding and encoding time. The lack of accurate disambiguation forces the syn-

onym substitution based information hiding systems to restrict their dictionaries to

a subset of words with certain features. Besides decreasing the communication band-

79

width, such restrictions cause the systems to favor use of rare words for encoding

information [45].

In another work, Bergmair et al. proposes a Human Interactive Proof system

which exploits the fact that even though machines can not disambiguate senses of

words, humans can do disambiguation highly accurately [58].

3.3 Summary

In this chapter, we first presented and discussed a synonym-based natural lan-

guage watermarking system, Equmark, that we designed and built. This is the first

instance of the use of quantified notions of differences between sentences in natural

language information hiding. The use we make of such differences is twofold. First,

we use them to maximize capacity without exceeding the maximum allowable cumu-

lative distortion, and achieve resilience by giving preference to ambiguity-increasing

transformations that are harder for the adversary to un-do. Second, we achieve

additional resilience by getting close to the maximum allowable cumulative distor-

tion ourselves, as a way of preventing the adversary from carrying out attacking

transformations (as these are likely to push the text beyond the allowable distortion

limit).

In the second part of this chapter, we have presented a robust information hiding

system that is based on the clever use of idiosyncrasies (such as typing errors, use of

abbreviations, and acronyms) that are common to cursory text (e.g, e-mails, blogs,

forums).

We use computationally asymmetric transformations (CAT), that are computa-

tionally inexpensive to perform but hard to revert back (without disproportionately

larger computational resources, or human intervention), such as replacing a word

with a typo that has a long list of equally possible corrections.

80

We have designed and implemented two different systems, one for watermarking

(robust against an active adversary) and one for steganography (stealthy against a

passive adversary).

The language of cursory text is evolving, and getting richer by new acronyms (e.g,

“lol”) or new words (e.g., “phishing”) added daily to the language by repeated usage

in many online communities. There is much room for improvement in information

hiding in cursory text. Typing error is only one type of idiosyncrasy that opens

room for information hiding in cursory text, and new opportunities develop as the

language develops.

81

4. SENTENCE LEVEL NATURAL LANGUAGE

WATERMARKING: ENIGMARK

Compared to other media, natural language text presents unique challenges for in-

formation hiding. These challenges require the design of a robust algorithm that

can work under following constraints: (i) low embedding bandwidth, i.e., number

of sentences is comparable with message length, (ii) not all transformations can be

applied to a given sentence (iii) the number of alternative forms for a sentence is

relatively small, a limitation governed by the grammar and vocabulary of the nat-

ural language, as well as the requirement to preserve the style and fluency of the

document. The adversary can carry out all the transformations used for embedding

to remove the embedded message. In addition, the adversary can also permute the

sentences, select and use a subset of sentences, and insert new sentences. We give a

scheme that overcomes these challenges, together with a partial implementation and

its evaluation for the English language. The present application of this scheme works

at the sentence level while also using a word-level watermarking technique that was

recently designed and built into a fully automatic system (“Equmark”) introduced

in Chapter 3. Unlike Equmark, whose resilience relied on the introduction of am-

biguities, Enigmark is more tuned to situations where very little change to the text

is allowable (i.e., when style is important). Secondarily, this work shows how to use

lower-level (in this case word-level) marking to improve the resilience and embedding

properties of higher level (in this case sentence level) schemes. We achieve this by us-

ing the word-based methods as a separate channel from the sentence-based methods,

thereby improving the results of either one alone. The sentence level watermarking

technique we introduce is novel and powerful, as it relies on multiple features of each

sentence and exploits the notion of orthogonality between features.

82

In this chapter, we propose a rather generic information hiding algorithm, Enig-

mark, into natural language text at sentence level, where the carrier medium and

the adversary model presents unique challenges. We provide a highly flexible system

where (i) the watermark reading process is freed from using the exact same statis-

tical Natural Language Processing (NLP) tools that were used while the watermark

was being embedded, (ii) the watermark detection requirements are adjusted to be

able to stand a given amount of attacks (i.e., embedding threshold is higher than

detecting threshold) (iii) the complex and rich feature set of sentences are exploited

to increase the bandwidth and robustness.

4.1 Algorithm for Multiple Feature Based Information Hiding

In this section we describe an algorithm that can be used to hide information into

any data as long as it has multiple features. Although the algorithm is presented

for the specific case of natural language text, it can potentially be used in other

domains.

Let D be a natural language text document consisting of n sentences d1, . . . , dn.

Let F be a set of Boolean returning functions on sentences, where each such function

indicates the presence (or lack thereof) of a particular property in a sentence, e.g.,

an fi(dj) could be an indicator of whether the sentence dj is passive or active, or

whether it contains two nouns, or whether it contains a particular class of words, or

whose hash is a least significant bit of 1, etc. We call each such function fi a feature

function.

Let T be the set of transformations that are available for modifying the sentences

(e.g., synonym substitution, passivization). For each t ∈ T , t(di) denotes the out-

come of applying that particular transformation to di (the “transformed” version

of di). We use δ1(t(di), di) to denote the amount of distortion that di undergoes as

a result of using transformation t on it. Likewise δ2(t(di), di) denotes the expected

83

distortion that the adversary will cause after modifying t(di) without the knowledge

of di.

We henceforth use M to denote the message to be embedded.

Our algorithm for information hiding into natural language text works under the

following demanding constraints:

• The number of sentences n can be small, i.e., comparable with message length

|M |; contrast this with the earlier work in [9, 10] where n needed to be much

larger than length(M).

• Relatively few transformations (if any) could be applicable to a given di, e.g.,

it is not possible to passivize a sentence with an intransitive verb (“I run every

morning”).

• A sentence may be transformable into a relatively small number of alternative

forms, as there may only be a small number of transformations applicable to

it. This limitation is governed by the grammar and vocabulary of the natural

language (e.g. small number of synonyms, small number of paraphrases, rigid

word ordering).

• The adversary can permute sentences, select a subset of the sentences, and

insert new sentences. The resilience we achieve can handle arbitrary permuting,

and extensive but not massive subset selection (e.g., selecting zero sentences)

and insertion (e.g., hugely many new sentences). More on how this resilience

is quantified will be given in the experimental section.

The feature functions in F serve two distinct purposes: (i) some of them serve as

indicators of the presence of a mark (we will generically denote functions used for this

selection purpose with fs); (ii) others will be used to actually help encode the bit(s)

of M that are embedded in a sentence (we will generically denote functions used for

this embedding purpose with fe). We said “help encode” because the fe(di) need

not necessarily agree with the bit(s) of M that di is helping encode: The relevant bit

84

of M is encoded in the aggregate distribution properties of all such sentences that

encode that bit (more on this later); a similar technique of using aggregate properties

for encoding was done in [76], although in our case the sentence subsets that encode

different bits can overlap which helps increase both capacity and resilience (in [76]

these subsets were disjoint – no two items contributed to more than 1 bit of M).

In this framework, the process of embedding 1 bit, consists of transforming a

number of sentences di so that their fs(di) = 1 (i.e., they are selected for embedding),

and making their fe(di) collectively encode the appropriate bits of M by deviating

significantly from expected distribution of fe(di) = 1. Embedding transformations

either set fs(di) = 0 to de-select a data unit, or set both fs(di) = 1, fe(di) = 1. The

detection of this bit, consists of finding out whether the aforementioned statistical

deviation holds.

It is important to have the flexibility to unmark a data unit, since in many

occasions a transformation t will not be able to yield fe(t(di)) = 1.

The fs and fe need to be defined on an indivisible data unit, such as a word, a

phrase or a sentence, depending on the adversary model of a particular information

hiding application. For example one model could assume that the adversary cannot

divide a sentence into two sentences.

The embedding process will be subject to a maximum allowed distortion threshold
∑

di∈D δ1(d
′
i, di) ≤ ∆̂1, where d′

i is a message carrying sentence derived from di. ∆̂1

captures the tolerable loss in value of D (in case of watermarking) or the loss of

stealthiness of covert channel (in case of steganography). In case of watermarking

the embedding process also aims to maximize
∑

di∈D E[δ2(d
′
i, di)], which captures the

expected distortion that the adversary will cause while attempting to remove the

embedded message from d′
i.

Encoding Algorithm

Let M be a message (m1 . . . mw)

Let D[] be a document of n sentences, di = D[i]

Let K be a secret key

85

Let T [i] be the set of transformations applicable to di

Let F be a set of boolean “feature” functions on D (f(di)

returns a 1 if di contains feature f ∈ F)

Let Fs ⊂ F be the subset of message-presence

indicator functions

Let Fe ⊂ F be the subset of message-embedding

indicator functions

Let ∆̂1 be the maximum allowable distortion

Let C[i] be the subset of message bits that di

contributes to encoding

Let Gain(dj , dk) ← E[δ2(dj ,dk)]
δ1(dj ,dk) (intuitively, this is the

“resilience gained”, the distortion caused by the adversary

per unit of distortion caused by the embedding)

Let BitSuccess(f i
s, f

i
e,D) return 0 if the ith message bit mi

was not successfully encoded in the (modified) D using f i
s

and f i
e; otherwise it returns a positive number that

measures the statistical significance of the existence of mi

in D (the “strength” of the signal using, e.g., χ2)

for each l = 1, 2, . . . , |M |
Use K, l, ml as seeds to randomly select from F an f l

s

and an f l
e, that are different features

D0[] ← D[]

∆1 ← 0

while T
= ∅
For the bit l that is in most need for improvement of

embedding signal (In other words, the bit that has the lowest χ2

score. This can also be checked using “odds ratio” to

compare the statistical significance of deviation from

the normal for each bit), try to help it as follows:

For each sentence dj , choose the transformation

tl,j ∈ T [j] that helps the encoding (the χ2) of that

86

bit l while maximizing GAIN(t(dj), d
0
j)

(i.e., maximizing resilience).

Among all such pairs (dj , tl,j) choose the one that

has highest GAIN(t(dj), d
0
j), call that pair (di, t).

d′i ← t(di)

∆′
1 ← ∆1 − δ1(d

0
i , di) + δ1(d

0
i , d

′
i)

if(∆′
1 > ∆̂1)

T [i] ← T [i] − t

if(T [i] = ∅)
T ← T − T [i]

continue

∆1 ← ∆′
1

di ← d′i

C[i] ← C[i] ∪ {l}
Update T [i] such that it includes only the transformations

that would improve the current strength of all the

message bits in C[i].

if any of the |M | bits was not successfully encoded, i.e., if some

BitSuccess(f l
s, f

l
e,D) = False

return False

return D

Note that the above algorithm continues to perform transformations until the

maximum distortion ∆̂1 is reached, even after the message is successfully embedded.

This is necessary to limit the flexibility of adversary.

Some of the modifications that the adversary performs on a sentence will not

change the contribution of the sentence to the embedded message. We do not leverage

on such difference among modifications of the adversary. The current scheme simply

tries to maximize the number of alternative sentences that the message is embedded

in order to maximize its resilience against adversaries’ modifications. An improved

87

scheme should prefer to embed in those sentences which have a higher likelihood to

carry the same embedded message even after the attackers’ modifications.

We now describe the decoding algorithm, which reads an embedded message

from a document that has undergone a message embedding. This algorithm does

not, require the message M to be available. If M is available, the algorithm can

be modified to use the BitSuccess for quantifying the confidence that the cover

document D carries M . We require that M carries an error correction code, and it

is possible to detect the termination of M when M is received as a growing string.

Decoding Algorithm

Let M,D,K,F be defined as above

Let MaxMessage be the largest message size

Let Terminated(M) be a boolean function that decodes the

partial message M and returns True if the message has

terminated

for each i = 1 . . .MaxMessage

Use K, l, 0 as seeds to randomly select from F an f0
s

and an f0
e

Use K, l, 1 as seeds to randomly select from F an f1
s

and an f1
e

if(BitSuccess(f0
s , f0

e ,D) > BitSuccess(f1
s , f1

e ,D))

M [i] ← 0

else

M [i] ← 1

if (Terminated(M))

break

return M

The algorithms that we have given in this section can be used to embed messages

into any kind of collections of data units, where we are under similar constraints as

88

natural language text but at the same time have a flexibly large number of features

and a limited number of transformations in the arsenal of information hiding.

4.2 Sentence Level Watermarking

We distinguish two types of modifications that can be used for watermarking

text: The robust synonym substitution introduced in [12], and syntactic sentence-

paraphrasing. Compared to naive synonym-substitution, robust synonym substitu-

tion introduces ambiguities in order to make it harder for the modification to be

undone. Such modifications can somewhat damage the precision of the individual

words used in the text, e.g., replacing “ a slope in the turn of the road” with “bank”.

Sentence-level paraphrasing, on the other hand, typically does little damage to the

precision of words, but may damage the stylistic value of the sentence. An example

that points out to a possible one-wayness of sentence-level watermarking happens

when the original sentence is “April had to hold a party”, and gets transformed into

“A party must be held by April”. It will be hard for an adversary to undo this

embedding without performing a co-reference resolution and context analysis on the

full text. See Section 4.3.1 for several examples of sentence-level paraphrasing.

Depending on the type of the text (e.g., multimedia content, editorials, news

reports, user manuals, etc), the requirements for the preservation of precision and

the preservation of style can both vary. In user manuals, style requirements are

less stringent, whereas precision cannot be compromised. Style is a more important

value of editorials, whereas precision is more important in newswire. A text that

accompanies video, audio or pictures as a secondary information resource, may have

less stringent requirements on both style and precision. In addition to the above-

mentioned differences between this work and [12], another difference is that whereas

[12] focuses on precision, in this work we investigate a method that can be used to

trade precision for style.

89

4.2.1 Selection of sentences

As stated earlier, the sentence features used for selection are different and or-

thogonal to those used for embedding the message bit(s). We next discuss two

alternatives for sentence-selection (the embedding of message bits is covered in the

next section).

A subset of the vocabulary is pre-selected as mark-carrying (that subset is not

known to the adversary). The message bits are inserted only in those sentences that

contain a word from that subset. Of course this means that some inputs will not

contain enough words from that special subset, and hence will be deficient in terms

of their “markability”. To avoid such situations, the selected vocabulary subset is

chosen using a language model for the specific domain, to insure that long enough

sentences from this domain will usually not be so deficient; a language model for

financial analysis texts will be different from a language model for Jack London’s

works, and the vocabulary-subset for the former will be very different from the

latter’s.

Alternatively to the above language-model based approach to select mark-carrying

sentences, synonym substitution can be used to flexibly and adaptively mark sen-

tences. In such a case, mark words are added to the text by replacing their synonyms

in the original text. The slight shift in meaning due to synonym-replacement can

be viewed as a robustness advantage: The adversary trying to do it wholesale will

degrade the value of the work beyond desired limits.

4.2.2 Embedding

We now assume that the sentence at hand is selected for message-bits insertion

(possibly using one of the two methods described earlier).

As the features for embedding are orthogonal to those for selection, we can carry

out the embedding without changing the “selected” status of a sentence. The way

embedding is done by modifying the embedding features until they “speak the desired

90

“the democratic party has denied the allegations”

Fig. 4.1. A sample sentence taken from the Reuters Corpus. Its
publication day is 8th of January 1997.

message bits”. In the framework that is described here we distinguished between se-

lection and embedding features. The selection features are determined by Equmark,

where a sentence that has a word from the selected subset of the vocabulary is an

information-carrier, and the embedding features are based on sentence-level linguis-

tic features which can be “number of prepositions in a sentence”, “a sentence being

passive or active”, “distance of certain functional words”, or “the verb classes [56]

of the verbs in a sentence”.

The task of creating a statistically significant deviation in the distribution of em-

bedding features in a selected set of sentences is not independent from the features

that are used for selection and embedding. This distribution is based on the cor-

relation between selection features and embedding features. For example, Sigmund

Freud has a tendency of using double-negation(e.g. “this is not insignificant”), and

if we were to watermark a text that heavily quotes from him, and if the words that

are related to psychological research are used as selection features (“mark-carrying”

words), the embedding feature of “sentence carrying double-negation” will be corre-

lated with these selection features.

4.3 System Implementation and Experiments

The purpose of our experiments is not to stress-test the embedding capacity of

our scheme, rather, it is to demonstrate the possibility of applying it on a real-life

test case (Reuters [88] is a common benchmark used in NLP research). Therefore

the reported embedding rates are not indicative of the potential of our proposed

scheme, because what we implemented is only a partial system that uses (i) a small

fraction of the available repertoire of transformations (only two of them), and (ii)

91

(S_r (NP_r (D the)

(NP_f (N_r (A democratic)

(N_f party))))

(VP_r (V has)

(VP (V denied)

(NP_r (D the)

(NP_f (N allegations))))))

Fig. 4.2. Syntactically parsed sentence, output of XTAG Parser on
the sentence given in Figure 4.1

(alphanx0Vnx1[denied] (alphaNXN[party]<NP_0>

betaAn[democratic]<N>

betaDnx[the]<NP>)

(alphaNXN[allegations]<NP_1>

betaDnx[the]<NP>)

betaVvx[has]<VP>)

Fig. 4.3. Sentence Dependency Structure, output of XTAG. See Fig-
ure 4.4 for a depiction of this tree.

Fig. 4.4. Depiction of the dependency tree in Figure 4.4 for the
sentence in Figure 4.1.

92

(alphanx0Vnx1[denied] (betanxPnx[by]<NP_r> (alphaNXN[party]<NP_1>

betaAn[democratic]<N>

betaDnx[the]<NP>))

(alphaNXN[allegations]<NP_0>

betaDnx[the]<NP>)

betaVvx[has]<VP>)

Fig. 4.5. Sentence dependency structure for the watermark carrying
sentence in Figure 4.8 generated by passivization process.

DSYNTS:

deny[class:verb voice:act mood:past-part case:obj taxis:perf

tense:pres]

(I by[]

(II party[class:common_noun article:no-art case:nom

person:3rd number:sg]

(ATTR democratic[class:adjective]

ATTR the[class:article]))

I allegation[class:common_noun article:no-art case:nom

person:3rd number:pl]

(ATTR the[class:article]))

END:

Fig. 4.6. Partial DSyntS format for the watermark carrying sentence
shown in 4.8. This is generated by the result of using the original
sentence’s XTAG parse output and the dependency tree generated
by the passivization transformation(shown in Figure 4.5).

93

DSYNTS:

deny[class:verb voice:pass mood:past-part case:obj taxis:perf

tense:pres]

(II by[]

(II party[class:common_noun article:no-art case:nom

person:3rd number:sg]

(ATTR democratic[class:adjective]

ATTR the[class:article]))

I allegation[class:common_noun article:no-art case:nom

person:3rd number:pl]

(ATTR the[class:article]))

END:

Fig. 4.7. Final DSyntS format for the watermark carrying sentence
shown in 4.8, generated by the passivization process when the dsynts
file in Figure 4.6 is given.

“the allegations have been denied by the democratic party”

Fig. 4.8. Watermarked version of the sample sentence in Figure 4.1.
In this example, passivization is used for watermarking.

94

DSYNTS:

deny[class:verb voice:act mood:past-part case:obj taxis:perf

tense:pres]

(I party[class:common_noun article:no-art case:nom person:3rd

number:sg]

(ATTR democratic[class:adjective]

ATTR the[class:article])

II allegation[class:common_noun article:no-art case:nom

person:3rd number:pl]

(ATTR the[class:article])

)

END:

Fig. 4.9. The DSyntS format generated for the sentence in Figure 4.1,
if it was directly processed by conversion process without any trans-
formation process’ interference.

the specific implementation of these transformations has a very restrictive domain

of input sentences to which they apply (for ease of implementation).

The approach described in this chapter is based on syntactically modifying the

sentence structure. In order to be able to automatically manipulate the sentences,

we first derive a structural representation of the sentences (through parsing [52]) and

later revert this representation into surface sentence form (through generation [52]).

The output of the parsing may represent either the morphological, syntactical,

or semantical structure of the sentence or it may represent a combination of these.

Figures 4.1, 4.2 and 4.3 show a sentence in surface form, its syntactic parse tree and

derivation tree (dependency tree) obtained using XTAG parser. We can use output

of XTAG parser to find out features of sentences [11, 29] such as voice, question,

superlative etc. Refer to [11] or [29] for the list of features that are evaluated for

95

each node of the syntactic parse tree generated by XTAG. For example, given a

sentence, before trying to passivize it, we verify the value of “<passive>” feature

being marked as “−” (i.e. negative) for the main verb, together with the label of

this verb in the XTAG derivation tree showing that it is transitive (XTAG parser

uses “nx0Vnx1” to denote transitive verbs in derivation (dependency) tree outputs,

which can be observed in Figure 4.3).

Our transformations use both the parse tree and the derivation tree in order to

perform embedding transformations.

We transform a sentence that has been selected for watermark embedding as

follows:

1. Parse the sentence by XTAG parser.

2. Verify if the sentence already carries the embedding feature. If so return, else

go to next step.

3. For each available transformation;

(a) Verify if the transformation is applicable to the sentence (e.g. for pas-

sivization, the root of the syntactic tree has to be a transitive verb).

Refer to Figure 4.1, Figure 4.2 and Figure 4.3 for a sample of information

used at this step.

(b) Embedding operation is performed in two steps:

i. Re-write the dependency tree based on the design of the transfor-

mation. Refer to Figure 4.5 to see a transformed dependency tree

generated during passivization. Note that “by” is added and made

the parent of the subtree that has the subject of original sentence.

ii. Convert the modified XTAG output into a deep syntactic structure

(in DSyntS format) that reflects the “transformed” features of the

sentence. Refer to Figure 4.7 for the deep syntactic structure rep-

96

Table 4.1
The cumulative evaluation of performance of the presented system
on direct conversion from English back into English sentences. 1804
sentences from Reuters corpus are used.

Cumulative N-gram scoring

1-gram 2-gram 3-gram 4-gram 5-gram

NIST: 7.7169 9.7635 10.0716 10.1172 10.1269

BLEU: 0.8548 0.6768 0.5580 0.4705 0.4030

resentation of the sentence in Figure 4.1 after going through a pas-

sivization transformation.

(c) Use RealPro to convert the resulting deep syntactic structure into surface

sentence form. Figure 4.8 shows the result of realization for our example

case.

(d) Verify if the transformed sentence carries the embedding feature. If so,

record the distortion value.

4. Commit the embedding transformation that imposes minimum distortion.

Comparing Figure 4.7 and Figure 4.9 will show the main idea behind the design

of passivizing transformation implemented for this framework.

Data Resources We tested our system on 1804 sentences from the Reuters cor-

pus [88]. We picked eleven publication days at random1. Later, from the

articles that were published on these days, we picked the first 1804 sentences

that are parsed with the XTAG parser. We are also using Wordnet [28] as a

data resource for converting plural nouns to singular forms, and verbs into their

base forms. This conversion is required for complying with the requirements

of DSyntS.

124th of August 1996, 20th of October 1996, 19th of August 1997 and 8 consecutive days from 1st
of January 1997 to 8th of January 1997

97

Parsers Our implementation uses XTAG parser 2 [29] for parsing, dependency tree

generation (which is called a derivation tree in the XTAG jargon) and linguistic

feature extraction.

Generator We used RealPro3 [8] for natural language generation.

Refer to Figure 4.10 for the depiction of the currently tested baseline system.

Table 4.1 shows an evaluation of this system without the watermarking step. As

explained in Section 4.4, these scores are generated by systems that were specifi-

cally designed for evaluating machine translation systems, and they do not perfectly

capture semantic resemblance of two sentences.

We would like to emphasize that the current system is limited by the capabilities

of the parser and the surface realizer. XTAG may not be able to analyze a given

sentence into its structural representation. Even though the XTAG parser is very

powerful, it is not 100% accurate. Moreover, it has a limited coverage of vocabulary,

and adding new words to its dictionary is not trivial, because every word in its

dictionary is represented with several tree structures that conform to its usage in the

language grammar. RealPro may not be able to generate an expected realization

of a given deep syntactic structure in DSyntS format. RealPro is not designed for

English to English translation, hence it has limitations when used for this purpose.

For instance it can only handle a subset of uses of punctuation. Refer to RealPro

General English Grammar User Manual [89] for further details on the capabilities

and shortcomings of RealPro. A natural language watermarking system that has

overcome these limitations will have more coverage while selecting sentences and

performing embedding transformations on them. Therefore as the NLP systems

improve, Enigmark will get more resilient and will provide higher bandwidth.

2Available at http://www.cis.upenn.edu/ xtag/swrelease.html. In our experiments, we used lem-
0.14.0.i686.tgz
3See http://www.cogentex.com/technology/realpro/ for access to RealPro.

98

Lexical Features

Derivation & Parse TreeXTAG
PARSER

Watermark
Insertion

S (raw sentence)

Conversion to
Deep

Syntactic
Structure

Wordnet

REALPROS' (modified sentence)

Fig. 4.10. A schema of the system that is being developed and tested for the baseline evaluations of the
proposed sentence-level natural language watermarking system. This implementation extracts features, gen-
erates parse and derivation trees with XTAG parser and uses RealPro for surface realization.

99

Table 4.2
Review of linguistics transformation success on the dataset of 1804
sentences from Reuters corpus.

Applicable Successfully transformed

sentences sentences

Passivization: 54 20

Activization: 24 11

4.3.1 Sentence Level Linguistic Transformations

We have implemented specific transformation algorithms for two linguistic trans-

formations: “activization” and “passivization”. Their success rate is listed in Ta-

ble 4.2. The sentences that we marked as successfully transformed are the ones that

are grammatical. But there were cases, where even though the sentence is grammat-

ical and the transformation process worked as expected, the result was destroying

the meaning of the original sentence. One example is as follows:

• Original : presidential elections must be held by october

• Transformed : october had to hold presidential elections

In addition to these two transformations, if a sentence is analyzed using XTAG

and then RealPro is used to generate a surface sentence from this analysis, this

process may generate an output sentence that differs from the original sentence. In

cases where such output sentences are grammatical, we observe that these sentences

have gone through some syntactic transformations. Two of the transformations that

occur consistently are special versions of “adjunct movement” and “topicalization”.

Examples for the aforementioned transformations are given below, these sen-

tences are taken from the data set introduced above, which is a subset of Reuters

Corpus [88]:

Adjunct Movement

100

Original: now they are just attractive

Transformed: they are now just attractive

Passivization (x 2)

Original: this frank discussion will close this chapter

Transformed:

(i)this chapter, by this frank discussion, will be closed

(ii)this chapter will be closed by this frank discussion

Activization

Original: the devices were disrupted safely by the

washington bomb squad

Transformed: the washington bomb squad safely disrupted

the devices

Topicalization

Original: doctors said he was alive but in critical condition

Transformed: he was alive but in critical condition

doctors said

An example of two transformations that can be performed on the same sentence

is as below:

Original

he said canada and britain recently rejected the idea

After passivization

he said the idea was recently rejected by canada and britain

After adjunct movement

he said the idea was rejected recently by canada and britain

101

4.3.2 Resilience Discussion

The reader may have observed that the transformations we use are typically

reversible, i.e., the adversary can apply them wholesale everywhere. There two

answers to this.

The first is that wholesale application of transformations (so as to “flatten” ev-

erything) has serious drawbacks: It is computationally expensive, it significantly

changes the style of a document, and ambiguity can make it hard to automatically

carry out (e.g., “A party must be held by April”). When embedding, we do not

suffer the ambiguity drawback (because the initial “April had to hold a party” was

not ambiguous), nor do we apply the process wholesale (we use the secret key to

choose where to selectively apply it).

The second point is that the resilience of our scheme does not hinge on the non-

reversibility of the transformation (e.g., passivization is easily reversible), rather, it

relies on the fact that the adversary does not know the key-selected embedding fea-

tures: The transformation is usually reversible in a multiplicity of ways (even if by

trivial adjunct-movement), and the adversary does not know the impact of each of

these ways on the secret embedding features (one of them neatly un-does the embed-

ding action, but the adversary does not know which one). When a transformation is

reversible in a unique way, we can either introduce multiplicity (e.g., by doing non-

embedding transformations combined with the uniquely reversible embedding one),

or we can combine the uniquely reversible embedding transformation with the robust

synonym-substitution mechanism of [12] or with judicious (and ambiguity-increasing)

removal of repeated information (a special and tractable case of co-references).

4.4 Evaluation of Natural Language Watermarking

The goal of digital watermarking is to provide copyright protection for digital doc-

uments; achieving this goal requires watermarking techniques to embed watermark

message in a discreet manner (i.e. without damaging the value of the copyrighted

102

material) while being court-provable (i.e. providing high capacity embedding) and

robust against malicious attacks, channel noise or distortion.

The value of a watermarking system lies in its success in fulfilling these require-

ments. Building techniques for evaluation of watermarking systems is one of the

main branches of watermarking research. There are several benchmarking systems

available for image and audio; such as Stirmark [90] and Audio Watermark Evalua-

tion Testbed [91]. Refer to [92] for an analysis of automatic benchmarking systems

for images.

4.4.1 Evaluation of Perceptibility

There are two types of methods for evaluating the perceptibility of watermarking

systems: subjective evaluation and objective evaluation. Subjective evaluation con-

sists of asking the actual users (human beings) evaluate the quality of watermarked

document compared to the original document. Performing subjective tests are very

costly and time consuming. For this reason, in this section, we will focus on ana-

lyzing the objective evaluation methods for evaluating the perceptibility of natural

language watermarking systems.

Objective evaluation methods are based on statistically comparing the similarity

of watermarked and original objects. Mean Square Error (MSE) or peak-Signal-

to-Noise-Ratio (PSNR) are commonly used metrics for evaluating the quality of

image watermarking [92]). If a watermark image has a low MSR when compared to

the original image, it is accepted that, with high probability, the perceptibility of

the watermarking will also be low. Similarly, Objective Difference Grade (ODG) is

widely used for evaluating audio watermarking [91].

We have to point out the fact that while being very cost effective, the objective

evaluation methods suffer from not being able to capture the user model perfectly.

For example, even though users can not notice the difference when the audio doc-

ument is lengthened or shortened while the pitch is kept the same, ODG metrics

103

report that the modified audio is significantly different from the original. We will

discuss more about a similar evaluation pitfall in natural language watermarking

later in this section.

Evaluation of Machine Translation output has many similarities to the evaluation

of Digital Watermarking. Machine Translation (MT) aims to provide a high quality

translation (in the target language) of the input text (in the original language). The

quality criteria for machine translation is the similarity to a reference translation

generated by a human translator using the same input text. There are many stud-

ies on improving the objective evaluation methods for MT quality, for a survey of

previous research on MT evaluation refer to [93].

NL watermarking bears a close resemblance to the machine translation task of

NL processing. Rather than converting sentences from one language to another,

their style and other properties are modified in a single language in order to embed

information.

One way of using MT evaluation systems for evaluating perceptibility of natural

language watermarking is to check the success of a natural language watermarking

system in re-generating a given sentence as close to the original as possible. The

results of this test shows the coverage of a natural language watermarking system;

defined as how applicable it is to various sentences. In a sense the coverage of a

natural language watermarking system shows the success of the system in being able

to process any given input sentence and convert it back to surface level preserving

its meaning and form (e.g. voice, mood, tense); hence, showing the success of the

system in being able to output any sentence.

In [11], Topkara et al. used the MT Evaluation Tool Kit 4 of NIST (available

at [94]) to evaluate the coverage of a sentence level watermarking system. This

toolkit outputs scores for BLEU (BiLingual Evaluation Understudy) metric [95] and

NIST metric [96].

4mteval-v11b.pl, release date: May 20th, 2004. Usually length of phrases range between unigram
to 4gram for BLEU metric and unigram to 5gram for NIST metric. In the tables presented here
the range is between 1 to 9.

104

BLEU computes the geometric mean of the variable length phrase matches (pre-

cision) against reference translations. The BLEU metric ranges from 0 to 1. Only

the translations that are identical to a reference translation will attain 1. BLEU

measures translation accuracy according to the phrase matches with one or more

high quality reference translations. BLEU has been found to generally rank systems

in the same order as human assessments.

In the same year with BLEU, in 2002, the NIST metric was introduced [96]. The

NIST metric is a modified version of BLEU where the arithmetic mean of information

weight of the variable length phrase matches are used, instead of arithmetic mean

of N-gram precisions. For previous research on MT evaluation refer to [93].

Both BLEU and NIST metrics are sensitive to the number of reference transla-

tions. The more reference translations per sentence there are, the higher the BLEU

and NIST score are. Papineni et al. states in [95] that on a test corpus of about

500 sentences (40 general news stories), a human translator scored 0.3468 against

four references and scored 0.2571 against two references. However, there is only one

reference translation, the original sentence, available for the evaluation of natural

language watermarking system’s re-generation success hence their coverage.

Using just BLEU for sentence by sentence distance evaluation is not enough and

accurate for the task of evaluating natural language watermarking. BLEU is very

sensitive to precision in words and their position in the generated sentence. Some of

the transformations (e.g. passivization) change the word order heavily while keeping

the meaning very close to original. Better way of evaluating the distortion made

by a natural language watermarking system is also measuring the distortion at the

full text level. Such an evaluation can be done in several ways: (i) by counting

the number of sentences changed, (ii) by assigning weights to different types of

changes (i.e. transformations) to indicate the amount of the distortion they impose

on the sentences, for example verb particle movement can get higher weight than

removal of double-negation, (iii) by generating a language model of the author and

measuring the change in the probability of a watermark carrying sentence (iv) using

105

summarization to detect the change in similarity between the original document and

watermarked document.

Preserving the language characteristics (i.e. language model) of a document

depends on being able to automatically evaluate the characteristics of a writer’s style.

Length of sentences and paragraphs, or usage of clauses or percentage of the passive

sentences can be counted as style characteristics. See [6] for a discussion of using

style and expression for identifying linguistic similarity. If the author’s characteristics

can be quantified (e.g. percentage of passive sentences, or the histogram of word

frequencies), it is possible to perform on-the-fly damage control system in order to

minimize the deviation from the expected characteristics’ value while embedding

information. In a previous work [38], we presented a new protocol that works in

conjunction with the information hiding algorithm to systematically improve the

stealthiness.

It is important to note here that natural language watermarking has an advantage

of being able to take the consent of the author of the original document, since it is

easy to prompt the author at the time of watermarking (or as a post-process after

watermarking) to ask whether the watermarked sentence generated by the system is

good quality or which one of the several alternatives should be used. This is more

feasible for natural language watermarking than signal-based data watermarking,

since in signal-based domains it is hard for the owner of the file (a human being) to

differentiate between possible alternatives for watermark carrying portions of image

(i.e. pixels), or video, or audio document.

4.4.2 Evaluation of Robustness

Model of adversary is very important in designing an evaluation mechanism for

robustness. In natural language watermarking area, it is assumed that the adversary

has the same processing power and data resources with the watermark embedder.

However, the adversary does not have access to the original document. Having the

106

original document provides a big advantage to the watermark embedding tools due

to the fact that the document carries more information (e.g. context [12], original

language [97], exact characteristics of the author etc.). For example, the richness

of context information increases the accuracy of word sense disambiguation which

provides an advantage in synonym substitution based information hiding systems [12,

15].

In [45], Taskiran et al. has used a statistical attack for steganalysis of Tyran-

nosaurus Lex (T-Lex) system proposed by Winstein. Their approach relies on the

fact that the text manipulations performed by the lexical steganography system

change the properties of the text by introducing language usage that deviates from

the expected characteristics of the cover text. Their technique proceeds as follows:

First, they capture cover-text and stego-text patterns by training language models

on unmodified and steganographically modified text. Second, they train a support

vector machine (SVM) classifier based on the statistical output obtained from the

language models. After this, trained SVM is used to classify a given text as un-

modified or steganographically modified based on the output. The accuracy on

steganographically modified sentences was found to be 84.9%.

Same statistical approach can be used to measure the robustness of other natural

language watermarking and linguistic steganography systems as well. However, as

they have mentioned in [45], this technique is heavily based on the presence of a

finite lexicon, its performance may suffer for steganalysis applications to inflectional

and compounding languages such as German, Finnish and Turkish.

Another previously used evaluation method is probabilistic evaluation. Atallah

et al. quantified the robustness of their natural language watermarking schemes

probabilistically in [9].

Besides the above techniques, being able to benefit from the supervision of the

author is a big advantage against many statistical attacks. Given many alternatives

the author himself would pick the watermark carrying version to be the one that re-

107

sembles most to his style, hence preserve the characteristics of the document against

a statistical attack.

4.4.3 Evaluation of Capacity

Capacity evaluation can be done at different levels in natural language water-

marking, such as evaluating the capacity of a word (how many bits can we insert

in a word, if we are performing synonym substitution), or capacity of a sentence, or

capacity of full text.

Capacity of a natural language watermarking system depends on its coverage. As

also mentioned in Section 4.1 and in Section 4.4.1, in natural language watermarking

not every embedding operation can be performed on any given word or sentence. For

example, if a word does not have synonym, it is not possible to use that word as an

information carrier in a synonym substitution based system. However, if a system is

capable of changing any given word or sentence, every word or sentence will become

a potential information carrier. The capacity improves even more, when it possible

to perform orthogonal (i.e. independent) transformations on one information carrier.

Number of bits that can be carried by one word or one sentence depends on the

number of synonyms (words or sentences with the same meaning) a word or sen-

tence has. Take the word “go” as an example, one sense of “go” has 17 synonyms

(i.e. can carry 4 bits), on the other side the verb “lie” has at most 4 synonyms(i.e.

can carry 2 bits) in one of its senses. A similar phenomenon happens in sentences.

In the below example there are at least four different transformation which can be

performed independently on the original sentence:

Original

he said canada and britain recently rejected the idea

After passivization

he said the idea was recently rejected by canada and britain

After adjunct movement

108

he said the idea was rejected recently by canada and britain

After conjunction argument switching

he said the idea was rejected recently by britain and canada

After topicalization

the idea was rejected recently by britain and canada, he said

However, it is not possible to perform a well-known meaning preserving linguistic

transformation (except synonym substitution) on the sentence, “I run every morn-

ing”.

According to the use of watermark the capacity requirements changes, also in

watermarking the genre of the text that is being modified for watermarking has an

important effect on the capacity limitations as well. For example, when watermark-

ing a magazine article or a novel, the emphasis may be on the preservation of the

author’s style. On the other hand, when watermarking a cooking recipe or a user

manual, preserving the preciseness and jargon would be more important but not the

style.

Atallah et. al [10] states that their system’s bandwidth is around 8 bits per

typical watermark-bearing sentence. However they have not quantified the coverage

of the system.

4.5 Summary

We have presented a generic information hiding algorithm that works on any

cover document that consists of multiply featured data units. This algorithm is

designed to overcome the challenges of low embedding bandwidth, small number of

transformations that can not be applied to any given data unit, and there are only

a limited number of alternatives that a data unit can be transformed into in order

to embed information in it.

109

We have also presented and analyzed the application of this generic algorithm to

sentence level watermarking, which is a novel and powerful technique, as it relies on

multiple features of each sentence and exploits the notion of orthogonality between

features. We verified the practicality of this technique on a prototype natural lan-

guage watermarking system and presented the performance results on this baseline

system tested on a data set of 1804 sentences.

What is needed is designing an evaluation system that handles the idiosyncrasies

of natural language watermarking, as well as improving the implemented system to

adjust to the limitations of the NLP tools used in the process. The accuracy of the

transformations can be improved by adding a more informed dictionary to increase

the coverage and to overcome the conversion mistakes such as “october had to hold

presidential elections”.

110

5. IMPROVING STEALTHINESS BY ADAPTIVE

EMBEDDING

In this chapter, we present a new protocol that utilizes a tree-structured hierarchi-

cal view of the cover object and determines regions where changes to the object

for embedding message data would be easily revealed by an attacker, and are thus

to be avoided by the embedding process. This protocol works in conjunction with

information hiding algorithms during the process of embedding in order to system-

atically improve their stealthiness. It is designed to work with many digital object

types including natural language text, software, images, audio, or streaming data.

The protocol requires the existence of a heuristic detectability metric which can

be calculated over any region of the cover object and whose value correlates with

the likelihood that a steganalysis algorithm would classify that region as one with

embedded information. By judiciously spreading the effects of message-embedding

over the whole object, the proposed protocol keeps the detectability of the cover

object within allowable values at both fine and coarse scales of granularity. Our

protocol provides a way to monitor and to control the effect of each operation on

the object during message embedding.

The goal of steganography is to embed a message M in a cover object C in a covert

manner such that the presence of the embedded M in the resulting stego-object

S cannot be discovered by anyone except the intended recipient. Steganographic

applications only require the flexibility to alter C in order to be able to embed the

hidden information. For this reason any type of digital object can be potentially

used as a cover. For example, images, audio, streaming data, software or natural

language text have been used as cover objects.

Let Alice and Bob be two parties who exchange digital objects through a public

communication channel. Alice and Bob would also like to exchange a secret message

111

M, however, they do not want the existence of this secret communication to be

noticed by others. Alice and Bob do not want to achieve confidentiality through

encryption, because the exchange of encrypted messages would reveal the existence

of their secret communication. For this reason, they use a steganographic algorithm

to embed M into a C to obtain a stego-object, S, where S = (M, C) and exchange

S through the public communication channel.

The objective of the attacker Eva, is to construct a method for distinguishing

stego-objects from unmodified objects with better accuracy than random guessing.

Attack methods generally use statistical analysis to examine a suspicious object

and search it for characteristics which may indicate that some information has been

embedded in the object. For example, Eva might simply be looking for an unusual

value of a characteristic that Alice has overlooked while modifying C. Eva might

also be looking for anomalies in the statistics of S that are different (e.g., finer) than

the statistics Alice paid attention to when inserting the mark. Studies have shown

that such statistical attacks are very successful on well-known image steganographic

systems [31–35].

One way to defend against Eva’s attacks is to inflict as little change to the

document as possible [36, 37]. To this end, steganographic systems try to minimize

changes in the cover object C when they are converted to corresponding message-

carrying regions in the stego object S. Due to their statistical nature, some regions in

the cover object will experience less change in their statistics after embedding. These

message-carrying regions will be harder to identify for the attacker. Conversely, some

regions will easily reveal their message-carrying characteristics. For example, in the

case of an image steganography algorithm that uses random bit flipping, message-

carrying regions will be easier to identify when the algorithm is applied to smooth

regions compared to the case when it is applied to regions with high texture. In

this case a region with natural noise is more suitable for message embedding than a

smooth region.

112

This chapter presents a general protocol for improving the stealthiness of a given

steganographic algorithm by providing an efficient method to determine the most

suitable regions to embed information. In our approach, we first partition the cover

object C and impose a hierarchical structure T on it using this partitioning, where

each node in T corresponds to a partition in the cover object C. Then we use T
both to monitor and to control the change in the statistics of the stego-object during

the process of embedding the message, and to determine where the message bits are

embedded.

Our protocol successfully masks the statistical effects caused by embedding both

at fine and coarse levels from the attacker, since it allows constraints to be enforced

on all levels of T . Moreover the hierarchical nature of T allows us to impose an

upper bound on the detectability in an arbitrary region even though the shape of

this region may not be aligned with the boundaries that define the hierarchy.

For this work we have chosen color images as cover objects. However, our protocol

is applicable to other steganographic application domains, such as software, audio,

streaming data, or natural language watermarking.

5.1 General Framework for Adaptive Embedding

We define a protocol that can be used in conjunction with any embedding al-

gorithm to control and improve the algorithm’s stealthiness. We only require that

a partitioning of the document is possible and that for any region a quantifiable

measure, d(), that we denote as the detectability of the region, is defined to measure

the likelihood that any steganalysis algorithm would classify that region as one with

embedded information. However, this measure is hard to derive in practice. There-

fore, we use a metric based on the degree the statistics of the region deviate from

aggregate behavior of similar regions in a collection. For example, the detectability

of an image block may be defined as the distance of the statistics of the block from

113

the estimated statistics obtained for that block using an image model trained on the

image or on a collection of related training images.

In the following subsections we discuss the properties of the hierarchical repre-

sentation. We describe the details of the hierarchical representation in Section 5.1.1,

and its advantages in Section 5.1.2. We conclude in Section 5.1.4 with a proof on

the upper bound of detectability caused when the hierarchical representation is used

during embedding.

5.1.1 Hierarchical Representation of the Cover-Document

In our approach the cover document is partitioned into blocks and a hierarchi-

cal structure is imposed on the document using this partitioning. This hierarchical

structure is used to update the statistical properties of the document during embed-

ding. Once this information is available, it can as well be used to efficiently manage

the computational complexity of the process of choosing the suitable regions to em-

bed information. More significantly, if the detectability caused by embedding is kept

below a threshold at each node in the hierarchical representation, then we are guar-

anteed an upper bound on the detectability of any arbitrary region of interest in the

object.

Let T be a tree used to represent the cover document C. Each node Ni in this

tree corresponds to a block in the partition of C, denoted by R(Ni), as illustrated

in Figure 5.1. We use T(Ni) to refer to the vector of values that contain statistical

information about block R(Ni). The height of the subtree rooted at Ni is h(Ni). The

parent and the set of child nodes of Ni are denoted by parent(Ni) and children(Ni).

The nodes for which h(Ni) = 0 in T are called leaf nodes. If Ni is a leaf node,

then we refer to R(Ni) as an elementary block. n is the number of elementary

blocks, which is equal to the number of leaf nodes in T . The elementary blocks

may correspond to paragraphs in natural language text, where we can perform either

syntactic or semantic analysis of sentences [10] as well as text formatting analysis [2].

114

Fig. 5.1. Hierarchical representation in the form of a quad-tree for a
two-dimensional stego-document. Lower levels of the tree correspond
to finer partitioning of the cover object.

In software watermarking these elementary blocks might correspond to control flow

blocks, whereas in images they could be blocks of pixels or regions of interest.

For a given message M and a cover object C, the embedding algorithm f(M, C)

produces the stego-object, S. We assume that f embeds each bit of the message, Mj,

by performing one or more transformations on a block of C. For example, the trans-

formation could be the flipping of least significant bits in an image or the changing

of active sentences into passive sentences in text. This transformation is called an

embedding operation. More precisely, the embedding operation G(Mj , R(Ni)) takes

the jth bit of M, embeds it into the region R(Ni) of C and produces R′(Ni) of S.

Depending on the structure of C, T can be implemented as a binary tree, a quad-

tree, or some other tree structure that need not have a fixed branching factor. T is

formed such that T(Ni) may be obtained from
∑

v∈children(Ni)
T(v). We can reflect

the statistical effects of G(Mj , R(Ni)) on C at leaf-level, upward, to all ancestor nodes

of Ni in O(height(T), which is O(log n) time.

5.1.2 Advantages of the Hierarchical Representation

Using the hierarchical representation in conjunction with an embedding algorithm

provides the following advantages:

115

• A structured view of the statistical properties of the document is obtained for

different resolutions, which will point out the hot-spots, which are the regions

where the local statistics have anomalies compared to the global statistics of

the document.

• It is possible to efficiently keep track of the changes in the statistics of the cover

object after each embedding step. This is provided by reflecting the updates

in statistics to higher levels in the hierarchical representation, which requires

only O(log n) updates. n is the number of elementary blocks.

• Our protocol can set an upper bound on the detectability of arbitrary regions

in the cover object if we preserve a threshold on detectability values at each

level of the hierarchy. Section 5.1.4 contains a derivation of this upper bound.

• We can efficiently query document statistics. During the embedding process,

some steganographic algorithms try to find the most suitable regions to embed

information, as well as regions that require compensation for damage to the

detectability incurred during information embedding. In the hierarchical repre-

sentation only the statistics on the path to the root are relevant. Whenever we

detect an anomaly in statistics of regions on this path, we will be able to focus

on one subtree for corrections, whose root stands out with an abnormal value.

Siblings will cooperate in “fixing” the abnormality in their parent’s statistics

in this process of correction.

One drawback of using a pre-computed detectability metric or model of the cover

medium, is that it does not keep track of the document statistics that change during

embedding, which may affect the detectability. This may cause the algorithm to

incur detectability that is larger than what was initially quantified by the cost metric.

Another drawback is that there is no mechanism for backtracking from a change made

in the document in favor of a better embedding option that appears later during

embedding, which may cause suboptimal embedding performance. Our protocol, on

116

the other hand, dynamically updates document statistics by monitoring statistical

properties of candidate embedding regions using the hierarchical structure on-the-

fly during embedding. Stealthiness is achieved through an efficient representation of

the embedding costs, and it allows the embedding system to avoid regions whose use

might result in poor embedding performance.

If our protocol is used in conjunction with error correction, then making only

one pass through the stego-document is enough. Contrast this with steganographic

methods like Outguess [32], that try to preserve the statistics of the cover image

through a two-pass approach. In the first pass, message data is embedded into regions

which are found to be suitable using a static detectability metric. In the second pass

additional non-embedding changes are made to compensate for the changes in the

statistical properties of the object introduced in the first pass.

5.1.3 The Protocol

In this section we will describe the protocol that ensures that the detectability

measure for a region, d(R(Ni)) after applying G(Mj , R(Ni)) stays below a threshold

τ . This will allow our protocol to limit the increase in detectability introduced by

the embedding algorithm, thereby increasing its stealthiness. An upper-bound on

the detectability is derived in the next section.

For each node we define a binary-valued function S(Ni) which we will refer to

as the suitability function. S(Ni) = 1 if embedding any bit from M in Ni will

not increase d(R(Ni)) beyond τ , i.e. d(G(Mj, R(Ni))) < τ . We also keep track of

whether a message bit was embedded in R(Ni), in indicator Z(Ni). At each step

during the embedding N∗ is the suitable node selected for the embedding operation.

Let D(T(Ni)) be a function that returns the detectability value for node Ni given

the statistics, T(Ni). d(G(b, R(Ni))) is the detectability measure after applying the

embedding operation over the region R(Ni), where b is the part of the message that

can be embedded in R(Ni).

117

Initialization Phase

for each Ni in T in a bottom-up manner

do Z(Ni) ← 0

S(Ni) ← 1

if Ni is a leaf node

perform analysis on R(Ni) to obtain T(Ni)

else

T(Ni) ← Σ
v∈children(Ni)

T(v)

d(R(Ni)) ← D(T(Ni))

for each Ni in T in a top-down manner

do if d(G(b, R(Ni))) > τ

then S(Ni) ← 0

for each Nj in the subtree with root Ni

do S(Nj) ← 0

Embedding & Dynamic Update Phase

for each Mj in M

do repeat obtain N∗ from embedding algorithm

until S(N∗) = 1

R′(N∗) ← G(Mj , R(N∗))

perform analysis on R(N∗) to obtain T(N∗)

Np ← parent(N∗)

while Np is not root

T(Np) ← Σ
v∈children(Np)

T(v)

d(R(Np)) ← D(T(Np))

if d(G(b, R(Np))) > τ

then S(Np) ← 0

for each Nj in the subtree with root Np

do S(Nj) ← 0

118

Np ← parent(Np)

In addition to the embedding protocol described above we also need to specify

an extraction protocol. The extraction has to be modified to handle identification

of the regions that were avoided during embedding. This can be done in a number

of ways, of which we discuss two. One is by providing the extraction algorithm with

the fixed threshold that was used to identify these avoided regions. This threshold

information should be secret and known only to the extractor and the embedder. It

may as well be embedded in the stego object in a way that the extractor can recover

it before starting to extract M. This has a couple of drawbacks. First, it imposes

a constraint on embedding, namely, that the modifications done for the purpose

of embedding do not cause an increase above that threshold. Second, as pointed

out to us by an anonymous reviewer, it makes possible a “try-all-thresholds” attack

whereby the attacker exploits the fact that there exists a threshold below which

nothing was avoided at embedding time. These problems are mitigated by the fact

that even though the attacker can successfully find the fixed threshold and restrict

the region of attack to a smaller area, it will be harder to apply statistical attacks

on that area since this region was picked for embedding for the reason that it was

considered to be less vulnerable to statistical attacks.

An alternative mechanism to identify the avoided regions, one that avoids both

drawbacks (but that sacrifices some capacity), would consist of augmenting the origi-

nal message M with markers that identify the avoided regions. One way to do this is

by embedding information about each forbidden region immediately prior (or after)

that region – e.g., through a special marker symbol followed by avoided-region size.

The tree structure should then be used to keep track of the boundaries of avoided

regions in order to decrease the amount of bandwidth used up for such marking. At

extraction time, the extractor will use this marker information to ignore the avoided

regions. Note that, in this second scheme, we no longer impose the constraint that

the embedding does not cause a used region to exceed the threshold τ used to iden-

tify avoided regions (although of course we would impose a constraint to not exceed

119

analysis region

a

root node

i j

Fig. 5.2. Example of how the hierarchical representation efficiently
keeps track of the changes done in the cover document for the one-
dimensional case.

some other threshold τ ′ > τ); in this manner there is no threshold below which all

was used and none avoided. Having more than one threshold can be achieved by

increasing the threshold after the initialization phase. This way if embedding causes

a region’s statistics to exceed initial threshold, τ , but keeps them below τ ′, the em-

bedding will still be allowed. If embedding causes a higher increase in statistics that

exceeds τ ′, the algorithm should restore the original values of the region and mark

the region as avoided.

5.1.4 The Upper Bound on Detectability: A Complexity Analysis

If a message embedding algorithm, is used in conjunction with the proposed

protocol to monitor the statistical properties of a cover object, we are able to prove

an upper bound on the detectability of the statistical features of a region of arbitrary

shape in the stego-object. This upper bound provably provides robustness against

attacks based on statistical analysis of the anomalies in a region of the object such

as the sliding window in the generalized chi-square attack [98]. The proof we give

120

Type 1

Type 2

Type 3

Fig. 5.3. Three basic types of regions at a fixed height h of a quad-tree
T that are used to decompose any arbitrary region at this height.

relies on the fact that any such region can be decomposed into one or more blocks

corresponding to the internal and leaf nodes of the tree structure. In the specific

case of watermarking, Merhav et.al. [99] have shown that if a maximum distortion

constraint can be imposed on the embedding, it is possible to quantify the capacity

of the watermarking system in an information theoretic model with a non-malicious

adversary.

Using the threshold of the detectability for each node as τ and an additive de-

tectability model, where d(R(Ni)) =
∑

d(R(children(Ni)), we show that for any

region R(Ni) in the document the detectability, d(R(Ni)), will be

• O(τ log2 n) for one dimensional data with a binary tree representation (e.g.,

audio, natural language text, software, streaming data)

• O(τ
√

n) for two-dimensional data with a quad-tree representation(e.g., im-

ages).

Suppose that we are interested in obtaining the statistical properties, T(R), of

an arbitrary region R of the one dimensional cover object shown in Figure 5.2. The

region R is bounded by the elementary blocks R(Ni) and R(Nj). The smallest set

of nodes selected to represent R are called representative nodes and are shown in

black in the figure. T(R) may then be obtained using only these representative

121

nodes. The number of these nodes can be shown to be O(log2 n) using the following

argument: First, we search for nodes Ni and Nj starting from the root node. Let

Na be the common ancestor of nodes Ni and Nj with smallest height. We find the

paths from Na to the node Ni and pick all the right children of the nodes on the path

and similarly pick the left children while searching for Nj from Na as representative

nodes. The shaded nodes in the figure are the nodes visited during this search.

By this argument, since the length of the paths from Na to Ni and Nj will be at

most log2 n the number of representative nodes will also be O(log2 n). If we then

sum up the detectability values for these nodes, we get a worst case upper bound of

O(τ log2 n) on d(R).

A similar approach can be used to derive an upper-bound in the quad-tree case.

We define three basic types of regions, R1, R2, and R3. We use the notation R1(h)

to refer to a type R1 region at height h. An R1(h) region does not cover any block

in full at height h. An R2(h) fully covers a block in one corner and partially covers

three neighboring blocks at height h. An R3(h) totally covers two blocks at one

side, and partially covers two neighboring blocks height h. Any arbitrary region at

height h may be decomposed into a combination of R1(h), R2(h), and R3(h). Refer

to Figure 5.3 which illustrates these regions.

The detectability for R1(h) is given by d(R1(h)), which we will refer to simply

as d1(h). Similar definitions apply for regions of types R2 and R3. We can write the

detectability values for regions at height h in terms of detectability values for regions

at lower levels of the tree as

d1(h) ≤ 4d2(h − 1) (5.1)

d2(h) ≤ τ + d2(h − 1) + 2d3(h − 1) (5.2)

d3(h) ≤ 2τ + 2d3(h − 1) (5.3)

By using the recursion on d3(h), we obtain

d3(h) ≤ τ(2h3 − 2) (5.4)

= O(τ2h) (5.5)

122

Type 1 region

Type 2 regions

Fig. 5.4. Decomposition of a type R1 region

= O(τ
√

n) (5.6)

where we have used the fact that h = log4 n. We can use this result to solve for f2(h)

as

d2(h) = τ + d2(h − 1) + 2O(τ
√

n) (5.7)

= τ log4 n + τ + 2O(τ
√

n) (5.8)

= O(τ
√

n) (5.9)

which shows that f1(h) = O(τ
√

n).

5.2 Experimental Results for Adaptive Embedding

We have performed experiments to illustrate the effectiveness of our protocol in

increasing the stealthiness of a steganographic algorithm. For our experiments we

have chosen a simple least significant bit (LSB) embedding steganographic algorithm

for color TIFF images, however any other embedding scheme may be employed. A

quad-tree structure is used for T .

The embedding algorithm first pads M with random bits to produce a message

M′ with a size in bits equal to the number of pixels in C. M is located at a random

place within M′. A small part of M′ is used to for storing the starting point of

123

M within M′ and the size of M. Both red and green planes of C are used for

embedding. Each pixel of C carries only one bit of M′. Bits of M′ are XOR’ed with

a random bit, which is generated by a pseudo random bit generator that takes the

stego key as a seed. This randomizes the bits of M′. The embedding length is equal

to the number of pixels in C. The message length, length of M, is smaller than the

number of pixels in C.

The elementary blocks in C were chosen to be 8× 8 pixel blocks. For the experi-

ments reported in this chapter we chose the pixel variance of the elementary blocks

as the statistical information at the leaf nodes, or T (Ni) = Var(R(Ni)). For internal

nodes, we have
∑

v∈children(Ni)
T(v). The detectability measure for Ni was simply

selected to be equal to −T (Ni), in other words, we have

d(R(Ni)) =

−Var(R(Ni)), for leaf nodes
∑

d(R(children(Ni))), for internal nodes

This choice is motivated by the following observation. Usually the message M that

is embedded is an encrypted version of the secret message to be sent, in which case,

the sequence of bits in M will have noise-like characteristics, which will cause an

increase in the variance of C. Let the variance of a region of the cover image be σ2
c

and suppose that after message embedding the variance of that region increases to

σ2
s = σ2

c +ǫ. For regions with small σ2
c , the contribution ǫ may make the region visible

to steganalysis. Therefore, regions with high variance should have low detectability

values and are suitable for embedding. A sample image and the corresponding 8× 8

block variances are shown in Figure 5.5 and Figure 5.6, respectively.

A quad-tree structure T is initialized using the initialization phase of the algo-

rithm given in Section 5.1.3. Let Vh be the set of nodes at height h of T . For each

height, h, we calculate the threshold on detectability values, τh, as

τh = c

1

|Vh|
∑

Ni∈Vh

d(R(Ni)) − min
Ni∈Vh

d(R(Ni))

 (5.10)

where c is a parameter that controls the number of suitable regions selected. In our

experiments we have chosen c = 0.5.

124

The suitability of the node Ni is set using

S(Ni) =

1 if d(R(Ni)) < τh(Ni)

d(R(parent(Ni))) < τh(Ni)+1

0 otherwise

Note that the detectability values of both Ni and parent(Ni) are taken into consider-

ation in deciding if R(Ni) is a suitable region. This is a relaxation on the algorithm

described in Section 5.1.3 in order to avoid setting large blocks of C as unsuitable for

embedding and also taking into account the detectability measures of the siblings

of Ni, which are reflected in d(parent(Ni)). This relaxation can be tuned to take

into account ancestors of Ni that are further up in T than parent(Ni) for achieving

better stealthiness.

During the embedding, our protocol restricts the embedding system to use only

the suitable regions. The unsuitable regions after the initialization phase of the

algorithm for the image in Figure 5.5 are shown in white in Figure 5.7. After the

final phase of the algorithm the number of unsuitable regions increase for this image,

as you can see in Figure 5.8.

Figure 5.11 and Figure 5.12, show the difference images between the cover image

shown in Figure 5.5 and stego-images produced using two different approaches. The

gray regions in Figure 5.12 represent the regions that are the same in both the cover

and stego images. From these images it can be seen that our protocol guided the

embedding algorithm to avoid regions with high variance.

We tested the performance of our system using the steganalysis attack proposed

in [34]. Since the feature extraction of this system was designed for grayscale images,

we processed the red, green and blue channels independently. In our experiments

we used 141 TIFF images of size 512 × 512 pixels obtained from the Watermark

Evaluation Testbed (WET) [100].

In order to perform the classification between cover and stego images we have

used both support vector machine (SVM) and the Fisher linear discriminant (FLD)

classifiers. LIBSVM tools [101] were used for SVM classification. Given the em-

125

Fig. 5.5. A sample cover image.

Fig. 5.6. Variances of elementary blocks of the sample image. Higher
values are represented by lighter regions. Note that variance values
are inversely proportional to detectability.

bedding algorithm itself randomizes the message, we inserted a text message, the

first chapter of the Tale of Two Cities by Charles Dickens [102]. Although, actual

message length is 18%, embedding length is 100% for plain embedding, and it varies

126

Fig. 5.7. Initial suitability map for sample image. The regions shown
in white are the ones that are labeled as unsuitable for embedding.

Fig. 5.8. Final suitability map for sample image. The regions shown
in white are the ones that are labeled as unsuitable for embedding.

127

0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60
error rates for embedding length

er
ro

r
(%

)

images

Fig. 5.9. Error of RS-Analysis for the green channel using LSB em-
bedding only and using LSB embedding with hierarchical protocol

0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60
error rates for embedding length

er
ro

r
(%

)

images

Fig. 5.10. Error of RS-Analysis for the red channel using LSB em-
bedding only and using LSB embedding with hierarchical protocol

for each image when embedding is combined with the protocol. While we force the

system to stay out of avoided regions, we decrease the size of random part of M′.

The average embedding length was 42% for the embedding with the protocol.

128

classification plain embedding embedding with

method hierarchical protocol

SVM %49.65 %42.65

FLD %76.92 %69.23

Table 5.1
Classification results.

Fig. 5.11. Difference of cover image and stego image generated using
LSB embedding only

The accuracy of classification for the images in our test set are given in Table 5.1.

Although both classifiers are not very accurate at detecting LSB embedding, from

this table it can be seen that our protocol was still able to decrease the detectability

of the steganographic method.

We have also performed tests using RS steganalysis [103] over the green and

red color planes which were used as the embedding channel. Our aim was not to

evaluate RS steganalysis per se but rather to evaluate the impact of our technique on

increasing the stealthiness against statistical steganalysis. This attack is specifically

designed to detect LSB embedding. However, as it is also stated in [103] and [35],

129

Fig. 5.12. Difference of cover image and stego image generated using
LSB embedding with hierarchical protocol

RS steganalysis is more successful with grayscale images and for messages that are

randomly scattered over the stego-image. This is not the case for our embedding

algorithm. Even with the plain embedding the error rates were high, because the

LSB algorithm perturbs LSBs of all pixels. Therefore, estimated embedding lengths

are sometimes higher than 100%. Still, detection errors increase when our protocol

is used, as you can see in Figure 5.9 for green color plane and in Figure 5.10 for red

color plane.

5.3 Summary

In this chapter, we describe a protocol for improving the stealthiness of information-

hiding schemes, and give the test results of an implementation of it on LSB based

image steganography. Although our protocol does not completely eliminate the sta-

tistical anomalies caused by embedding that are a major threat to the embedding

algorithm’s stealthiness, it effectively controls their severity and decreases their total

number.

130

Guided by a continuously updated detectability representation of the cover ob-

ject, our protocol provides a mechanism for controlling statistical anomalies at both

fine and coarse scales of granularity. We use a hierarchical representation to manage

the complexity of dynamically keeping track of the detectability of the cover object

during embedding.

We also quantify how bounds on the detectability of regions from the hierarchy

translate into detectability bounds for arbitrary regions.

131

6. APPLICATIONS OF INFORMATION HIDING TO

PRIVATE COMMUNICATION AND DEFENSE

AGAINST PHISHING

There are many other applications of watermarking besides the immediate appli-

cations of copyright protection, fingerprinting or meta-data binding. During the

development of this thesis we have contributed to the design and building of a pri-

vate communication system that uses watermarking. In addition to that we have

built a phishing defense system, Viwid, that makes use of visible watermarking in

order to provide a usable verification mechanism for corporate that provide services

to their users over the Internet.

6.1 Watermarking for Private Communication: WaneMark

The WWW increasingly allows people to create and update content for public

access. Some of this information is collaboratively owned (created and maintained),

while other information is privately owned and maintained (but still publicly ac-

cessible). Whereas it is unethical to modify the former for covert communication,

it is quite legitimate to do so with the latter, and we give a design for doing so

while achieving both plausible deniability and automatic perishability of the covert

message (the message disappears unless periodically refreshed by the encoder). Tra-

ditional information-hiding has looked at the problem of embedding a message in a

static version of an online document, the problem of doing so for rapidly evolving

document collections has not been considered in the past. This work shows that it

is possible to do so, and in a manner that actually makes use of the rapidly evolving

nature of the documents to achieve the above-mentioned property of evanescence:

That the message decays over time and eventually becomes completely erased unless

132

it is refreshed. Therefore the mark needs to be continuously maintained as the doc-

ument evolves, in a manner that prevents the adversary from knowing who is doing

the refreshing yet that allows the intended reader of the mark to recover it with-

out any form of explicit communication. One advantage of our scheme is that the

mark’s reach is now unbounded: It can be read by any authorized entity on the web

(anyone with the secret key), and the reading of it is indistinguishable from normal

web access patterns. Another advantage is the “hiding in the crowd” effect: Many

people are updating the documents, thereby providing a cover for the one person

surreptitiously injecting and refreshing the mark, or replacing it with another mark

message. We have also demonstrated the feasibility of the proposed technique, and

shown that remarkably little effort is required to implement our scheme over today’s

web.

Although messages that self-destruct were featured in spy movies, their potential

usefulness is not limited to the original purpose of their self-destruction in such

movies, which was to prevent their being read by a hostile adversary after they

had served their useful purpose of communicating the next mission to Mr Phelps.

The case for making such messages perishable includes many possible reasons: (i)

Such messages can become stale and thereby convey misleading information to their

intended recipient (e.g., the message ”Alice and Bob are both doing fine” after one of

them ceases to be doing fine) – more generally, because information is perishable and

becomes stale, useless, or even dangerous as the world changes, it stands to reason

that stealthy messages that convey that information should be similarly perishable

and self-efface; (ii) if the message involves a secret key, then the longer it lingers, the

more it is likely that it (and the key used to hide it) may eventually be compromised

by an adversary who has enough computational resources (or will have such resources

in the future - systems have to be resilient not only against the computational power

of today but also against that of the future); (iii) the desired updating of the message

(either refreshing it or replacing it with another message) by the person who wrote

it may become infeasible through that person’s accidental loss of the secret key, loss

133

of access to the online world, or other physical inability to take such action; (iv)

the automatic disappearance of the message can be used to communicate the very

fact that (iii) has occurred; (v) the person in charge of removing the message may

be negligent, or may erroneously believe that someone else was supposed to do the

removal, etc.

Providing privacy preserving Web-based communication is an active research

area [104–106]. Achieving this is hard because many players (such as authoritarian

governments, aggressive marketeers, etc) want to have a complete profile of Web

users and a log of their actions on the Web. We propose a private communication

channel, that ensures plausible deniability, and automatic perishability of the mes-

sages. We achieve this goal through the use of collaborative web content available on

the Internet, without unethically interfering with the functionality of these valuable

services, and without any need for modification of publicly available data (defined

as data not owned by the sender of the message). In a nutshell, our scheme is based

on pairing a privately owned web page with a collaboratively owned web page, and

to use this pair as a cover document. The embedding changes are only performed

on the privately owned web page.

There are many challenges involved in designing such a system:

• how to use, for marking purposes, the content that we cannot modify either

because we have no control over it (e.g., news portals), or because it is unethical

to use the ability to modify it for marking purposes (e.g., wikis, forums)

• heterogenous content; most published marking schemes assume one type of

content, whereas we are now faced with a semi-structured collection of different

content types (text, images, audio, video, annotations, etc)

• not interfering with the proper functioning of the publicly owned covers used

• providing controlled perishability

134

• being stealthy while using a publicly accessible cover document (as is custom-

arily required in information hiding)

• providing plausible deniability of the covert communication

• providing high covert communication bandwidth (especially challenging when

the document consists of data that has low embedding capacity, such as text)

The difficulty of these challenges is exacerbated by the increasing power that a

potential adversary can muster – the repertoire of information sources for such an

adversary now includes forum or blog boards (most or least accessed pages, most

active member etc.), web-bots, ISP logs, search engines, web page tracking engines

[107, 108], to mention a few.

Our system fulfills most of the requirements listed for a Web based publishing

system listed by Waldman et al. [106]: censorship-resistant, tamper evident, source

anonymous, updatable, deniable, fault tolerant, persistent (i.e., no expiration date),

extensible, freely available. As will become clear later, the only requirement we

do not provide is persistency over time (which is inherently incompatible with a

self-destructing message).

Previously proposed private communication systems use a third party distributor

(e.g., e-mail services [104]) to store and distribute the message to intended receivers.

In our system, the sender does not use a third party distributor and therefore has

a greater degree of control. The sender also has the option of privately storing the

cover document (until it is cached by another Internet company [109,110]) if she/he

wishes to maintain the privately owned web page that is used as part of the cover

document.

6.2 Watermarking for Phishing Defense: ViWiD

Natural language watermarking provides a way to hide meta-data information

into the cover text in a way that it is not easy to separate the meta-data from the

135

text without changing the semantic form or syntactic form of the sentences in the

text.

In addition to meta-data binding for copyright protection, natural language wa-

termarking provides an integrity checking method that “travels with the content”

whenever the content is (mis)used, which makes it very valuable for applications

that involve private communication. For example, phishing - a web based deception

technique - exploits the fact that customers of online services trust e-mail communi-

cation. This attack is successful partially due to the fact that secure e-mail systems

are not commonly employed by the non-tech-savvy users. There is a great need for

binding the source information to the documents involved in private communication.

See [50] for a system that uses watermarking against phishing.

Another relevant problem is enforcing security policies on private communica-

tions. An example of such a system would be e-mail communications that involve

groups of people where each of the participants has a different level of access control

rights. In such systems, unless the security level is bound to the text content, there

is no possibility of enforcing security policies automatically when the encryption or

digital signature is separated from the document (whereas a watermark inherently

“travels with the content”). In addition, robust natural language watermarking

algorithms will enable a wide range of applications such as text auditing, tamper-

proofing, and traitor tracing.

As a future research topic, we will work on watermarking ensembles of text

documents collectively. This would create new application areas that concern the

access control policies for digital libraries.

In this chapter, we present a watermarking based approach, and its implementa-

tion, for mitigating phishing attacks - a form of web based identity theft. ViWiD 1 is

an integrity check mechanism based on visible watermarking of logo images. ViWiD

performs all of the computation on the company’s web server and it does not require

installation of any tool or storage of any data, such as keys or history logs, on the

1Stands for VIsible WatermarkIng based Defense against Phishing

136

user’s machine. The watermark message is designed to be unique for every user

and carries a shared secret between the company and the user in order to thwart

the “one size fits all” attacks. The main challenge in visible watermarking of logo

images is to maintain the aesthetics of the watermarked logo to avoid damage to

its marketing purpose yet be able to insert a robust and readable watermark into

it. Logo images have large uniform areas and very few objects in them, which is a

challenge for robust visible watermarking. We tested our scheme with two different

visible watermarking techniques on various randomly selected logo images.

Our society has increasingly become a digital society where many critical appli-

cations and services are provided on-line. Examples of such applications are financial

services, retail services, on-line news channels and digital libraries. This paradigm

shift has had a beneficial effect on business and education by providing faster and

easier access to services and information. Unfortunately, it has also exposed these

services to malicious attacks that are more difficult to detect and defend against.

One of the major security concerns in cyberspace, having impact on individuals as

well as businesses and organizations, is identity theft. According to a recent Con-

gressional Statement of the FBI Deputy Assistant Director [111], on-line identity

theft represents a significant percentage of the total number of crimes committed in

cyberspace.

Phishing is a form of on-line identity theft in which attackers send fraudulent

e-mails and use fake Web sites that spoof a legitimate business in order to lure un-

suspecting customers into sharing personal and financial data such as social security

numbers, bank account numbers, passwords, etc. The incidence of phishing attacks

has increased significantly over the last couple of years. By the end of December

2004, Symantec Brightmail AntiSpam antifraud filters were blocking an average of

33 million phishing attempts per week, up from an average of 9 million per week in

July 2004 [112]. Acknowledging that phishing is a significant threat to e-commerce,

over 600 organizations formed the Anti-Phishing Working Group [113] focused on

eliminating identity theft due to phishing.

137

Due to the rapid growth in the impact and number of phishing attacks, there is

a considerable research effort going on both in academy and industry for developing

robust and easy to use defense systems. Most of the currently available defense sys-

tems against phishing either limit the access of the user or display warning messages

when they detect suspicious activities. Examples of such systems include e-mail

spam filtering or browser plug-ins specially designed for monitoring user’s transac-

tions, e.g. SpoofGuard [114], Netcraft [115] or Ebay [116] toolbar. Another approach

focuses directly on mitigating man-in-the-middle phishing attacks through a multi-

factor authentication scheme [117]. We will briefly review these existing approaches

in Section 6.2.1.

We propose a defense system, ViWiD, that mitigates phishing attacks through an

integrity check mechanism built on visible watermarking techniques. This mechanism

is based on asking the user to check the validity of the visible watermark message

on the logo images of the web pages. We propose two types of watermark messages:

The first type is the time only watermark when the company’s web site embeds only

the current date and time of the user’s time zone into the logo image. Recall that

IP address can be used to determine the time zone of the user machine. An example

of this type of watermarked logo can be seen in Figure 6.22(a). The second type

of watermark message includes a secret shared between the user and the company

together with the time stamp, as shown in Figure 6.2(b). The logo images with this

shared secret watermark message can be displayed either after the user logs in, or

through the usage of cookies. Since this watermarked logo displays a secret shared

only between the user and the genuine company, the appearance of such information

on the logo is enough for the user to confirm the genuineness of the web site.

The integrity checking system is designed to include a shared secret between

the company and the user in order to prevent the phisher from performing the

current “one-size-fits-all” attack. This means that even if the phisher is successful

2There is a quality loss in the displayed images through out the chapter due to the conversion from
Graphics Interchange Format (GIF) to Post Script (PS) format

138

in removing the watermark, he can not insert back the expected watermark without

knowing the shared secret between the company and the user.

The reasons for following this particular approach are as follows. First, phishing

is primarily a social engineering attack which involves the active participation of

the users to succeed. Thus, the approach towards mitigating such attacks must

also include the co-operation of the users to some extent. Indeed even today, the

company web sites advise the users to follow well-known safety measures such as

checking the padlock at the bottom of the screen and the ’https’ sign in the URL,

both of which signify a SSL connection. But, most of the victims of phishing attacks

today are naive users who are not tech savvy enough to check the certificates or

security sign. Also, the presence of a SSL connection by itself does not confirm

the true identity of the web site. Any site, even a spoofed site, can establish a

SSL connection. Communicating to naive users the true identity of the web site

is a challenging problem. Hence, we propose the use of a shared secret which the

user chooses himself when he registers with the original site. This shared secret

can be easily recalled and recognized by the user. Using this secret, the company

authenticates itself to the user. In the remaining of this chapter, we will refer to this

secret as a mnemonic.

Second, we chose the web site logo as a carrier for the watermark message, since

the user always expects to see a logo on a web page. Besides this, the phisher always

has to re-use the web site logo when he imitates the pages of the original web site.

Since the original logos are always watermarked in our approach, it is not trivial for

the phisher to remove them and insert his own watermarks. Even if the phisher is

able to remove the watermark, he will not be able to insert the mnemonic for each

user. More details about the proposed framework are presented in Section 6.2.2.

The rest of the chapter is structured as follows. Next section provides a brief

introduction to the anatomy of phishing attacks, state-of-the-art defense systems

against phishing and summarizes the visible watermarking technique we use. We

139

introduce our experimental set up and results in Section 6.2.3 and discuss possible

attack models in Section 6.2.4. We conclude in Section 6.2.5.

6.2.1 Related Work on Defense Against Phishing

In a typical phishing attack, a person receives an email apparently sent by an

organization that the person interacted with before, and with which he has possibly

built a trust relationship (e.g., his bank or a major retail on-line store). The email

usually projects a sense of urgency, and asks the client to click on a link that, instead

of linking to the real web page of the organization, will link to a fake web page that

is subsequently used to collect personal and financial information. There are two

victims in phishing attacks: the customer being tricked into giving away personal

information and thus allowing the attacker to steal its the identity, and the company

that the phisher is posing as, which will suffer both financial loss and reputation

damage due to the attack.

Unauthenticated E-mail The major mechanism to start the attack is using forged

e-mails. The phisher can forge e-mails by faking the source information dis-

played on the e-mail programs. Moreover, phishers can forge the content of

the e-mail by getting a template of the style of legitimate e-mails when they

subscribe to the company. The attack has a great impact because e-mail is

the main communication channel for the online services. The subscribers or

customers are expected to follow their transactions and receive confirmations

via e-mails.

User Actions Phishing requires human interaction as like many of other on-line

attacks do. However, unlike other attacks (worms or viruses spreading via e-

mail) where one click is enough to trigger the attack, phishing requires active

participation of the user at several steps, including providing personal infor-

mation.

140

Deceptive View The core of the phishing attack lies in the ability of the phisher to

create a web page looking very similar to a web page of the legitimate organi-

zations by simply copying the logos, and using a style and structure similar to

those on the legitimate page. In other words, the information displayed on web

pages is not tied to its creator or owner in a way that removing that tie, will

deteriorate the data beyond repair. In addition, many browsers are modifiable

on the client side, allowing a phisher to remove buttons, not to display certain

information, or to mislead the user by playing with the graphics.

A major challenge in addressing phishing attacks lies in designing mechanisms

that are able to tie the data displayed on a web page (or related with a web

page) to its legitimate owner. This is a difficult task because of the nature of the

information displayed, its heterogeneous nature, and the dynamic characteristic

of web pages.

Previous Approaches to Prevent Web-Based Identity Theft

Secure Email Many forms of phishing attacks can be prevented by the use of

secure email tools such as Privacy Enhanced Mail (PEM), Secure Multipurpose In-

ternet Mail Extension (S/MIME) and Pretty Good Privacy (PGP). However, to this

date, secure email is not widely used over the Internet, because of scalability, trust,

and difficulty to deploy it. A good discussion of certificate based security is provided

in [49] by Ellison and Schneier.

Client-side Defense One direction in addressing the phishing attack was to pro-

vide the client with more accurate information about the web sites that he accesses.

Various tools empowering clients with more information have been designed to mit-

igate phishing attacks. One such tool is SpoofGuard [114] which computes a spoof

index and warns the user if the index exceeds a safety level selected by the user.

The computation of the index uses domain name, url, link and image checks to

141

evaluate the likelihood that a particular page is a spoof attack. One component of

SpoofGuard maintains a database of hash of logo images and corresponding domain

names. Later on a web page when the hash of the logo image matches a hash in the

database, the current url is compared with the expected domain name, if these do

not match the user is warned.

Netcraft, [115] also has released an anti-phishing toolbar that provides informa-

tion about the web sites that are visited by a client such as the country hosting the

sites and enforces the display of browser navigational controls (toolbar and address

bar) in all windows.

Herzberg and Gbara [118] proposed establishing, within the browser window, a

trusted credentials area (TCA). It is the browser that protects the TCA by preventing

its occlusion. The scheme has its costs (it requires logo certification, logo certificate

authorities, etc), but tolerates more naive users.

Cryptography-based Defense TriCipher, Inc. very recently introduced TriCi-

pher Armored Credential System (TACS) against man-in-the-middle phishing at-

tacks [117]. TACS works when the SSL client authentication is turned on. This

means that the SSL protocol will have three steps: authenticate the web server to

the client browser, set up encrypted communications and authenticate the end user

to the web server. Common usage of SSL consists only of the first two steps. TACS

uses two different types of credentials. The first one is called double armored cre-

dentials, and requires the users to install the TriCipher ID protection tool on their

machine. The tool automatically pops up when the user goes to a page that is pro-

tected by SSL and encrypts (signs) the password using a key stored in the Trusted

Platform Module or Windows R© Key Store. Then the TACS appliance at the web

server side authenticates the user. The second type of credentials is called triple

armored credentials which uses, besides the user password and the key stored on the

user’s machine, a smart card or a USB memory stick to store a key or a biometric.

The user’s password is signed both with the key on the user’s machine and another

142

key stored elsewhere. The triple armored credential system raises the bar for the

phisher because even if he is able to steal the key on the user’s machine, he also has

to steal the key stored on an outside system.

Shared Secret Schemes More recently two new authentication schemes, similar

in nature to our system, have been brought to our attention. PassMark Security,

Inc.’s [119] 2-Way Authentication Tool helps the users identify known servers. In this

scheme, the user provides the server with a shared secret, an image or a text phrase,

in addition to his regular password. The server presents the user with this image,

and the user is asked to recognize it before entering his password and authenticating

himself to the server. Passmark images are randomly assigned to users from a pool of

over 50,000 images and later the users can change their Passmarks, like they change

their passwords, by selecting new images from the pool or by uploading an image of

their choice.

Dhamija and Tygar proposed using Dynamic Security Skins [120] as a defense

against phishing. Their system is based on having a Trusted Window in the browser

and using the Secure Remote Password Protocol (SRP) [121] for authentication.

Spoofing of trusted window is prevented by providing an image which is a shared-

secret between the user and his browser. This window is dedicated to username and

password entry. SRP is a verifier-based protocol. SRP provides the functionality

for the server and user to authenticate each other over an un-trusted network by

independently generating a session key based on a verifier. User sends the verifier to

the server only once when he is registering. In Dynamic Security Skins, this verifier

is used by the browser and the server to generate a visual hash that is displayed in

the background of the trusted window and in the server’s web site. To authenticate

the server, the user needs to visually compare the two images to check if they match.

143

Limitations of Previous Approaches

Even though the client-side defense tools raise the bar for the attackers, they do

not provide a complete solution. Many checks and enforcements used by the client-

based defense tools can be fooled by attackers having a reasonable understanding of

web site construction [114]. For example, the image check system of SpoofGuard

can be fooled by a mosaic attack where the attacker partitions the logo image into

pieces, but displays them in appropriate order so that the user thinks that he is

looking at a legitimate logo.

Moreover, any “client side only” defense mechanism will suffer from false posi-

tives. Too many warnings will interfere with the user’s browsing experience and the

user will simply turn off the protection mechanism in such cases.

In addition to the above limitations, the “client side only” schemes leave all of

the defensive actions and computational costs up to the user’s machine, even though

the companies have larger computing power at their disposal and can do more to

mitigate the risks. Moreover it is the companies who create the content (logo, style

etc) that the attackers seek to imitate and/or misuse. Therefore, we believe that

companies can play a larger role in the overall defense strategy to mitigate phishing

attacks.

On the other hand, cryptography based tools require the user to download a tool

on every machine he uses to access his online accounts, and/or the user is required

to carry another medium e.g. a smart card or USB memory stick with him when

he wishes to access his accounts. One other limitation for TACS [117] is that it is

designed to work only for man-in-the-middle phishing attacks. When the phisher

directs the users to his web page which might have a SSL connection but without

the client authentication module turned on, the TriCipher ID protection tool will

not pop up and sign the password.

The shared secret schemes introduced in Section 6.2.1 are similar to our approach

in the sense that they focus on how a legitimate server can authenticate itself to the

144

user. However, our approach and these two approaches diverge on the generation

and presentation of the shared-secret. The main drawback of PassMark approach

is that the shared secret is not bound to a particular location on the original web

page. This makes the scheme less user-friendly as across different service providers,

the users will have to look at different places to find their shared secret on the web

page. On the other side, Dynamic Security Skins [120] scheme suffers from asking

the users to dedicate part of their browser window to the Trusted Window. Besides,

this scheme trusts the client’s browser on vital security processes such as storing the

verifier and generating the visual hash.

Overall, a complete solution for defense against phishing, must address all three

causes that allow a phishing attack to be possible: unauthenticated e-mail, user

actions and deceptive view. Thus, a complete solution should include mechanisms

that can analyze what the user sees, analyze the e-mail and web page content, and

provide integrity checks for these components. In addition, such a system should be

easy to use and deploy.

Visible Watermarking Overview

Visible watermarking is the insertion of a visible pattern or image into a cover

image [122]. A useful visible watermarking technique should meet the following

requirements: preserving the perceptibility of the cover image, providing reasonable

visibility of the watermark pattern and robustness [123]. Huang and Wu summarize

the insertion of a visible pattern into the cover image as:

I ′ = K1 · I + K2 · W (6.1)

D(EI(I
′), EI(I)) < ThresholdI (6.2)

D(EW (I ′), EW (I)) < ThresholdW (6.3)

In Equation 6.1, I represents the cover image, W represents the watermark image

and I ′ represents the watermarked image. Equation 6.2 represents the boundary on

145

Fig. 6.1. A generic login page with a watermarked logo image, scaled
to half of its original size for space requirements.

the distortion of the perceptibility of the cover image, while Equation 6.3 represents

the boundary on the distortion of the visibility of the watermark patterns. D is

a distance function measuring the perceptible difference of its two entries. EI is a

image feature extraction function for the cover and watermarked images. EW is a

separate image feature extraction function for the watermark pattern. ThresholdI

and ThresholdW represent the largest allowable distortion on perceptibility of the

cover image and on the visibility of the watermark pattern respectively.

In ViWiD, we use visible watermarking in order to provide the users with visibly

watermarked logo images and the visible watermark pattern is generated dynamically

depending on a shared secret between the user and the company.

6.2.2 Proposed Approach

The content of the e-mail and the spoofed page are the means through which

the “social engineering” aspect of phishing is carried out. The phisher tricks the

146

user into submitting sensitive information by using the content and the style stolen

from the legitimate company. A good defense mechanism must require an integrity

check method that “travels with the content” when it is used or misused. One way

to achieve this is digital watermarking. Our approach watermarks the content on

the legitimate web page in a way that provides an integrity check. We use the logo

images as the watermark carriers, based on the observed fact that nearly all phishing

attacks re-use the logo images.

Design Goals and Motivation

The user can be tricked into a phishing attack, only if the phishing e-mail is

imitating a company with which the user has previously established a trust relation.

All companies, targeted by phishing attacks, have large numbers of users using their

online services. Many of the users use several varieties of browsers and more than one

computer to access their account online. A key-based watermark detection system

requires the keys for detection and extraction to be distributed to all the users.

We avoid the key distribution problem by using a visible watermark, with a human

involved in the detection process. This way we also give the user an active role in

the defense against a social engineering attack.

We seek to thwart the “one size fits all” attacks by designing the visible watermark

message such that it is unique and varies with time. ViWiD embeds a local time

stamp which is updated periodically and a mnemonic selected by the user while the

online account established. The rationale for using the time stamps is that phishing

sites are usually up for 6 to 7 days [113], and unless the phishers are able to remove

the watermark, their stolen logo cannot display a fresh time to all the intended

victims. Also, this system should never ask for the user’s mnemonic after the online

account is established in order to avoid the possibility of revealing the mnemonic

even if the user mistakenly enters his login and password to a spoofed site.

147

(a) (b)

Fig. 6.2. Logo images watermarked with ImageMagickTM : (a) time
only watermark (b) watermark with both time and mnemonic, in
this image the mnemonic is Kakkajee.

Framework Description for Viwid

On the publicly available web pages, the logo images display the date and time of

the day as a visible watermark. An example is shown in Figure 6.2 (a). In these logo

images, date and time are periodically updated to show the current time according

to the user’s time zone. The user will be trained to expect to see the current date

and time as a visible watermark on the publicly available web pages.

When the user establishes an account with the legitimate company, he is asked

to select a mnemonic. We assume that there is a secure connection between the web

server and the client side at that time to prevent the disclosure of the mnemonic

to eavesdroppers. When cookies are enabled at the user’s machine, the web site

can use it to recognize the user the next time he is visiting the site. Using the

cookie information, the web site knows which mnemonic to embed as a watermark

in the logo images without authenticating the user. On the other hand, if cookies are

disabled, then the mnemonic can only be added to the visible watermark after the

user logs into the established account. This is a less satisfactory form of protection,

as the alarm comes after the user has given his login and password. An example of a

logo image carrying both the time stamp and the mnemonic is shown in Figure 6.2

(b).

148

In order to make the user expect these watermarks, the companies need to display

messages that remind the user to verify the validity of the watermark displayed on

the logo images. An example login page can be seen in Figure 6.1.

6.2.3 Experimental Setup and Results

We collected logo images from randomly selected web pages of 60 Fortune 500

companies and the Center for Education and Research in Information Assurance

and Security (CERIAS). All of these logo images were colored Graphics Interchange

Format (GIF) images. GIF is the preferred format for displaying logos on web pages

because GIF images are 8-bit palette based images, hence their sizes are small. In our

experiments, we tested the effectiveness of several visible watermarking algorithms

on 61 logo images. The size of these logo images ranges from (18x18) to (760x50).

Even though there is a vast amount of literature on invisible image watermarking

techniques, there have been relatively fewer visible image watermarking schemes

developed to date [123]. We tested several different visible watermarking techniques

on our logo images database. Visibly watermarking color logo images brings many

challenges compared to watermarking gray scale images or JPEG images. The main

challenge is to maintain the aesthetics of the watermarked logo so as to not to damage

its marketing purpose yet be able to insert a robust and readable watermark into it.

Moreover, visible watermarking on the logo images is rather less robust because these

logo images have large uniform areas and very few objects in them. Besides these

the time and memory requirements of the watermarking operation should be very

low in order for the web server to be able to dynamically update the time stamp on

the logo images frequently. We used the following two techniques in order to verify

the applicability. In all these tests, we used a watermark image that is the same size

as the cover image.

• ImageMagickTM ’s embedded watermarking module [124] ImageMagickTM

is a free software suite for the creation, modification and display of bitmap im-

149

(a) p = 0.15 (b) p = 0.30

(c) p = 0.30 (d) p = 0.40

Fig. 6.3. Logo images watermarked with ImageMagickTM using various p values

ages. ImageMagickTM version 6.2.0 watermarking scheme updates brightness

component of HSB color space of every pixel in the cover image using the

following equations to embed the watermark:

B′
i,j = Bi,j +

(p · offsetwi,j)

midpoint
(6.4)

where B′
i,j is the brightness of the watermarked image pixels, and Bi,j is the

brightness of the cover image pixels.

offsetwi,j = Iw
i,j − midpoint (6.5)

where Iw
i,j is the intensity of the watermark image pixels.

midpoint =
maxRGB

2
(6.6)

maxRGB is the maximum value of a quantum, where a quantum is one of

the red, green, or blue elements of a pixel in the RGB color space. In our

experiments, ImageMagickTM was compiled with 16 bits in a quantum, thus

giving maxRGB equal to 65x535.

p is a user selected parameter for the percentage brightness of the watermark

pixel. An example of this embedding with p = 0.3 can be seen in Figure 6.2.

150

Hue and saturation of the cover image are not affected in the watermark em-

bedding process. The value of the p parameter controls the visibility of the

watermark. Figure 6.3 shows and example of the watermark embedding where

the same watermark is embedded with varying p.

In order to preserve the aesthetics of the cover logo image, we used RGB (mid-

point, midpoint, midpoint) as the background color in our watermark images.

This is because, with these RGB values, the corresponding offsetw values, in

Equation 6.5, become 0.

We have observed that the background color, the text geometry on the water-

mark image and parameter p have to be adjusted according to the cover image

properties in order to reach an acceptable level of watermarked image quality.

Figure 6.4 shows examples of (a) a light and (b) a dark background logo images

watermarked. In both Figure 6.4 (a) and (b) background of watermark image

is RGB (midpoint, midpoint, midpoint) and p = 0.40. The color of the text of

watermark image is black in Figure 6.4 (a), and white in Figure 6.4 (b).

• Mohanty et al.’s approach [125] In their visible watermarking scheme,

the modification of the gray values of the host image is based on its local as

well as global statistics.

I ′
n = αn · In + βn · Iw

n (6.7)

where I ′
n is the intensity of the nth block of the watermarked image. In and

Iw
n are the corresponding intensity values of the cover and watermark images

respectively. αn and βn are the scaling and embedding factors depending on

the mean and the variance of each block, and the image mean gray value.

In [125], it is stated that for color images the watermark should be put in the

Y component (luminance). However, when this approach is applied on logo

images with white background, even a small change in the luminosity of the

background will disturb the aesthetics of the logo image. An example of this

151

(a) (b)

Fig. 6.4. Logo images watermarked with ImageMagickTM parame-
ter p = 0.40 (a) a white background and (b) a dark background

phenomenon can be seen in Figure 6.5 (a). On the other hand, logo images

with dark background gave better results, see Figure 6.5 (b) for an example.

However, we observed that the K component of the CMY K colormap can also

be used to insert the watermark into logo images. This modified approach gave

us better results on logo images with white background, see Figure 6.6.

We are not able to provide samples from the watermarked version of the logo images

we collected from Fortune 500 companies’ web pages due to copyright issues. In

addition, there is a quality loss in the displayed images through out the chapter

due to the conversion from GIF to Post Script (PS) format. In order to provide

GIF versions of the watermarked logo images and a controlled access to these logo

images.

6.2.4 Security Analysis and Discussion

A phisher can try to break the above system through the following three attacks.

First attack is to insert a valid watermark message after removing the existing wa-

termark from the logo image. The second attack is to recreate the logo image from

scratch and later insert a valid watermark message. The third attack is to perform a

man-in-the-middle attack. We explain below why these attacks are not easy for an

attacker to carry out.

Success of the first attack depends on the robustness of the underlying visible

watermarking algorithm and on the success of the phisher at generating the valid

watermark messages for the targeted users.

152

(a) (b)

Fig. 6.5. Logo images watermarked with Mohanty et al.’s watermark-
ing algorithm (a) a white background and (b) a dark background

Huang and Wu , in [123], show successful attacks on well known visible water-

marking systems [125, 126] with the help of human intervention. Huang and Wu’s

system requires the shapes of the watermark patterns to be marked manually. Re-

sults in [123] show that the image inpainting techniques are very effective in removing

simple watermark patterns composed of thin lines or symbols. For more sophisti-

cated watermark patterns such as thick lines or bold faced and multi-textured text,

Huang and Wu propose an improved scheme where thick watermarked areas are

classified into edges and flat areas. Later flat watermarked areas are recovered by re-

filling them with unaltered flat neighbours. Edged watermarked areas are recovered

by approximated prediction based on adaptation information of nearby pixels.

However, in ViWiD, even if the attacker is able to remove the watermark success-

fully from the watermarked image, he can not insert a completely valid watermark

message. The valid watermark message consists of the date and local time of the

day for the user’s time zone, and the user’s mnemonic. The mnemonic is unique

for every user and the attacker does not have access to any user’s mnemonic. If he

can have such access, his attack ceases to be a “one-size-fits-all”, and thus we have

succeeded in increasing the attacker’s cost.

The second attack, which requires recreating the logo image from scratch, can also

be thwarted by the fact that the attacker is unable to generate the valid watermark

message for every user.

The man-in-the-middle attack is one of the most successful ways of gaining control

of customer information [127]. However, besides directing the user to his machine

through social engineering, it is difficult for the phisher to be successful in this attack.

153

(a) (b)

Fig. 6.6. Logo images watermarked with modified version of Mo-
hanty et al.’s watermarking algorithm (a) Time only watermarked
logo image (b) Watermarked logo image with Time and Mnemonic

He has to either manipulate the DNS or proxy data on the user’s machine, or locate

the attacking machine on the real company’s web server’s network segment or on the

route to the real company’s web server. Even if the phisher performs a man-in-the-

middle attack in order to bring a fresh logo every time a user requests the phisher’s

web page, the web site would only provide the logo specifically watermarked for the

time zone that is assigned to the attacker’s IP address. In such a case the attacker

would need to have available as many man-in-the-middle’s as the number of time

zones he wants to attack.

6.2.5 Summary

We have presented a defense system, ViWiD, that mitigates phishing attacks

through integrity checking of web site logos using visible watermarking techniques.

The valid watermark message consists of the date and local time of the day for the

user’s time zone, and the user’s mnemonic. The watermark message is designed to

be unique for every user and carries a shared secret between the company and the

user in order to thwart the “one size fits all” attacks.

Unlike the other systems proposed for preventing phishing attacks, ViWiD per-

forms all of the computation on the company’s web server and does not require

installation of any tool or storage of any data, such as keys or history logs, on the

user’s machine. ViWiD also involves the user in the integrity checking process, which

154

makes it harder for the phisher to engineer an attack, since the integrity checking

mechanism is not fully automated.

One of the pre-requisites of the proposed scheme is that it requires the users to

be trained to expect a valid message to be displayed on the logo images when they

perform sensitive transactions. Users are also provided the opportunity to adjust

the parameters of the watermark and logo image according to their reading needs

and appeal. For example, a user might select a larger font size for the embedded

watermark message, or he can as well select a larger logo image.

A large scale user study for validating the effectiveness of our approach is needed

as a future work. In addition to that, the robustness of the watermarking techniques

can be improved by using high quality logo images in JPEG format or by spreading

the message over all images in a web page.

155

7. PREVIOUS WORK IN INFORMATION HIDING INTO

NATURAL LANGUAGE TEXT

7.1 Previous Approaches to Natural Language Steganography

Compared to similar work in the image and video domain, work in natural lan-

guage watermarking and steganography has been scarce. The previous work in this

area has concentrated on natural language steganography. This is probably due to

the fact that it is hard to derive robust watermarking methods for text, which will

be discussed in more details in the following sections.

A typical scenario for steganography is the case of two parties who want to ex-

change digital objects through a public communication channel; however, they do

not want the existence of this covert communication to be detected by third parties.

They sure do not want to achieve confidentiality through encryption, because even

the exchange of encrypted messages would reveal the existence of their secret commu-

nication, which is why some authoritarian countries forbid the exchange of encrypted

messages. In this case, a steganographic algorithm is employed to embed secret mes-

sages into innocent looking cover objects to obtain stego-objects, while trying to keep

statistical properties of these stego-objects as close to natural objects as possible.

Later, these stego-objects are exchanged through a communication channel (possibly

a public one). While traversing a communication channel, the stego-objects may be

subject to intentional or unintentional attacks. Examples of unintentional attacks

are transmission errors, changing the visual properties of the stego-document or in

the case of pure natural language text, an unintentional attack would be automatic

spelling correction. Intentional attacks, on the other hand, are deliberate attempts

to distinguish stego-objects from unmodified objects and thus detect the presence

156

of covert communication. Attack methods for steganographic systems are generally

based on detecting the small statistical deviations due to embedding [5].

7.1.1 Using Probabilistic Context-Free Grammars to Generate Cover

Text

A probabilistic context-free grammar (PCFG) is a commonly used language model

where each transformation rule of a context-free grammar has a probability associ-

ated with it [53]. A PCFG can be used to generate strings by starting with the

root node and recursively rewriting it using randomly chosen rules. Conversely, a

string belonging to the language produced by a PCFG can be parsed to reveal the

sequence of possible rules that produced it. The PCFG can be changed through

different messages in order to be stealthy against statistical attacks.

In the mimicry text approach described in [3], a cover text is generated using a

PCFG that generates strings with statistical properties close to normal text. This is

achieved by assigning a Huffman code to each grammar rule based on the probability

of the rule. The payload string is then embedded by choosing the grammar rule whose

code corresponds to the portion of the message being embedded. The PCFG and

the corresponding rule probabilities are learned using a corpus.

One drawback of this method is the need for training a PCFG that models

natural language to the extend that meaningful texts (containing several sentences)

can be generated using this model. Due to this hardship cover texts produced by

PCFGs, with limited coverage, tend to be nonsensical to a human reader. Therefore,

this method can only be used in communication channels where computers act as

wardens.

7.1.2 Information Embedding through Synonym Substitutions

In the T-Lex system [15] a subset of words from the text are selected and the

synonym set of each selected word is determined using Wordnet. The synonyms in

157

each set are indexed in alphabetical order. A simplified example of this embedding

is given in [128] as follows: Suppose we have the sentence,

Midshire is a

0 wonderful

1 decent

2 fine

3 great

4 nice

little

0 city

1 town

,

where the words in the braces form the synonym sets of two words in the original

sentence. If the current string to be embedded is (101)2 = 5, it is first represented

in mixed radix form as

a1 a0

5 2

 = 2a1 + a0 = 5,

with the constraints 0 ≤ a1 < 5 and 0 ≤ a0 < 2. Thus, we obtain the values

a1 = 2 and a0 = 1 which indicates that we should use the words fine and town in

the modified sentence.

Three examples of problematic modifications made by the T-Lex system, when a

short message is embedded into Jane Austen’s novel Pride and Prejudice, are shown

below. The first sentence fragment is the original version and the second is the

steganographically modified version.

158

. . . I can tell you, to be making new acquaintances every day . . .

. . . I can tell you, to be fashioning new acquaintances every day . . .

An invitation to dinner was soon afterwards dispatched;

An invitation to dinner was soon subsequently dispatched;

. . . and make it still better, and say nothing of the bad–belongs to you alone.

. . . and make it still better, and say nada of the bad–belongs to you alone.

Bingley likes your sister undoubtedly;

Bingley likes your sister doubtless;

The above examples illustrate two shortcomings of the T-Lex system. First, it

sometimes replaces words with synonyms that do not agree with correct English

usage, as seen in the phrase soon subsequently dispatched. Second, T-Lex also sub-

stitutes synonyms that do not agree with the genre and the author style of the given

text. It is clear that the word nada does not belong to Jane Austen’s style. Fur-

thermore, the string say nada of is not part of typical English usage in literature

writings.

Both types of errors made by the T-Lex system are caused by the fact when

choosing synonyms from synsets, important factors such as genre, author style, and

sentence context are not taken into account. Synonyms that are not frequently

used in common texts of that style can be detected using language models trained

on a collection of typical text that has the same genre and style as the one being

analyzed. This shortcoming is not unique to the T-Lex system but is a problem

with all synonym substitution methods. One can argue that these systems may be

improved by making use of information derived from language models during the

embedding process. However, such synonym substitution methods would have high

computational complexity.

159

7.1.3 Generating Cover Text using Hybrid Techniques

The NICETEXT system [20,129] is a steganography system that generates natural-

like cover text according to a given message string. It uses a mixture of lexical trans-

formations and the PCFG technique to generate cover text. The system has two

components: a dictionary table and a style template. The dictionary table is a large

list of (type,word) pairs where the type may be based on the part-of-speech [129] of

word or its synonym set [20]. Such tables may be generated using a part-of-speech

tagger or Wordnet. The style template, which is conceptually similar to the PCFG

of Section 7.1.1, improves the quality of the cover text by helping generation of

natural (i.e., expected) sequences of part-of-speech while controlling the word gen-

eration, capitalization, punctuation, and white space. Different style templates may

be learned using online corpora (such as Federal Reserve Board meeting minutes or

Aesop’s Fables) and employed in the system.

7.1.4 Translation Based Steganography

This work [4], investigates the possibilities of steganographically embedding in-

formation in the noise created by machine (i.e., automatic) translation of natural

language documents. Current state-of-the-art machine translation systems inher-

ently create plenty of room for variation, which makes it ideal to use them for

steganography. Since there are frequent errors in legitimate automatic text transla-

tions, additional errors inserted by steganographic system appear to be part of the

normal noise associated with translation and would be hard to detect.

The LiT system proposed in [4] uses the keyed hash of translated sentences in

order to encode information. LiT employs many machine translation systems in

order to generate variations of translations of sentences from a given cover text.

LiT suffers from the fact that an adversary can perform statistical analysis to

learn the language models of full texts generated by machine translation systems in

160

order to detect a stego-text that does not carry the statistical properties of being

translated by using only one machine translation system but several of them.

7.2 Previous Approaches to Natural Language Watermarking

To the best of authors’ knowledge the idea of using linguistic transformations for

natural language watermarking was first mentioned by Bender et al. in [21]. The

first published implementation for natural language watermarking came in 2000, and

there was 4.5 publications appearing on the average per year since 2001 [130].

7.2.1 Synonym Substitution Based on Quadratic Residues

Atallah et al. [22] devised a watermarking system that uses ASCII values of

the words for embedding watermark information into text by performing synonym

substitution.

Let m
i mod k

be the bit of watermark message that is to be embedded and wi

be the current word being considered in the cover text with ASCII value A(wi). If

m
i mod k

= 1 and A(wi) + ri mod k is a quadratic residue modulo p, then wi is kept

same. Otherwise it is modified. Here p is a 20 digit prime key, k is the number of

bits in the watermark message, and r0, r1, ..., rk−1 is a sequence of pseudo-random

numbers generated using p as seed.

This system does not provide much security against an active adversary that uses

synonym substitution in order to add another watermark of her/his own to overwrite

the previously embedded watermark or just to scramble it to be unrecoverable.

7.2.2 Embedding Information in the Tree Structures of Sentences

In later work [9, 10] Atallah et al. have proposed two algorithms that embed

information in the tree structure of sentences. These techniques modify the deep

structure of sentences in order to embed the watermark message. In other words, the

161

watermark is not directly embedded to the text using only the surface properties, as

is done in lexical substitution, but to the parsed representation of sentences. Utilizing

the deep structure makes these algorithms more robust to attacks that built language

models based on the surface text properties of the marked documents and make it

harder for the adversary to overwrite or modify the embedded information.

The difference between these two algorithms is that the first one modifies syn-

tactic parse trees of the cover text sentences for embedding the watermark message,

while the second one uses semantic tree representations. Examples of a syntactic

tree can be seen below:

I took the book.

(S (NP I) (VP took (NP the book)) (. .))

The book was taken by me.

(S1 (S(NP (DT The) (NN book))

(VP (VBD was) (VP (VBN taken) (PP (IN by) (NP (PRP me)))))

(. .)))

By contrast a semantic tree is a tree-structured representation that is imposed

over the flat text meaning representation of a sentence [10]. Such representations of

sentences may be generated by using ontological semantics resources [131].

Selection of sentences that will carry the watermark information depends only

on the tree structure and proceeds as follows: The nodes of the tree Ti for sentence

si of text are labeled in pre-order traversal of Ti. Then, a node label j is converted

to 1 if j + H(p) is a quadratic residue modulo p, and to 0 otherwise. p is a secret

key and H() is a one-way hash function. A binary sequence, Bi, for every sentence,

si, is then generated by traversing Ti following a post-order traversal. A rank, di, is

then derived for each sentence for si using di = H(Bi) XORH(p) and the sentences

are sorted by their rank. Starting from the least-ranked sentence sj, the watermark

is inserted to sj’s successor in the text. The sentence sj is referred as a marker

162

sentence, since it points to a watermark carrying sentence. Watermark insertion

continues with the next sentence in the rank-ordered list. Once the mark carrying

sentences are selected, the bits are embedded by applying either a syntactic or a

semantic transformation, which are explained in detail in Chapter 2.

These studies were important first steps but (unlike the present paper) had the

following drawbacks:

• They used only one feature of the sentence to both select and embed, thereby

implying that a sentence could not do both (it was the sentence that comes

immediately after a selected sentence that carried embedded information).

• The above-mentioned requirement for immediate proximity between a select-

marked sentence and its corresponding message-carrying sentence, implies not

only lower embedding capacity, but also an increased vulnerability to re-ordering

of sentences, selection of a subset of sentences, as well as insertion of new sen-

tences.

• The proximity was actually not the only (or even the main) source of such

vulnerability in these previous schemes: A more serious one was the fact that a

random change in any sentence had a probability of around |M |/n of damaging

an embedded bit. This is negligible only for very large texts (n ≫ |M |).

• The previous work required fully automated semantic parsing and co-reference

resolution, which current natural language processing technology does not sat-

isfactorily provide (it is currently very domain-specific and hence not widely

applicable).

7.2.3 Linguistically Analyzing the Applicability of Sentence Level

Transformations for Natural Language Watermarking

Another work that deals with sentence level syntactic watermarking is by Brian

Murphy [17]. His thesis presents the results of linguistic analysis of several sentence

163

level syntactic transformations (including adjunct movement, adjective reordering,

verb particle movement) on a hand parsed corpus of 6000 sentences [132]. This work

provides the first detailed insight into applicability and coverage of several sentence

level transformations for information hiding purposes. It provides a detailed analysis

of the challenges that are involved in writing a generic transformation rule for a

natural language. The number of transformations that were analyzed was limited

due to the fact that transformations were performed without the use of a surface

level generator, thus they mainly cover the transformations that re-orders the words

in a sentence (e.g. adjunct movement) or adds a fixed structure to a sentence (e.g.

clefting) or removes a fixed structure from the sentence(e.g. that/who be removal).

164

8. CONCLUSION

This dissertation has demonstrated the feasibility of practical and resilient natu-

ral language watermarking while preserving the meaning and grammaticality of the

cover text. Other contributions include techniques for special classes of text; ex-

ploring different watermarking architectures; and quantification of the distortion

introduced by the marking process.

Our work was an important step in the direction of information hiding in nat-

ural language text, but much remains to be done. A major remaining challenge is

achieving higher embedding bandwidth, an issue that is particularly important (and

difficult) for short text such as news briefs, communiquès, etc. Another challenge is

extending the preliminary quantification work we started: not only quantification of

the distortion, but broader metrics that are context dependent. For example, a spe-

cific modification to text might be completely innocuous in one text, yet completely

unacceptable in another context (e.g., typing errors in a government press release

would not be acceptable).

Looking forward, the Internet has dramatically increased the importance of nat-

ural language processing techniques, which stand to revolutionize the way humans

interface with the network. Perhaps the most promising impact of information hiding

will lie in the tagging of documents; through the use of watermarking a document can

carry copyright or meta-data information (about its author, its integrity, generation

date, access rights, etc.) on itself as an elemental part of its content.

LIST OF REFERENCES

165

LIST OF REFERENCES

[1] M. Topkara, C. M. Taskiran, and E. Delp, “Natural language watermarking,”
in Proceedings of the SPIE International Conference on Security, Steganogra-
phy, and Watermarking of Multimedia Contents, 2005.

[2] J. T. Brassil, S. Low, and N. F. Maxemchuk, “Copyright protection for the
electronic distribution of text documents,” Proceedings of the IEEE, vol. 87,
pp. 1181– 1196, July 1999.

[3] P. Wayner, “Mimic functions,” CRYPTOLOGIA, vol. XVI, pp. 193–214, July
1992.

[4] R. Stutsman, M. J. Atallah, C. Grothoff, and K. Grothoff, “Lost in just the
translation,” in Proceedings of 21st Annual ACM Symposium on Applied Com-
puting, (Dijon, France), April 2006.

[5] J. Fridrich and M. Goljan, “Practical Steganalysis of Digital Images - State of
the Art,” in Proceedings of the SPIE International Conference on Security and
Watermarking of Multimedia Contents, (San Jose, CA, USA), January, 2002.

[6] O. Uzuner and B. Katz, “Style vs. expression in literary narratives,” in Pro-
ceedings of the Twenty-eighth Annual International ACM SIGIR Conference
Workshop on Using Stylistic Analysis of Text for Information Access, 2005.

[7] R. Soricut and D. Marcu, “Stochastic language generation using widl-
expressions and its application in machine translation and summarization,” in
Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the ACL, 2006.

[8] B. Lavoie and O. Rambow, “A fast and portable realizer for text generation
systems,” in Proceedings of the Fifth Conference on Applied Natural Language
Processing, (Washington, DC), 1997.

[9] M. Atallah, V. Raskin, M. C. Crogan, C. F. Hempelmann, F. Kerschbaum,
D. Mohamed, and S. Naik, “Natural language watermarking: Design, analysis,
and a proof-of-concept implementation,” in Proceedings of the Fourth Informa-
tion Hiding Workshop, vol. LNCS 2137, (Pittsburgh, PA), 25-27 April 2001.

[10] M. Atallah, V. Raskin, C. F. Hempelmann, M. Karahan, R. Sion, U. Topkara,
and K. E. Triezenberg, “Natural language watermarking and tamperproofing,”
in Proceedings of the Fifth Information Hiding Workshop, vol. LNCS 2578,
(Noordwijkerhout, The Netherlands), 7-9 October 2002.

[11] M. Topkara, G. Riccardi, D. Hakkani-Tur, and M. J. Atallah, “Natural lan-
guage watermarking: Challenges in building a practical system,” in Proceedings
of the SPIE International Conference on Security, Steganography, and Water-
marking of Multimedia Contents, 2006.

166

[12] U. Topkara, M. Topkara, and M. J. Atallah, “The hiding virtues of ambiguity:
Quantifiably resilient watermarking of natural language text through synonym
substitutions,” in Proceedings of ACM Multimedia and Security Workshop,
(Geneva, Switzerland), September 26-27, 2006.

[13] M. Topkara, U. Topkara, and M. J. Atallah, “Information hiding through er-
rors: A confusing approach,” in Proceedings of the SPIE International Confer-
ence on Security, Steganography, and Watermarking of Multimedia Contents,
January 2007.

[14] B. Murphy, “The syntax of concealment: reliable methods for plain text in-
formation hiding,” in Proceedings of the SPIE International Conference on
Security, Steganography, and Watermarking of Multimedia Contents, January
2007.

[15] K. Winstein, “Lexical steganography through adaptive modulation of the word
choice hash,” in http://www.imsa.edu/ keithw/tlex/, 1998.

[16] M. Topkara, U. Topkara, and M. J. Atallah, “Words are not enough: Sentence
level natural language watermarking,” in Proceedings of ACM Workshop on
Content Protection and Security (in conjuction with ACM Multimedia), (Santa
Barbara, CA), October, 2006.

[17] B. Murphy, “Syntactic information hiding in plain text,” Master’s thesis,
CLCS, Trinity College Dublin, 2001.

[18] A. S. R. L. Rivest and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications, 1978.

[19] D. S. W. S. Schleimer and A. Aiken, “Winnowing: Local Algorithms for Doc-
ument Fingerprinting,” Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76–85, 2003.

[20] M. Chapman and G. Davida, “Plausible deniability using automated linguistic
stegonagraphy,” in roceedings of the International Conference on Infrastructure
Security, (Bristol, UK), pp. 276–287, October 1-3 2002.

[21] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,”
IBM Systems Journal, vol. 35, no. 3-4, pp. 313–336, 1996.

[22] M. Atallah, C. McDonough, S. Nirenburg, and V. Raskin, “Natural Language
Processing for Information Assurance and Security: An Overview and Im-
plementations,” in Proceedings 9th ACM/SIGSAC New Security Paradigms
Workshop, (Cork, Ireland), pp. 51–65, September, 2000.

[23] V. Ng and C. Cardie, “Improving machine learning approaches to corefer-
ence resolution,” in Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pp. 104–111, 2001.

[24] U. Topkara, M. J. Atallah, and M. Topkara, “Passwords decay, words endure:
Secure and re-usable multiple password mnemonics,” in ACM Symposium on
Applied Computing, 2007.

[25] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet::Similarity - Mea-
suring the Relatedness of Concepts,” in Proceedings of Fifth Annual Meeting
of the NAACL, (Boston, MA), May 2004.

167

[26] P. Moulin and J. A. OŚullivan, “Information-theoretic analysis of information
hiding,” IEEE Transactions on Information Theory, vol. 49, pp. 563–593, 2003.

[27] M. D. Kernighan, K. W. Church, and W. A. Gale, “A spelling correction pro-
gram based on a noisy channel model,” in Proceedings of the 13th conference on
Computational linguistics, (Morristown, NJ, USA), pp. 205–210, Association
for Computational Linguistics, 1990.

[28] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press, 1998.

[29] XTAG, Research, and Group, “A lexicalized tree adjoining grammar for en-
glish,” Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania, 2001.

[30] I. Cox, M. Miller, and J. A. Bloom, Digital Watermaking. Morgan Kaufmann
Publishers, 2002.

[31] A. Pfitzmann and A. Westfeld, “Attacks on steganographic systems,” in Third
Information Hiding Workshop, vol. LNCS, 1768, (Dresden, Germany), pp. 61–
76, Springer-Verlag, 1999.

[32] N. Provos, “Defending Against Statistical Steganalysis,” in Proceedings of 10th

USENIX Security Symposium, (Washington DC, USA), August 2001.

[33] H. Farid, “Detecting Steganographic Message in Digital Images,” Tech. Rep.
TR2001-412, Darmouth College, Computer Science, Hanover, NH, USA, 2001.

[34] S. Lyu and H. Farid, “Detecting Hidden Messages using Higher-Order Statistics
and Support Vector Machines,” in Proceedings of the Fifth Information Hiding
Workshop, vol. LNCS, 2578, (Noordwijkerhout, The Netherlands), Springer-
Verlag, October, 2002.

[35] J. Fridrich and M. Goljan, “Practical Steganalysis of Digital Images - State
of the Art,” in Proceedings of the SPIE International Conference on Security
and Watermarking of Multimedia Contents, vol. 4675, (San Jose, CA, USA),
pp. 1–13, January, 2002.

[36] R. J. Anderson and F. A. Petitcolas, “On the Limits of Steganography,” IEEE
Journal of Selected Areas in Communications, vol. 16, pp. 474 – 481, May
1998.

[37] J. Zollner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotrascke, A. Westfeld,
G. Wicke, and G. Wolf, “Modeling the Security of Steganographic Systems,”
in Second Information Hiding Workshop, vol. LNCS, 1525, (Portland, Oregon,
USA), Springer-Verlag, 1999.

[38] M. Topkara, U. Topkara, C. Taskiran, E. Lin, M. Atallah, and E. Delp, “A hi-
erarchical protocol for increasing the stealthiness of steganographic methods,”
in Proceedings of the ACM Multimedia and Security Workshop, (Magdeburg,
Germany), 20–22 September 2004.

[39] J. Fridrich and M. Goljan, “Digital image staganography using stochastic mod-
ulation,” in Proceedings of the SPIE International Conference on Security and
Watermarking of Multimedia Contents, vol. 5020, (San Jose, CA), pp. 191–202,
21 – 24 January 2003.

168

[40] A. Westfeld, “F5-A Steganographic Algorithm: High Capacity Despite Bet-
ter Steganalysis,” in Fourth Information Hiding Workshop, vol. LNCS, 2137,
(Pittsburgh, USA), pp. 289–302, Springer-Verlag, April 2001.

[41] J. Fridrich, M. Goljan, and D. Hogea, “New Methodology for Breaking
Steganographic Techniques for JPEGs,” in Proceedings of the SPIE Inter-
national Conference on Security and Watermarking of Multimedia Contents,
vol. 5020, (San Jose, CA), pp. 143–155, 21 – 24 January 2003.

[42] P. Sallee, “Model-based steganography,” in International Workshop on Digital
Watermarking, (Seoul, Korea), 20–22 October 2003.

[43] J. Fridrich, M. Goljan, and D. Soukal, “Wet paper codes with improved em-
bedding efficiency,” IEEE Transactions on Information Forensics and Security,
vol. 1, pp. 102–110, March 2006.

[44] S. Katzenbeisser and F. Petitcolas(Ed.), Information Hiding Techniques for
Steganography and Digital Watermarking. Artech House, 2000.

[45] C. M. Taskiran, U. Topkara, M. Topkara, and E. Delp, “Attacks on lexical
natural language steganography systems,” in Proceedings of the SPIE Interna-
tional Conference on Security, Steganography, and Watermarking of Multime-
dia Contents, 2006.

[46] T. Joachims, “Transductive inference for text classification using support vec-
tor machines,” in Proceedings of 16th International Conference on Machine
Learning, (Bled, SL), pp. 200–209, 1999.

[47] I. Avcibas, N. Memon, and B. Sankur, “Steganalysis of watermarking and
steganographic techniques using image quality metrics,” IEEE Transactions
on Image Processing, vol. 2, no. 12, pp. 221–229, 2003.

[48] K. Winstein, “Lexical steganography at http://alumni.imsa.edu/ kei-
thw/tlex/,” March, 1999.

[49] C. Ellison and B. Schneier, “Inside risks: Risks of PKI: secure email,” Com-
munications of the ACM, vol. 43, no. 1, p. 160, 2000.

[50] M. Topkara, A. Kamra, M. Atallah, and C. Nita-Rotaru, “Viwid: Visible
watermarking based defense against phishing,” in International Workshop on
Digital Watermarking, (Siena, Italy), 15–17 September 2005.

[51] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John Wiley
& Sons Inc., 2001.

[52] D. Jurafsky and J. Martin, Speech and Language Processing. Upper Saddle
River, New Jersey: Prentice-Hall, Inc, 2000.

[53] C. Manning and H. Schütze, Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, 1999.

[54] The Linguistic Data Consortium, “http://www.ldc.upenn.edu/.”

[55] K. Kipper, H. T. Dang, and M. Palmer, “Class-based construction of a verb
lexicon,” in AAAI-2000 Seventeenth National Conference on Artificial Intelli-
gence, (Austin, TX), July 30 - August 3, 2000.

169

[56] B. Levin, English Verb Classes and Alternations: A preliminary investigation.
Chicago, IL: University of Chicago Press, 1993.

[57] H. M. Meral, E. Sevinc, E. Unkar, B. Sankur, A. S. Ozsoy, and T. Gungor,
“Syntactic tools for text watermarking,” in Proceedings of the SPIE Interna-
tional Conference on Security, Steganography, and Watermarking of Multime-
dia Contents, January 2007.

[58] R. Bergmair and S. Katzenbeisser, “Towards human interactive proofs in
the text-domain,” in Proceedings of the 7th Information Security Conference,
vol. 3225, pp. 257–267, Springer Verlag, September, 2004.

[59] N. Ide and J. Vronis, “Word sense disambiguation: The current state of the
art,” Computational Linguistics, vol. 24, no. 1, 1998.

[60] D. Chiang, “Data oriented parsing csli publications,” in Information and Com-
munications Security — First International Conference, pp. 299– 316, 2000.

[61] E. Charniak, “A maximum-entropy-inspired parser,” in Proceedings of the first
conference on NAACL, pp. 132–139, 2000.

[62] M. Collins, “Head-driven statistical models for natural language parsing,”
Computational Linguistics, vol. 29, Issue 4, December 2003.

[63] D. Grinberg, J. Lafferty, and D. Sleator, “A robust parsing algorithm for
LINK grammars,” Tech. Rep. CMU-CS-TR-95-125, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, 1995.

[64] F. Xia and M. Palmer, “Converting dependency structures to phrase struc-
tures,” in Proceedings of the Human Language Technology Conference, (San
Diego, CA), 18–21 March 2001.

[65] A. Stolcke, “Srilm - an extensible language modeling toolkit,” in Proceedings
of International Conferrence on Spoken Language Processing, 2002.

[66] E. Reiter and R. Dale, Building natural language generation systems. Cam-
bridge University Press, 2000.

[67] L. Bourbeau, D. Carcagno, E. Goldberg, R. Kittredge, and A. Polguère, “Bilin-
gual generation of weather forecasts in an operations environment,” in Proceed-
ings of the Thirteenth International Conference on Computational Linguistics,
(Helsinki, Finland), pp. 318–320, 1990.

[68] “http://www.fb10.uni-bremen.de/anglistik/langpro/nlg-table/nlg-table-
root.htm.”

[69] R. Barzilay and L. Lee, “Learning to paraphrase: An unsupervised approach
using multiple-sequence alignment,” in Proceedings of NAACL Human Lan-
guage Technology Conference, (Edmonton, Canada), 2003.

[70] B. Pang, K. Knight, and D. Marcu, “Syntax-based alignment of multiple trans-
lations: Extracting paraphrases and generating new sentences,” in Proceedings
of NAACL Human Language Technology Conference, (Edmonton, Canada),
2003.

170

[71] Wikipedia Buffalo Entry, “http://en.wikipedia.org/wiki/buffalo buffalo buffalo
buffalo buffalo buffalo buffalo buffalo.”

[72] H. van Halteren, W. Daelemans, and J. Zavrel, “Improving accuracy in word
class tagging through the combination of machine learning systems,” Comput.
Linguist., vol. 27, no. 2, pp. 199–229, 2001.

[73] R. Soricut and D. Marcu, “Towards Developing Generation Algorithms for
Text-to-Text Applications,” Ann Arbor, vol. 100, 2005.

[74] R. Sion, M. Atallah, and S. Prabhakar, “Rights protection for discrete numeric
streams,” IEEE Transactions on Knowledge and Data Engineering, vol. 18,
no. 5, May, 2006.

[75] P. Resnik., “Selectional preference and sense disambiguation,” in the ACL
SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and
How?, (Washington D.C., USA), April 1997.

[76] R. Sion, M. Atallah, and S. Prabhakar, “Power: A metric for evaluating water-
marking algorithms,” in IEEE ITCC, (Las Vegas, Nevada), pp. 95–99, 2002.

[77] P. Resnik., “Using information content to evaluate semantic similarity in a
taxonomy.,” in Proceedings of the 14th International Joint Conference on Ar-
tificial Intelligence, pp. 448–453, 1995.

[78] G. Tur, “Turkish text de-asciifier,” in http://www.hlst.sabanciuniv.edu/TL/deascii.html,
1998.

[79] M. D. Kernighan, K. W. Church, and W. A. Gale, “A spelling correction pro-
gram based on a noisy channel model,” in Proceedings of the 13th conference on
Computational linguistics, (Morristown, NJ, USA), pp. 205–210, Association
for Computational Linguistics, 1990.

[80] L. Philips, “Hanging on the metaphone,” Computer Language Magazine, vol. 7,
no. 12, pp. 39–44, 1990.

[81] S. Turkle, Life on the Screen: Identity in the Age of the Internet. New York:
Simon and Schuster, 1995.

[82] L. Truss, Eats, Shoots & Leaves. New York: Gotham Books, 2004.

[83] D. Crystal, Language and the Internet. Cambridge CUP, 2001.

[84] D. Crystal, “Txt, ne1?,” in In Susan Tresman and Ann Cooke (eds), The
Dyslexia Handbook, pp. 179–183, British Dyslexia Association, 2006.

[85] K. Kukich, “Technique for automatically correcting words in text,” ACM Com-
puting Surveys, vol. 24, no. 4, pp. 377–439, 1992.

[86] S. Cucerzan and E. Brill, “Spelling correction as an iterative process that
exploits the collective knowledge of web users,” in Proceedings of EMNLP
2004, pp. 293–300, 2004.

[87] R. Bergmair, “Towards linguistic steganography: A systematic investigation of
approaches, systems, and issues.,” tech. rep., University of Derby, November,
2004.

171

[88] Reuters, “Reuters corpus,” in http://about.reuters.com/researchandstandards/corpus/
index.asp.

[89] CogenTex, “Realpro general english grammar user manual.”

[90] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Attacks on copy-
right marking systems,” in Information Hiding, Second International Work-
shop, vol. LNCS 1525, (Portland, Oregon), pp. 219–239, 1998.

[91] A. Lang and J. Dittmann, “Profiles for evaluation - the usage of audio wet,”
in Proceedings of the SPIE Conference on Security, Steganography, and Wa-
termarking of Multimedia Contents VI, (San Jose, CA), January 2006.

[92] B. Macq, J. Dittmann, and E. J. Delp, “Benchmarking of image watermarking
algorithms for digital rights management,” Proceedings of IEEE, vol. 92. Issue
6, pp. 971–984, June, 2004.

[93] E. Hovy, M. King, and A. Popescu-Belis, “Principles of context-based machine
translation evaluation,” Machine Translation, vol. 16, pp. 1–33, 2002.

[94] N. I. of Standards and Technology, “Machine translations benchmark
tests provided by national institute of standards and technology,” in
http://www.nist.gov/speech/tests/mt/resources/scoring.htm.

[95] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for automatic
evaluation of machine translation,” in Proceedings of 40th Annual Meeting of
the ACL, (Philedelphia), July 2002.

[96] G. Doddington, “Automatic evaluation of machine translation quality using n-
gram co-occurrence statistics,” in Proceedings of ARPA Workshop on Human
Language Technology, 2002.

[97] C. Grothoff, K. Grothoff, L. Alkhutova, R. Stutsman, and M. Atallah,
“Translation-based steganography,” in Proceedings of Information Hiding
Workshop (IH 2005), p. 15, Springer-Verlag, 2005.

[98] J. Fridrich, M. Goljan, and D. Soukal, “Higher-order statistical steganalysis of
palette,” in Proceedings of the SPIE International Conference on Security and
Watermarking of Multimedia Contents, vol. 5020, (San Jose, CA), 2003.

[99] A. Levy and N. Merhav, “An image watermarking scheme based on informa-
tion theoretic principles,” Tech. Rep. HPL-2001-13, HPL Technical Report,
January 2001.

[100] H. C. Kim, H. Ogunleye, O. Guitart, and E. J. Delp, “Watermarking evaluation
testbed (wet) at purdue university,” in Proceedings of the SPIE Conference
on Security, Steganography, and Watermarking of Multimedia Contents VI,
vol. SPIE 5306, (San Jose, CA), 1822 January 2004.

[101] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[102] M. Hart, Project Gutenberg. http://www.gutenberg.net/, 2004.

172

[103] J. Fridrich, M. Goljan, and R. Du, “Reliable detection of lsb steganography in
color and grayscale images,” in Proceedings of the ACM Workshop on Multi-
media and Security, (Ottowa, Canada), 2001.

[104] K. Butler, W. Enck, J. Plasterr, P. Traynor, and P. McDaniel, “Privacy-
preserving web-based email,” in International Conference on Information Sys-
tems Security, 2006.

[105] I. Goldberg, “Privacy-enhancing technologies for the internet ii: Five years
later.,” in Workshop on Privacy-Enhancing Technologies, 2002.

[106] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A robust, tamper-
evident, censorship-resistant, web publishing system,” in Proceedings of 9th
USENIX Security Symposium, pp. 59–72, August 2000.

[107] Google Analytics, “http://www.google.com/analytics.”

[108] Extreme Tracking, “http://extremetracking.com.”

[109] The Internet Archive, “http://www.archive.org.”

[110] Google, “http://www.google.com/.”

[111] S. M. Martinez, “Identity theft and cyber crime,” September 2004. Federal
Bureau of Investigation, http://www.fbi.gov/congress/congress.htm.

[112] “Symantec internet security threat report highlights rise in threats to confi-
dential information,” in http://www.symantec.com/press/2005/n050321.html.

[113] “The Anti-Phishing working group,” in http://www.antiphishing.org.

[114] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell, “Client-side de-
fense against web-based identity theft,” in Proceedings of the Network and
Distributed System Security Symposium, 2004.

[115] “Netcraft,” in http://www.netcraft.com.

[116] “ebay: buyer tools: toolbar,” in http://pages.ebay.com/ebay toolbar/.

[117] “Preventing man in the middle phishing attacks with multi-factor authentica-
tion,” in http://www.tricipher.com/solutions/phishing.html.

[118] A. Herzberg and A. Gbara, “Trustbar: Protecting (even nave) web users
from spoofing and phishing attacks,” in Cryptology ePrint Archive, Report
2004/155, 2004.

[119] P. Security, “Protecting your customers from phishing attacks - an introduction
to passmarks,” in http://www.passmarksecurity.com/.

[120] R. Dhamija and J. Tygar, “The battle against phishing: Dynamic security
skins,” in Symposium on Usable Provacy and Security (SOUPS), July, 2005.

[121] T. Wu., “The secure remote password protocol,” in In Internet Society Network
and Distributed Systems Security Symposium (NDSS), pp. 97–111, Mar 1998.

173

[122] N. Memon and P. W. Wong, “Protecting digital media content,” Commun.
ACM, vol. 41, no. 7, pp. 35–43, 1998.

[123] C.-H. Huang and J.-L. Wu, “Attacking visible watermarking schemes,” IEEE
Transactions on Multimedia, vol. 6, no. 1, February, 2004.

[124] “Imagemagick studio llc,” in http://www.imagemagick.org.

[125] S. P. Mohanty, K. R. Ramakrishnan, and M. Kankanhalli, “A dual watermark-
ing technique for images,” in Proceedings of the seventh ACM international
conference on Multimedia (Part 2), pp. 49–51, ACM Press, 1999.

[126] G. W. Braudaway, K. A. Magerlein, and F. C. Mintzer, “Protecting Publicly
Available Images with a Visible Image Watermark,” in Proceedings of the SPIE
International Conference on Electronic Imaging, vol. 2659, (San Jose, CA),
February 1-2, 1996.

[127] G. Ollman, “The phishing guide,” in http://www.ngssoftware.com/papers/NISR-
WP-Phishing.pdf.

[128] R. Bergmair, “Towards linguistic steganography: A systematic investigation
of approaches, systems, and issues.,” tech. rep., University of Derby, August
2004.

[129] M. Chapman and G. Davida, “Hiding the hidden: A software system for con-
cealing ciphertext in innocuous text,” in Proceedings of the International Con-
ference on Information and Communications Security, vol. LNCS 1334, (Bei-
jing, China), 1997.

[130] R. Bergmair, “A bibliography of linguistic steganography,” in Proceedings of
the SPIE International Conference on Security, Steganography, and Water-
marking of Multimedia Contents, January 2007.

[131] S. Nirenburg and V. Raskin, Ontological Semantics. MIT Press, 2004.

[132] G. Sampson, English for the computer: the SUSANNE corpus and analytic
scheme. Oxford: Clarendon, 1995.

VITA

174

VITA

Mercan Topkara received her PhD degree from the Computer Science Department

of Purdue University in 2007 and her Bachelor of Science degree from the Computer

Engineering and Information Sciences Department of Bilkent University in 2000. She

started her graduate studies at Purdue University in August 2001. Her PhD the-

sis is focused on designing, building and evaluating natural language watermarking

systems. Her research interests are within the areas of digital watermarking, sta-

tistical natural language processing, usable security and machine learning. She has

previously worked as a research intern at AT&T Research Labs, IBM T. J. Watson

Research, and Google Research.

