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Abstract- The growth of the Internet has created tremendous the negotiations, of actually exchanging the resources, etc.).
opportunities for online collaborations. These often involve col- Although there are so many situations where collaboration
laborative optimizations where the two parties are, for example, is mutually advantageous, it often does not occur and its
jointly minimizing costs without violating their own particular . . ' . . .
constraints (e.g., one party may have too much inventory, another potential goes unexploited, that is, the paricipants often do
too little inventory but too much production capacity, etc). Many not engage in the trade even though its outcome would
of these optimizations can be formulated as linear programming be mutually beneficial to both of them. This occurs when
problems, or, rather, as collaborative linear programming, in which the online negotiation is "too revealing" of the participants'
two parties need to jointly optimize based on their own pri- private or proprietary data: That a company has a massive
vate inputs. It is often important to have online collaboration . . .
techniques and protocols that carry this out without either excess of bandwidth, inventory, production capacity, etc, can
party revealing to the other anything about their own private be damaging to the company's future negotiating position (or
inputs to the optimization (other than, unavoidably, what can even to its stock price and the survival of its management). The
be deduced from the collaboratively computed optimal solution). formulation of such online collaboration often leads to a linear-
For example, two organizations who jointly invest in a project programming formulation, and the task is then to solve this
may want to minimize some linear objective function while sat-

p

isfying both organizations' private and confidential constraints. problem so that both parties achieve their benefits yet without
Constraints are usually private when they reveal too much about revealing their private/proprietary data. Consider the following
the organizations' financial health, its future business strategy, example where there are n resources that are shared by Alice
etc. Linear programming problems have been widely studied in and Bob according to some initial partition, each of the two
the literature. However, the existing solutions (e.g., the simplex parties has a private valuation function for each resource, and
method) do not extend to the above-mentioned framework in. g

which the linear constraints are shared by the two parties, who the goal is to re-partiton the resources so as to achieve the
do not want to disclose their own to the other party. In this paper, optimal win-win outcome.
we give an efficient protocol for solving linear programming Example 1: Alice and Bob share n resources. We use pi to
problems in the honest-but-curious model, such that neither denote Alice's fraction of resource i, hence 1 - pi is Bob's
party reveals anything about their private input to the other * --
party (other than what can be inferred from the result). The inta fon. Le a' bi's privatemalion so urce
amount of communication and computation done by our protocol i, bi be Bob's; the al's and bi's are normalized so that Zi a=
is proportional to the time complexity of the simplex method, a Ei bi = K where K is fixed (so a party cannot increase
widely used linear programming algorithm. We also provide a its valuation of a resource without decreasing its valuation
practical solution that prevents certain malicious behavior of the of another resource). Alice and Bob want to re-allocate their
participants. The use of the known general circuit-simulation * * * -
solutions to secure function evaluation is unacceptable for the source, so that the re-allocaton iS fair, i.e., equally beneficial
simplex method, as it implies an exponential size circuit. to both parties. We use qi to denote the fraction of resource

i that would end up with Alice, hence 1 - qi is Bob's final
I. INTRODUCTION fraction. This problem can be formulated as a linear program

The potential benefits of collaboration (e.g., sharing of as follows:
information, trading of resources, etc.) are widely documented maximize na. (qi -pi)
by economists - if Alice has a very low production cost for subje to 1n ai(qi Pi) n

oranges and Bob has a very low production costs for apples, subject to
=

aj(qj Pi) n bi(p -qi)
they both benefit by trading apples for oranges. Replace, n En
in the above, apples and oranges by bandwidth, computa- i=1Pi =

i=1 qi

tional power, storage capacity, inventory, production capacity, In the above equations, the first constraint ensures that the
electronic components, etc, and the relevance of exploiting benefits Alice gains from this re-allocation is the same as the
such "win-win" situations in an online environment becomes benefits Bob gains. The second constraint ensures that the total
apparent. The advent of the Internet and of grid computing valuations for Alice is equal to the total valuations for Bob.
[12], [13] makes this trading easier and more beneficial by The third constraint ensures that the total fractions Alice owns
decreasing the "friction" in the system (costs of carrying out in pre-allocation is same as in after-allocation.
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Linear programming problems [10], [25] have proved valu- but not the exact values.
able for modeling many types of problems in planning, rout- The rest of paper is organized as follows. We begin with
ing, scheduling, optimization, and assignment. In the linear a brief introduction of previous work in Section II, then
programming problems, there are n decision variables, m review the simplex method in Section III. We review a few
linear constraints, and a linear objective function. The goal cryptographic tools that we use in the solution in Section IV,
is then to find a solution that minimizes the objective function and present some building blocks in Section V. In Section VI,
while satisfying the m constraints. we describe our protocol for solving collaborative linear

Although linear programming problems have been well programming problems. We present a practical solution that
studied in the literature ([10], [25], [18], [1], to list a few), prevents certain dishonest behaviors in Section VII. Finally, we
these solutions do not readily extend to the framework con- conclude the paper and discuss the future work in Section VIII.
sidered here. For example, Alice has a private constraints on II. RELATED WORK
n decision variables, and Bob has Q private constraints on the One of the fundamental techniques for solving linear pro-
same decision variables. Alice and Bob want to jointly find gramming problems is the simplex method developed by
a non-negative solution that minimizes some linear objective Dantzig [10]. The simplex method is an efficient procedure
function and also satisfies the combined a + Q linear con- for solving large practical linear programs on the computer.
straints. Without loss of generality, we assume A, b, and c are But the simplex method is not a polynomial-time algorithm:
additively shared between Alice and Bob. That is, A = A'+A" Klee and Minty [19] created a worst-case example in which
where A' is known only to Alice and A" is known only to Bob. the simplex algorithm would require an exponential number of
Vectors b and c are shared by Alice and Bob in an analogous pivots, however, such cases seem never to be countered in real
way. It is easy to see that the previous example is a special case world problems. Karmarkar [ 18] developed a polynomial-time
of this general sharing. We now define the secure collaborative algorithm for solving linear programmes. Although polyno-
linear programming problem as follows. mial, the cost of his algorithm is much higher than the cost of
Problem 1: Alice has a matrix A' and two vectors b' and the simplex method when solving practical problems. In this

c', and Bob has a matrix A" and two vectors b" and c", where paper, we focus on the simplex method, and propose a secure
A', A" are m x n matrices, b', b" are m-dimensional vectors, linear programming protocol based on it.
and c', c" are n-dimensional vectors. Let A = A' + A", b Secure Function Evaluation (SFE) [26], [17], [16] is a
b' + b", and c = c' + c". Without disclosing their private inputs powerful and general cryptographic primitive. It allows two or
to the other party, Alice and Bob want to find a solution x that more parties to jointly compute some function while hiding

minimizes. cT their inputs to each other. Secure collaborative linear pro-minimizes c * ,~
subject to ALx b, x > 0.

gramming problem is a special case of SFE. However generalsubject to A x bu,iz > 0. solutions to SFE cannot solve our problem efficiently, because
In this paper, we propose a secure linear programming pro- . . . . . '

tocol that solves problem 1 efficiently. The computational cost tworstasi e, tho is ansexpone timea thm (inpte
and amount of communication done by our protocol are pro- eworst case) the circuit construction to compute the simplex
portional to the time complexity of the simplex method [10], method has exponential size. Even if we break the simplex
[25] for solving the linear programming problem; they are mcrcuitevaluaoiontthe total cost is at least ipkfmnen whereasO(k(mn + £n) + £mn), where k is number of steps used in crutevaluaiot totacos isa l (k(mn ), whereas
the simplex method, m is number of constraints, n is number Cth mecne of our protocol + ham).
of decision variables, and Dis number of bits of precision Crar angebrd [7] deve prtocolsthat
per variable. Although k is reasonable in practice and simplex setinearalgebra pro s in scr two-par utation
usually performs quite well, there are pathological inputs (rare setting Thirisolution wor onlyfo finite field rather t
inpractice) for which k is exponential, which is why we floating point arithmetic. For example, In finite field GF(7), 3
cno uscthce) genera solkios tosecure functio evalut dividing by 2 becomes 5, instead of 1.5. In the collaborativecannot usf the simple algor asutize linear programming, all the numeric operations are performed
(SFE) [26], [17], [16] . . under floating point arithmetic, therefore, their solution cannotof the circuit would have to be exponential. directly apply to our problem. Moreover, their protocols aimNote that given the output of the protocol x, Alice (or Bob) at solving linear equations, it is not clear how their scheme
may infer some information about the other party's input. For .b

examle,Aliccalern tat "x -b" ' -A'x romthe can be used for linear programming problems where the goalexample, Alice can learn that Allx-bll = bl'-Alx from theistfndaopmlsluo., . ,, , , . , , 1~~~~~~Sto find an optimal solution.protocol, in other words, she learns m equations about Bob's
private input A" and b". This is unavoidable by definition. In Du [11] proposediah rolutIn hesecure abo-* 1 * *1 1 1 r 1- 1 * r . rative linear programming problem. In his solution, one partymany practical situations the leakage of so little information
iS acceptable. Consider therresourcre-allocaotin problem in disguises the constraint matrix A by multiplying a random

Example1,Alice maylearnsom inormaio abu Bob's matrix B, then the other party conducts linear programming
on the disguised constraint matrix. In the end, the first partyprivte alutiosfom he utpu ofthelinar rogammng,recovers the result of the linear programming using the knowl-

'If the original goal is to find a solution that maximizes the objective edge of B. Du's solution is heuristic -the security property
function, we can easily modify the objective function to reverse the goal. of his solution is not defined. Compare to his solution, our



protocol is provably secure in the honest-but-curious model (in 2) Test for unbounded z. If ai, < 0 for each 0 K i < m
which both parties follow the protocol), and can be enhanced then the linear program has no bounded solution. Report
to handle many dishonest behaviors. z -> -oc and stop.

3) Find outgoing variable. Let r 1 < r < m be the index
III. REVIEW OF SIMPLEX METHOD wherewhere

In this section, we briefly review the simplex method [10], br . bi
[25], a widely used method to solve linear programming ars {ilai >o} ais
problems in practice. We do so in order to be able to later refer
to specific steps of the method, and also to introduce our own In case of ties, choose r at random. The index of the
notation (of course the readers who are already familiar with outgoing basic variable is jr-
the simplex method can go through this section very quickly). 4) Pivot. Pivot on ars to find a new basic feasible solution,

In linear programming problems, there are n non-negative set jr = s and return to step 1.
decision variables, denoted as Xl, X2,. . ., x. The objective If there exists an optimal basic feasible solution, then the
is to minimize some linear function of these variables z = solution to the linear program is XB = b, XN = 0, and z = zo.
clXl + c2X2 + . + CX. In addition to the object function,
there are m constraints. Each constraint is a linear equation of B. Simplex Method
the decision variables. The definition of a linear program in The simplex method has two phases [10]. In phase 1, itstandardnformiaes.f devalusof of a0,in2a.0,...am i

tries to determine whether there exists a starting basic feasible
standaminimm z st fing - solution, then if such a solution exists, phase 2 finds an optimal

basic feasible solution or reports unbounded z. Due to page
TCl ZZ (1) constraints, we omit the review of the simplex method.
A .x b

IV. REVIEW OF CRYPTOGRAPHIC TOOLS
Where A is an m x n matrix, b is an rn-dimensional vector, c In this section, we briefly review two cryptographic tools
is an n-dimensional vector, x is an n-dimensional vector, and that shall be used in our protocol.
the superscript T stands for transpose. a) Homomorphic Encryption: A homomorphic encryp-

A. Simplex Algorithm tion scheme [21], [22], [8], [9] is an encryption scheme
A system of m equations with n variables is said to be with the following property: E(x) E(y) = E(x + y). A

in canonicalform with respect to an ordered set of variables homomorphic encryption scheme is semantically secure if
(Xil ,i2 .j,x ) if and only if xj has a unit coefficient in E(x) reveals no information about x. Hence x = y does
ith equation and a zero coefficient in all other equations. We not imply E(x) = E(y). Damg'ard and Jurik [9] proposed
referejat an2d a zer as basic variables, and other decision a homomorphic encryption scheme in which all users can use
variables as non-basic variables. The simplex algorithm al- the same RSA modulus N when generating key pairs.
ways starts with a system of equations in canonical form. For In the rest of this paper, we assume that Alice and Bob use
example, suppose we have the following canonical system with the Damg'ard-Jurik homomorphic encryption scheme. Alice
the basic variables-z,hjav tf2fo** * with and Bob each generate their own key pairs with a sharedthe baicvaiale -z jl~iRSA modulus N, of which the factorization is known to

(-z) + cT x = -Z (2) neither of them. The generation of N can be done either by
A x = b a trusted third party or using two-party protocols from [15],

Let XBj.)Tand XN

[4]. Throughout the paper, we use EA(') to denote encryption
Let jB (XJ1'lj2 ., 1) and XN = (Xj.+l, X+2' with Alice's public key, and DA(') to denote decryption with

1) be vectors of the basic variables and non-basic vari- Alice's private key. Analogously, EB(.) and DB(.) denote
ables, respectively. Then the basic solution for this canonical encryption and decryption using Bob's key.
form iS Z = Zo, XB = b, N = 0. In the simplex algorithm, b) Scrambled Circuit Evaluation. The scrambled circuit
it is required that the initial basic solution is feasible, that is, evaluation protocol was developed by Yao [26]. This protocol
XB=b > 0 (recall that the decision variables have to be involves a generator and an evaluator, in which the evaluator

non-negative). has private input x and the generator has private input y, and
Algorithm 1 (Simplex Algorithm): Assume that a linear they jointly compute f'v, y) without revealing their private in-

program in standard form (1) has been converted to a fea- put to the other party. Recently, the scrambled circuit protocol
sible canonical form (2). Throughout the algorithm, we use has been implemented in [20].
(Xii J2 xj) to denote the ordered set of the basic The scrambled circuit protocol is secure against honest-but-
variables. The algorithm steps are as follows: curious adversaries. When the size of the circuit that computes

1) Find incoming variable. Let s, 1 Ks Kin, be the index f is linear to xz, the size of the input, the complexity of the
where cs is a minimum in c, that is c m=mic. If scrambled circuit protocol is O( xl) modular exponentiations.
Cs . 0, then report the basic feasible solution as optimal In this paper, we use the scramble circuit protocol to compute
and stop. If c5 <0O, then s is the index of the incoming some simple functions, such as, finding the minimum value
basic variable. from an array that is shared between Alice and Bob.



V. NOTATION AND BUILDING BLOCKS where A, b, c, and zo are specified in the canonical form (2)
This section aims at making the later presentation of the of a linear program. The simplex algorithm is essentially a

protocol much crisper by presenting some of the ideas and sequence of pivot steps on the matrix D. In the rest of this
building blocks for it ahead of time. In the rest of this paper paper, we refer the linear system corresponding to D to the
we assume, without loss of generality, that all inputs are following linear program
integers; the reason this is not a limitation is the linearity cT =_ z
of the optimization problem we are solving, which allows us A.x = b
to "scale up" to integer values the inputs to our protocol and
laero scl th anwr bac dw. Our secure linear programming protocol computes the samelater on scale the answers back down.

matrix D as the simplex method. A crucial difference is that
A. Our Security Model the matrix is additively split by Alice and Bob: Alice and Bob

At this point, we consider only honest-but-curious adver- each hold matrix D' and D", respectively, the sum of which
saries who follow the prescribed protocol and attempt to is the matrix D; i.e., D = D' + D". The protocol will keep
learn more information than allowed from the execution. this as an invariant through all its steps.
Adversaries that try to influence the result of the protocol shall D. Pivoting the Matrix
be considered in Section VII. We now describe how Alice and Bob perform pivoting on

Our security model follows directly from [16]. Let x be the additively split matrix D. It is shown in [2] that the
Alice's private input and y be Bob's private input. Let f be split division protocols are much expensive than the split
a function f: {O, 1} X {O, 1} * > {O, 1}* such that f (x, Y) multiplication protocol. We need to avoid divisions in the
is the result of the collaborative linear programming. Suppose matrix pivot if possible. Thus we modify the matrix pivot as
there is a two-party protocol II in which Alice inputs x and follows.
Bob inputs y, in the end, both Alice and Bob learn f (x, y). Definition 1 (Modified Matrix Pivot): To pivot on position
The security of the protocol II is analyzed by comparing what (i, j) of matrix D, for each k = 1, ...., m + 1 except k
an adversary can do in II to what she can do in an ideal we replace the kth equation by the sum of the kth equation
scenario that is secure by definition. In ideal scenario, there multiplied by dij and the ith equation multiplied by -dkj.
is a trust third party who receives x from Alice and y from The resulting system of the modified matrix pivot is equiv-
Bob, computes f (x, y), and returns f (x, y) to both party. A alent to the original system, as the pivot does not alter the
protocol II is secure if any adversary interacting in the real solution set. However, the resulting system may no longer be
protocol II can do no more harm than in the ideal scenario. in the canonical form. Observe that for the basic variables

xij2...xj,-oftessm, x hsanon-zero (instead ofB. Additively Split Data jl . a* ofthe system, has
In the rest of this paper, we use following notations: any a unit) coefficient in ith equation and a zero coefficient in all

items superscripted with' are known to Alice but not to Bob other equations. We call such system to be in a semi-canonical
those superscripted with" are known to Bob but not to Alice. form Suppose we have a semi-canonical system with the
In what follows, we often additively split an item x between basic variables -z, 'jii Xj2'* xsij,m then the solution for this
Alice and Bob for the purpose of hiding it from either party. An semi-canonical form is z =zo, 'i = bi/a-1l,...
item x is said to be additively split between Alice and Bob if bm/ajm.- We next give the matrix pivoting protocol that
Alice has x' and Bob has xl" such that x = xl + xl" (mod N), performs the modified matrix pivot.
but the value of x is known to either party. The modulus Protocol 1: Matrix Pivoting Protocol
N is the RSA modulus used in Damg'ard-Jurik homomorphic Input Alice and Bob share an (m + 1) x (n + 1) matrix D
encryption. We use the same N for additively sharing data and in additively split form, i.e., Alice has D' and Bob
for homomorphic encryption, because suppose x is additively has D" such that D = D' + D". Let (i, j) be an
split into two numbers x and x', then we are sure that index where 2 <i < m + 1 and 1 < j< n.
E(x') E(x") = E(x' + xl' mod N) = E(x) always OutputAlice and Bob additively share D, the result of
holds. Assume all arithmetic in this paper is modulo N unless pivoting on the position (i, j) of D.
specified. The protocol steps are as follows. For each k 1,.....m + 1

Suppose Alice and Bob additively share x and y, they can except k = i, and f 1,... n + 1:
easily compute x + y and x - y in additively split fashion. 1) We use dij and dij to denote the (i, i) entries of D
Alice and Bob can run a secure multiplication protocol [14] and D, respectively. By Definition 1, dke is computed
to compute x y in split fashion, and run a secure division pro- as dkdij - didkj.
tocol [2] to compute x/y in split fashion. The computational 2) Alice and Bob run a split multiplication protocol twice,
costs of these protocols are 0(1). once to compute dkfdij and once to compute di4dkj.

C. AdditivelySharing the Matrix 3) Alice and Bob each subtract her/his shares of dkediJ and
di.edkJ locally. Now the value of dke iS additively split

Let us define an (m + 1) x (n + 1) matrix btenAieadBb

( eT -z0 N Analysis Alice and Bob need to conduct 2ml(m + 1) secure
V A b ) (3) split multiplications. As each split multiplication requiresO0(1)



modular exponentiations, the matrix pivoting protocol takes 4) Bob sets each entry of D" as d". = d'- - rij and obtains
O(mn) modular exponentiations. D" - R". Bob then permutes D" - R" according to cj
E. Blind-and-Permute and 7j, and gets F" = 1 B (7B (D" - R")). Note that

Recall that in the matrix pivoting protocol, Alice and Bob F' + F" = rB(jB(D)).
have to know which position in the matrix to pivot. How- 5) Alice and Bob repeat the above four steps with the roles
ever, knowing the pivot position may leak information about of Alice and Bob exchanged. That is, Bob sends the
the original matrix unnecessarily. To avoid leaking private encrypted matrix EB(F") to Alice. Then Alice chooses
information about the matrix, let us first define the matrix a random matrix R', adds R' to F", subtracts R' from
permutation as follows: F', and performs permutation on both matrices based

Definition 2 (Matrix Permutation): Let D be an (m + 1) x on her 7A and 1 A. At the end, Alice obtains D'I
(n+ 1) matrix, let 7c be a permutation on {1,... , n} andWTR C(F' - R')) and Bob obtains D" R C(F1F +
be a permutation on {1,..I , m}. The matrix permutation on R')), such that their sum D is equal to 7R(7jc(F' +
D is the matrix D permuted by the first n columns based on F")) = wA(,A(,B(,7B(D))))= 7R(7FC(D)).
7c and then permuted by the last m rows of D based on 7TR. Analysis At the end of the protocol, Alice and Bob additively
We use WR(C(D)) to denote the permuted matrix. share 7R(7wC(D)) where the permutations WR and 7c are
Note that the matrix permutation preserves the solution set known to neither of them. Alice and Bob each perform

of the linear system corresponding to the matrix. Consider 2(m + 1) x (n + 1) homomorphic encryptions. Therefore
the canonical form 2, 7c is used to permute x variables, WR the computational cost of the matrix blinding-and-permuting
is used to permute the m constraints. The linear system of protocol is O(mn).
the permuted matrix is equivalent to the linear system of the F Recovering the Indexes ofBasic Variables
original D. As mentioned earlier, in order to prevent leaking informa-
Our solution to avoid leaking the pivot position is as follows: tion about the pivot position, Alice and Bob blind-and-permute

Suppose Alice and Bob additively share the matrix D, Alice the matrix D before each pivot step. Unfortunately, one side
and Bob jointly permute D in a way that the permutation affect of the matrix permutation is that the indexes of the basic
is known to neither of them, and in the end the permuted variables are also permuted. After a series of permutations,
matrix D is additively split between them using different when we figure out the basic variables of the resulting matrix,
randomness. Now it no longer matters if Alice and Bob know we need to find out the corresponding variables in the initial
where to pivot in D because they have no way of relating matrix. In other words, we want to compute the corresponding
the pivot position in D to the corresponding position in the column index of the original matrix given a column index
original matrix D, and therefore using matrix pivoting protocol of the final matrix D after a series of permutations. This is
becomes acceptable. We next describe a protocol that achieves described next.
this "blinded permutation". Protocol 3: Indexes Recovering Protocol

Protocol 2: Matrix Blinding-and-Permuting Protocol Input Alice has k private permutations on {1, 2,. . . ,
Input Alice and Bob additively share an (m + 1) x (n + denoted as l q,lU,* .,.1; Bob has k pri-

1) matrix D. Alice has a random permutation 7c vate permutations on {1,2, ..., n}, denoted as
on {1,.. .,n} and a random permutation 7wA on qTB1q: * * * T k

{1, ... , m} . Similarly, Bob has a random permuta- OutputLetting 7 = 7Bk ( *(k(71(*))))) both Alice
tion ljB, and a random permutation 7Bj and Bob obtain 7-1(1), -1(2) 71(n)

OutputLet 7c = 7c j7c and WR = R * 7R. Alice and The protocol steps are:
Bob additively share D= WR(wC(D)) with different 1) Let x = (1, 2,.. , ) be an array additively split
randomness. between Alice and Bob initially, e.g., Alice generates

The protocol steps are: an array x' = (1, 2,. . ., n) and Bob generates an array
1) Since D is additively split between Alice and Bob, as x" (0, ,... , 0).

usual, we assume Alice has a matrix D' and Bob has a 2) For j 1,.. , k, Alice and Bob run a vector blinding-
matrix D" such that D' + D" = D. Alice encrypts each and-permuting protocol [3] (a vector version of Proto-
entry dl of D' using homomorphic encryption and send col 2), which permutes x according to wj4 and 1U , such
to Bob EA(d1j) in order. We use EA(D') to denote the that 7Fj * U iS known to neither Alice nor Bob.
encrypted matrix. 3) Alice publishes her array x and Bob publishes his array

2) Bob generates an (m + 1) x (n + 1) random matrix R" //. Let x = x + xl = (X , ., Xn), x is equal to the
where each entry rij is chosen randomly from ZN. Bob original x permuted by 7. Observe that position i in the
then computes EA(D' + R"), by computing EA(dlj + original x corresponds to position 7(i) in the resulting
r) for each i C [l1..m + 1] and j C [l1..n+ 1]. x. Therefore for each i 1,...,n,-1(i)=.

3) Bob permutes matrix FA(D' +R") according to ijC and Analysis Alice and Bob run a vector blinding-and-permuting
ijR. Bob sends wU (ij ( FA(D' + R"))), the permuted protocol k times. Each vector blinding-and-permuting proto-
version of FA(D' + R"), to Alice. Alice decrypts each col requires n homomorphic encryptions. Thus this protocol
entry and obtains F' = 7r (ijC (D' + R")). overall takes O(kn) modular exponentiations.



G. Finding the Outgoing Variables and to find the index of minimum entry. If the vector
Recall in step 3 of the simplex algorithm, we need to find is positive, the linear system of D is a basic optimal

r G [1..m] where feasible solution, jump to step 6 to output the result. Oth-
br m bi erwise, go to next step. We use s to denote to the index

-= min - > 0. of the minimum entry, i.e., dl = min(d 1, . dln)ars {ilai,>o} ais 3) Test for unbounded z. Alice and Bob run a scram-
Assume the vector b and the matrix A are additively split ble circuit protocol to determine whether the vector
between Alice and Bob, this subsection aims at finding r (d25s d3,... Idm+±,s) (which corresponds to the sth
without leaking any other information. A solution using the column of A) is negative. If so, report z -> -oc (the
scramble circuit protocol directly is inefficient, because it linear program has no bounded solution) and stop.
requires at least 2m multiplications within the circuit. 4) Find outgoing variable. Alice and Bob find the min-

The main idea of our solution is to find r by comparing imum positive ratio on vectors (d2s, d3sI..., Idmi+,s)
bj/ajs with bi/ais, if both of them are positive, we choose (which corresponds to the sth column ofA) and (d2,n+1,
the minimum one; if one of them is negative, we discard the d3,n+l .. ., dmi+,n+l±) (which corresponds to b), i.e.,
negative one; if both of them are negative, we choose bjlajs. find r such that
In the simplex algorithm, b is always positive. If ais, bi, ajs, bj br b
are all positive, the following holds r min

ars {ilai,>O} ais

J< t bjais < biajs. In case of ties, we just choose the first r. Because D
- V is already randomly permuted, choosing the first r on

We define a function f(X, y) as permuted D is in effect equal to choosing r randomly
1 if (x > 0) A (y > 0) A (x < y); in the original matrix D.

fJ(XI y) = 1 or if x < 0; 5) Pivot. Alice and Bob pivot on position (r + 1, s) of the
0 otherwise. matrix D using Protocol 1, then return to step 1.

6) Output the result. Alice and Bob first run indexes recov-
If f (bjai5, biaj5) = 1, then we can discard the consideration of ering protocol (Protocol 3) to obtain the relation between
i; otherwise, discard the consideration of j. f can be securely the variables in the resulting system with the variables in
implemented by a scrambled circuit protocol. The scrambled the original system. That is, let 7 be the overall column
circuit protocol for f is efficient, as the size of the circuit is permutation of D, both Alice and Bob learn 7r-1 (i) for
linear to the size of the input. The scrambled circuit protocol each i 1,... n. Then for each column i G [i..n], let
takes O(f) modular exponentiations, where f is the number j r-1 (i), the following steps are performed:
of bits of precision per variable2. Due to space limit, we omit a) Let us first define a function g as
the details.

VI. SECURE LINEAR PROGRAMMING PROTOCOL f r if (ar 0) A
We now "put the pieces together" and give the overall g(ai,.. , am)T (at 0 for t #

protocol. Due to space limit, we only describe the protocol 0 otherwise.
for solving simplex algorithm. The detail of the secure simplex If g(a,... ., am) = r + 0, then array a has exactly
method protocol will be given in the full version of this paper. one non-zero entry at ar. g can be implemented by

Protocol 4: Secure Simplex Algorithm Protocol a scrambled circuit protocol with O(fm) complex-
Input Alice and Bob share A, b, c, and zo in additively split ity, where f is the maximum bit length of at for t =

fashion, where A, b, c, and zo are the parameters of a 1, ... , m. Alice and Bob determine whether the ith
linear program that starts in a feasible semi-canonical column of D has one non-zero value only, i.e.,
form. they run the scramble circuit protocol to compute

OutputAlice and Bob output x (=X, X2,... , Xn) such that r = g(d2,i, .. ., dmi+,i).
x is the optimal solution to the linear program. b) If r = 0. Alice and Bob output xj = 0.

Let D be the (m + 1) x (n + 1) matrix defined in equation c) If r :t 0, Alice and Bob run a split division
(3). D is additively split between Alice and Bob. The protocol protocol on br and air, and output xj = br/air.
steps are: Analysis In the above protocol, step 1 requires O(mn) homo-

1) Blind-and-permute. Alice and Bob blind-and-permute morphic encryptions. Let f be number of bits of precision per
the matrix D according to Protocol 2. variable, the costs of step 2 and step 3 are O(fn) and O(fm),

2) Find incoming variable. Alice and Bob run a scram- respectively. Step 4 takes O(fm) modular exponentiations.
ble circuit protocol to find whether the vector The cost of step 5 is about O(mn) modular exponentiations.
Kdii, d12, ... ., d1n) (which corresponds to c) is positive Let k be number of steps repeated. In step 6, the total cost

2Note that the techniques from [14] is used to reduce the computation ofOk)(hcstfteinxsrcvrngptcl)lu
from number of bits requires to represent the modulus N to the number of ° (£mm) (the cost of evaluating g for n times). The total cost
bits required to represent an unsplit value, ofthis protocol is about 0 (kmn+ k£ +k£m+ £m) modular



exponentiations. Because n > m, the total cost becomes solutions to SFE to make our protocol secure against malicious
O(k(mn + £n) + £mn). adversaries; such solutions, however, are expensive.
A. Security Proof A. Building Blocks

In proving the security of our protocol, we use the compo- As our solution needs to use cryptographic commitment
sition theorem of [5] extensively. This theorem states that if a schemes and zero-knowledge proof techniques, we here briefly
function f is computed by invoking functions f., . , fn and review the Pedersen commitment scheme [23].
is proven secure if these functions are "perfectly" implemented Definition 3 (The Pedersen Commitment Scheme): Let p
in a secure manner (i.e., by using a trusted third party), then and q be two large primes such that q divides p - 1. Let g
a protocol that computes f by invoking secure protocols for be a generator of Gq, the unique order-q subgroup of Z*
.... ,: fn, each of which is proven secure, securely computes Let h be a random value in Gq such that logg h is unknown
f. A consequence of this theorem is that to prove a protocol to anyone. To commit a value a C Zq, the prover chooses
that sequentially invokes functions f., . , fn is secure in r < Z/q and computes the commitment c = (gahr mod p).
the honest-but-curious model, all that needs to be shown is To open a commitment c, the prover reveals a and r, and the
that: (1) the intermediate results of the protocol do not leak verifier verifies whether c = (gah' mod p).
information and (2) the individual functions are secure. Since We now review a zero-knowledge proofprotocol that will be
all of our protocols produce additively-split outputs, the first used in our solution. Given n commitments, this protocol [6]
constraint is trivially true for all of our protocols. We formalize proves that the committed values satisfy a linear equation.
this notion in the following lemma: Let c1, . . . , c, be the commitments of a1,... , an, i.e., Ci =
Lemma 1: If a protocol rl invokes only functions that use gaihri mod p for i = 1, . . . , n. Let 1, .... Xn, b be n + 1

additively-split input and produce additively-split output, and integers in Zq. In this protocol, the prover proves to the verifier
all of these functions are individually secure in the honest- that a1lx + . + anxn = b.
but-curious model and independent (i.e., they do not share Protocol 5: Zero-knowledge Protocol Proving Linear Rela-
randomness), then II is secure in the honest-but-curious model. tionship
PROOF. Follows directly from the composition theorem in [5]. Input Let cl,... ,cn, xl,i. . n,xn and b be the common
D input. The prover inputs a1,.. ., an, and 1, .. ., rT.

Theorem 2: The secure simplex algorithm protocol is se- The protocol steps are:
cure in the honest-but-curious model. 1) Let c = cx* cx- mod p. It is easy to see that c
PROOF SKETCH. Lemma 1 shows that the secure simplex 9aletl+c ,anXn1..x mdpIt ismod p.
algorithm protocol is secure in the honest-but-curious model 2) B h he vrifiem odp.b2Both the prover and the verifier computes uJ c/gb.
if all the sub-protocols are secure. The sub-protocols we used Note that if alxl + + anxn b, then o

are matrix blind-and-permute (step 1), matrix pivot (step 5), hriX+ ...rnXn mod p

indexes recovering protocol (step 6), and scrambled circuit 3) The prover proves to the verifier the knowledge of
protocol (step 2, 3, 4, and 6). The scramble circuit protocol Th or prove tote veifethe knowledgeo
has been proved to be secure in the honest-but-curious model response technique [24].
in [26]. Matrix blinding-and-permuting protocol is secure, as
the matrix ispermuted unde the encrypted form. Matri Analysis The computational cost of this protocol is 0(n).the matrix iS permuted under the encrypted form. Matrix

pivoting protocol is secure, as it simply invokes a secure B. Our Solution
multiplication protocol multiple times. Indexes recovering We now present an efficient protocol that can prevent most
protocol is also secure, because it invokes a secure blind-and- of the dishonest behaviors in the secure collaborative linear
permute protocol k times. Due to space limit, we omit the programming protocol. The idea is to make sure the results of
detailed proofs. F] the linear programming satisfy the constraints, i.e., A x = b.

VII. HANDLING DiSHONEST BEHAVIOR Protocol 6: Constraints Verification Protocol
Our protocol assumed the honest-but-curious model. In real The protocol steps are:

applications, however, a participant of the protocol may not 1) Alice commits each entry of A' and b' using the Ped-
necessary follow the protocol if her malicious behavior cannot ersen commitment scheme; analogously, Bob commits
be detected by the other party. To show such attack, we note each entry of A" and b".
that our protocol replies hugely on additively split data. That 2) Alice and Bob run secure linear programming protocol
is, to share x, Alice keeps ' and Bob keeps x" such that and obtain x, the result of the linear programming.
x = x' + x" mod N. If a participant is malicious, she may 3) Alice and Bob proves to each other that A x = b. More
manipulate x by increasing or decreasing her share of x. specifically, for j 1 ... ,m:
We next present an efficient solution that prevents most of a) Alice computes ea = al'xi + a' Xn- b1 and

the dishonest behaviors. The idea of our solution is that Alice Bob computes eb = aYl'l + . a$jxn- b'. Both
and Bob each commits her or his private inputs. After the Alice and Bob reveals ea and eb. If ea #t eb, the
secure linear programming protocol, each participant proves protocol outputs failure.
to the other party that the results of the linear programming b) Given the commitments of ai, . .,a j and b>
satisfy all the constraints. Note that it is possible to use general Alice proves that ea =a%xil + ... zn-b



holds using Protocol 5. Similarly, Bob proves that [2] M. J. Atallah, M. Bykova, J. Li, K. B. Frikken, and M. Topkara. Private
eb = a"xi/cl + a//* - bll collaborative forecasting and benchmarking. In Proceedings of the 3rd1JJn , , ACM Workshop on Privacy in the Electronic Society, Oct. 2004.

c) Since ea =eb, it is clear that alji + * ** amjxr- [3] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence
bl =a xil + a//Xn- bl. In other words, the comparisions. In Proceedings of the 2nd ACM Workshop on Privacy in
constraint a njxi+ *an =bi holds. the Electronic Society, Oct. 2003.constrain aljx an n=bj d.. [4] D. Boneh and M. Franklin. Efficient generation of shared RSA keys.

Analysis The cost of this protocol (excluding step 2) is Journal of the ACM, 48(4):702-722, 2001.
0(mn), as it invokes the zero-knowledge protocol for proving [5] R. Canetti. Security and composition of multiparty cryptographic
linear relationship m times. protocols. Journal of Cryptology, 13(1):143-202, 2000.

[6] R. Cramer and I. Damgard. Zero-knowledge proof for finite field
If a participant of the secure linear programming protocol arithmetic, or: Can zero-knowledge be for free? In Advances in

tries to deviate from the protocol, it is very likely that the Cryptology: CRYPTO '98, volume 1462 of LNCS, pages 424-441.
result x would not satisfy the constraints, thus such malicious Springer, 1998.

verification [7] R. Cramer and I. Damgard. Secure distributed linear algebra in a
behaviors will be detected by the constraints verificaton constant number of rounds. In Advances in Cryptology: CRYPTO '01,
protocol. Note that the constraints verification protocol cannot volume 2139 of LNCS, pages 119-136. Springer, 2001.
guarantee that the resulting solution x is optimal, however, [8] I. Damgard and M. Jurik. A generalisation, a simplification and some

applications of paillier's probabilistic public-key system. In Proceedings
there is no incentive for a dishonest participant to deviate from of the 4th International Workshop on Practice and Theory in Public Key
the protocol in order to obtain a non-optimal solution. Also Cryptography, pages 119-136. Springer, 2001.
note that, in many business scenarios, if malicious behaviors [9] I. Damgard and M. Jurik. A length-flexible threshold cryptosystem with

applications. In Proceedings of the 8th Australasian Conference on
during the protocol can be detected, a rational participant will Information Security and Privacy, volume 2727 of LNCS, pages 350-
follow the protocol, otherwise, she would lose her reputation. 364. Springer, 2003.

VIII. CONCLUSION AND FUTURE WORK [10] G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction.
WegvIII. fcOenCLSO ANDoco fUTrEWovn oRK boatv

Springer, Mar. 1997.
We gave an efficient protocol for solving collaborative [11] W. Du. A Study of Several Specific Secure Two-party Computation

linear programming problems, such that neither party reveals Problems. PhD thesis, Purdue University, West Lafayette, Indiana, 2001.
anything about their private input to the other party (other [12] I. Foster and C. Kesselman, editors. The grid: blueprint for a new

computing infrastructure. Morgan Kaufmann Publishers Inc., San
than what can be deduced from the result). The amount of Francisco, CA, USA, 1999.
computation done by our protocol is proportional to the time [13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
complexity of the simplex method. Such a protocol enables Enabling scalable virtual organizations. International Journal of Su-

percomputer Applications, 15(3):200-222, 2001.
collaborative optimizations where the two parties can Jointly [14] K. B. Frikken and M. J. Atallah. Privacy preserving route planning.
minimize costs (or maximize profits) without violating their In Proceedings of the 3rd ACM Workshop on Privacy in the Electronic
own private constraints. This work is only a first step towards Society, pages 8-15, Oct. 2004.

[15] N. Gilboa. Two party RSA key generation. In Advances in Cryptology:a comprehensive toolkit for secure and private collaborative CRYPTO '99, volume 1666 of LNCS, pages 116-129. Springer, 1999.
optimization. Natural extensions include: [16] 0. Goldreich. The Foundations of Cryptography -Volume 2. Cam-

. Nonlinear optimization, e.g., simulated annealing, Tabu bridge University Press, May 2004.[17] 0. Goldreich, S. Micali, and A. Wigderson. How to play any mental
search, etc. As stated earlier, assuming integer inputs is game. In Proceedings of the 19th ACM Conference on Theory of
not a limitation on our techniques because of the linearity Computing, pages 218-229, May 1987.
of the optimization problem we are solving (we can scale [18] N. Karmarkar. A new polynomial-time algorithm for linear program-ming. Combinatorica, 4(4):373-395, 1984.
up everything to an integer value and scale the answers [19] V. Klee and G. J. Minty. How good is the simplex algorithm? In
back down). This, however, cannot be done for non-linear 0. Shisha, editor, Inequalitites III, pages 159-175. Academic Press,
optimization problems, the handling of which we leave 1972.[20] D. Malkhi, N. Nisan, B. Pinkas, and Y Sella. Fairplay - Secure two-
for future work. party computation system. In Proceedings of the 13th USENIX Security
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