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ABSTRACT

Cabuk, Serdar Ph.D., Purdue University, December, 2006. Network Covert Channels:
Design, Analysis, Detection, and Elimination. Major Professors: Carla E. Brodley
and Eugene H. Spafford.

Indirect communication channels have been effectively employed in the communi-

cations world to bypass mechanisms that do not permit direct communication between

unauthorized parties. Such covert channels emerge as a threat to information-sensitive

systems in which leakage to unauthorized parties may be unacceptable (e.g., military

systems). In this dissertation, we show that traffic analysis can counter traditional

event-based covert channels, which do not employ any additional scheme to obfus-

cate the channel further. For these channels, we introduce effective noiseless and

noisy covert channel detection mechanisms that capture the anomalous traffic pat-

terns. However, because a motivated user can potentially hide the channel further, we

introduce a new family of covert channels that do not produce such anomaly. These

IP time-replay covert channels transmit covert messages by adjusting packet timings

consistent with inter-arrival time sequences that are extracts from recently recorded

normal sequences. Under certain assumptions and lowered data rates, these channels

generate output sequences that are equal in distribution to normal sequences allow-

ing them to by-pass traffic anomaly detection schemes that are based on distribution

analysis. Additionally, we illustrate that these channels can potentially survive chan-

nel elimination schemes such as jammers and network data pumps with lowered data

rates. Thus, we discuss two types of transformations on packet inter-arrival times to

increase the efficacy of existing elimination schemes.
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1. INTRODUCTION

Consider a Multi-level Secure (MLS) system in which a malicious user Alice wishes to

leak sensitive information to Eve while sending a legitimate message to another user

Bob. Additionally, suppose that Alice and Bob have HIGH security clearances, and

Eve has a LOW security clearance. In systems where the security policy physically

separates Alice’s and Eve’s resources, this leakage is not possible and the resulting

system is called a total isolation system [1]. However, this alternative is impractical

because of under-utilization of resources. A more common approach is to allow re-

source sharing between users with different security levels and to restrict access to

shared resources using access control schemes. In our research, we assume that a

Bell-LaPadula access control scheme is active in the system with HIGH and LOW

security levels [2]. Even though this scheme controls direct access to shared resources,

it enables Alice and Eve to establish indirect communication channels – also known as

covert channels. A covert channel is a communication channel that violates a security

policy by using shared resources in ways for which they were not initially designed.

This is a different type of channel than the subliminal channel described in Simmons’

prisoner’s problem [3], which assumes a direct channel between Alice and Eve, and

is inherently not allowed in an MLS system. Covert channels arise in systems for

which direct access is disallowed by policy. Therefore, covert channels are a related

but different information hiding construct as compared to other information hiding

techniques such as cryptography and steganography.

Traditionally, covert channels are characterized into two types: storage and timing

channels. A storage covert channel “involves the direct or indirect writing of a storage

location by one process and the direct or indirect reading of the storage location by

another process” [4]. A timing covert channel involves a sender process that “signals

information to another by modulating its own use of system resources (e.g., CPU
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time) in such a way that this manipulation affects the real response time observed

by the second process” [4]. Covert channels can be further classified depending on

the type of the system in which they are used. A network covert channel is a covert

channel in which the shared medium is the network environment (e.g., transmission

lines, firewalls, routers, etc.). Accordingly, a single system covert channel uses the

shared resources within a single computer (e.g., files, hardware resources, operating

system components, etc.).

A crucial step in covert channel design is to find and exploit a shared resource

that is unlikely to be used as a communication medium by design. In principle, the

less obvious the shared resource, the more stealthy the covert channel. For example:

1. The file-lock covert channel [5] exploits systems with shared file systems by

using file description tables that indicate a file’s locked/unlocked status as the

shared resource.

2. The disk-arm covert channel [6, 7] exploits KVM/370 systems with a security

kernel and a shared read-only disk drive by using the position of the disk arm

as the shared resource.

3. The bus-contention covert channel [8] exploits multi-processor systems running

on a single shared bus by using the busy/idle status of the bus as the shared

resource.

Little emphasis has been given to methods for hiding the traffic generated by covert

channels – the secrecy of a covert channel mostly relies on the secrecy of knowing the

shared resource. Without additional techniques in place to hide the channel better, we

argue that once this shared resource is identified, the traffic generated by an event-

based covert channel can be distinguished from the traffic generated by legitimate

channels in the system. To see this, suppose that Alice and Eve use a shared resource

to communicate via a covert channel. To signal one bit of information to Eve, Alice

generates an event that alters the state of this shared variable. As an example, two
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events that alter the file description table in the file-lock channel are lock file and

unlock file. To transmit a series of signals to Eve, Alice subsequently generates the

corresponding events each separated by a timing interval that is either constant (i.e.,

a storage channel) or picked from a small set that is used repetitively (i.e., a timing

channel). The resulting sequence is an event sequence that is composed of 2-tuples

(E, t), where E is an event and t is a point in time. In the first part of this disser-

tation, we argue that event sequences generated by an unhidden event-based covert

channel can be distinguished from event sequences generated by legitimate channels

because the former shows a more regular pattern caused by the encoding scheme that

generates repeating inter-event times. Hence, if the shared resource that the covert

channel uses is identified, the channel can be detected by examining the event traffic it

generates. In the second part of the dissertation, we illustrate ways to hide the chan-

nel further by replaying event sequences generated by legitimate channels to create

network covert channels that are virtually undetectable through traffic distribution

analysis. To counter these channels for which our detection schemes fail, we present

ways to eliminate and/or rate-limit them.

1.1 Research Objectives and Contributions

Our research addresses event-based network covert channels that arise in dis-

tributed TCP/IP MLS systems even when the transmission lines between network

nodes are controlled. In this dissertation, we show that traffic analysis can counter

traditional event-based covert channels, which do not employ any additional scheme

to obfuscate the channel further, although rate-limited and more complex channels

can be indistinguishable from normal channels through traffic distribution analysis.

To prove this statement, we provide answers to two questions: How can we design

network covert channels using the TCP/IP protocol that leak information from Alice

to Eve? How can the system detect and eliminate such leakage? In particular,
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1. We present and implement an IP covert channel prototype using a novel design

in which we use IP packet timings to transmit covert information over the

network effectively.

2. We introduce novel detection measures that effectively detect both noiseless and

noisy IP covert channels (and all event-based covert channels in general) using

traffic analysis and force malicious users to either design more complex channels

and/or rate-limit the channel to avoid detection.

3. We introduce time-replay covert channels (TRCC) that are a covert channel

family that hides event-based channels, and argue that TRCCs are virtually

undetectable through distribution analysis under certain assumptions.

4. We discuss prevention and elimination techniques for time-replay covert chan-

nels that aid current elimination schemes in stopping these channels.

Additionally, we provide simple accuracy and bandwidth analysis for both un-

hidden and hidden IP covert channels and investigate the efficacy of detection and

elimination techniques through an experimental study. Next, we detail each contri-

bution further.

1.1.1 Designing Unhidden Network Covert Channels

Our research initially focused on designing event-based storage and timing covert

channels which we call IP simple covert channels (SCC). Our design of IP SCCs use

the packet arrival as the event and employ the inter-arrival times between the IP

packets to convey information in distributed MLS systems. While simple in concept,

there proved to be some non-obvious issues in creating the channel and designing

the software. One subtle issue is the synchronization of Alice and Eve’s event clocks

to guarantee channel accuracy. Because IP packets offer no guarantees on the time

of packet deliveries, we employ additional schemes to preserve synchronization and
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resynchronize the channel as needed. In the presence of these factors that intro-

duce noise into the covert channel, we assess the efficacy of IP SCCs in terms of

bit/character accuracy (the number of bits/characters transmitted correctly divided

by the total number of bits/characters) and channel bandwidth. To do so, we per-

form basic accuracy and bandwidth analysis for both noiseless and noisy IP SCCs. We

show that two factors affect channel efficacy: Contention noise, which is the amount

of non-covert traffic Eve observes in the covert channel and can potentially reduce

channel accuracy [9], and clock skew, which is the amount of jitter in the network and

can potentially result in the loss of synchronization between Alice’s and Eve’s event

clocks.

1.1.2 Countering Unhidden Network Covert Channels

To counter these channels, we investigate IP SCC detection, elimination, and

rate-limiting techniques and introduce methods to detect both noiseless and noisy

IP SCCs. Our analysis of the behavior of IP SCCs illustrates that both storage and

timing channels show some type of regularity in packet inter-arrival times. This is an

expected behavior for storage channels, because they have a fixed timing interval to

send/not send the packets. In contrast, timing channels do not use constant timing

intervals. However, in a straightforward implementation, a symbol is sent using only a

limited number of these timing intervals and these intervals repeat over time. Hence,

the packet inter-arrival times for both storage and timing IP SCCs are repetitive. For

example, the inter-arrival times for a storage covert channel in Figure 1.1(a) illustrate

this regularity as compared to a sample WWW trace (Figure 1.1(b)) taken from the

NZIX-II dataset [10], in which no such regularity can be deduced. For such legitimate

channels, user and network affects can potentially be observed on the traffic pattern

on a longer window. However, we claim that, in most cases (e.g., except streaming

traffic), legitimate traffic patterns are much less repetitive than IP SCC traffic.
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Fig. 1.1. Inter-arrival times for different traffic types. (a) A simulated
IP storage SCC with τ = 0.2 secs (no clock skew). (b) An example
WWW traffic.

To detect this type of regularity, we introduce two measures that can be used for

online (i.e., real-time) detection and evaluate their capabilities in an experimental

study using our covert channel software in a real-world scenario. Further, we show

that our detection measures fail for noisy covert channels for noise levels higher than

10%. To counter this deficiency, we investigate effective yet computationally expensive

search mechanisms to locate the hidden covert channels locally for which the global

measures fail. An important observation here is that this regularity characteristic is

not limited solely to the channels we designed but to all event-based covert channels.

Hence, our detection measures can be employed not only for IP SCCs but for any

channel that is based on event timings.

1.1.3 Designing Hidden Network Covert Channels

Despite the characteristic regularity of IP SCCs and event-based channel channels

in general, more sophisticated schemes that better hide the channel can be devised. In

the second part of our research, we introduce Time-Replay Covert Channels (TRCC)

which are specifically designed to hide covert traffic by adjusting packet timings con-

sistent with inter-arrival time sequences that are extracts from recently recorded
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normal sequences under similar network conditions. Such time-replay channels rep-

resent a family of covert channels rather than a particular channel or a channel type.

We first detail the channel model for IP TRCCs that use network packet timings to

transmit data and hide the covert channel within legitimate IP traffic. We illustrate

that using a simple IP channel, called the binary-matching channel, Alice and Eve

can exchange messages effectively over the network with high accuracy and secrecy.

Further, we investigate the channel efficacy of IP TRCCs and assess it in terms of

bit/character accuracy (the number of bits/characters transmitted correctly divided

by the total number of bits/characters) and channel bandwidth. We observe that in

addition to contention noise and clock skew as in IP SCCs, a third factor, sequence

selection (i.e., which sequence the time-replay covert channel uses) plays a major role

in channel accuracy and bandwidth.

1.1.4 Countering Hidden Network Covert Channels

To counter IP TRCCs, we investigate covert channel detection, elimination, and

prevention techniques. We first investigate online (i.e., real-time) detection and elim-

ination schemes that are applicable to IP time-replay covert channels and the con-

ditions under which these schemes are effective. Because IP TRCCs use replays of

inter-arrival sequences extracted from legitimate sources, the traffic pattern shows

no regularity as in the case of IP SCCs and the regularity-based detection measures

do not apply to these channels. Further, we show that a sophisticated attacker can

potentially devise and utilize covert time sequences that are equal in distribution to

normal sequences that were generated by legitimate channels. Thereby creating re-

play covert channels that are undetectable through analyzing localized distribution of

inter-arrival times. To deal with these channels, we provide a discussion on how the

existing covert channel elimination schemes need to be revised to eliminate the new

class of covert channels we introduce. To do so, we focus on two covert channel elimi-

nation schemes, jamming [11] and the network pump [12], and provide a discussion on
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their effectiveness on IP TRCCs. We show that the binary-matching channel may sur-

vive these elimination schemes with a slightly lowered data rate. (The actual amount

by which the data rate is reduced depends on the amount of added average delay to

the packets.) We argue that to eliminate these channels, elimination schemes need to

transform packet timings more intelligently to remove the associations between the

timing values and symbols.

1.2 Significance of the Work

Handling covert channels, that is identifying, analyzing, limiting, and eliminating

these channels, is particularly important for multi-level secure (MLS) systems, in

which processes may leak information to other processes with a lower classification

level via the use of shared resources [13]. Indeed, the original (but now obsolete1)

evaluation criteria for trusted computer systems (TCSEC: 1983–1999 – The Orange

Book) included requirements to analyze covert channels in terms of their bandwidth

and to develop policies to monitor and maintain their bandwidth below maximum

acceptable levels [4]. TCSEC required storage channel analysis for a B2 system, and

a complete analysis for B3 and higher assurance level systems. These requirements

were also carried to the new version of evaluation criteria: the Common Criteria (CC:

1998–Present) [14]. CC requires covert channel analysis for an EAL5 assurance level

as well as a systematic search for covert channels for EAL6 and higher assurance

levels.

Despite their importance in secure systems, auditing and detecting covert channels

have received less attention compared to other covert channel handling techniques.

Furthermore, covert channel detection still remains a novel area often confused with

covert channel identification (as in [15,16]). The identification problem is to discover

the potential covert channels that can be realized in the analyzed system. In contrast,

covert channel detection mechanisms are similar to intrusion detection systems. The

1Replaced by Common Criteria (CC) in 1999.
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essential task in covert channel detection is to detect anomalous traffic patterns that

can potentially signal the use of a covert channel. In addition to this, an ideal

detection scheme would be the one that identifies the communicating parties, the

information transferred, and the channel capacity.

Network covert channels are particularly important when the receiver of the (di-

rect) channel (i.e., Bob) is not in the same system as the sender (i.e., Alice) and the

access is controlled between the two. These channels pose a threat to distributed sys-

tems in which sensitive information is stored. This is because once an attacker (i.e.,

Eve) implants a back-door into one of these systems, she can now steal information

by leaking it through the covert channel that can be established using the back-door

program. Moreover, even without the presence of this back-door, Eve can monitor

the traffic between Alice and Bob to gather information Alice is leaking. Without

these channels, this scenario is not possible because direct access to the untrusted

parties (e.g., the nodes outside the trusted network), including Eve, is controlled by

policy.

Detection is a common practice in secure systems to monitor malicious activ-

ity [14]. Detecting covert channels is desirable for three reasons:

1. Detection provides a mechanism to discourage the use of these channels and

may work as a deterrent [5].

2. Most covert channel identification systems need input from system analysts

(i.e., to specify the shared resources). As a result of human error, a number of

covert channels may remain unidentified. Detection can help record the activity

of these channels.

3. Covert channel elimination can be costly for high performance systems [17].

In this case, allowing these channels to exist but monitoring their activity is

crucial.

The following type of systems can potentially benefit from covert channel detection

and elimination techniques:
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High-assurance Systems: Covert channel elimination schemes usually have a neg-

ative performance impact on the system [17]. In high-assurance systems (e.g.,

real time systems) these schemes are not practical. Therefore, allowing these

channels to exist, but monitoring their activity, is desirable both to deter the

usage of such channels, and to detect the actively running ones in the system.

Military Systems: In a military system, identifying spying users or processes are as

important as limiting them. Such spy networks are potentially dangerous and

identifying their users can enable authorities take further actions against such

users. This way, potential future actions of these users may also be prevented.

As a final note, in both applications, the detection mechanisms can potentially run

at the front end of the elimination protocols. This way, the elimination schemes may

be activated only if there is a suspicious activity in the network. This architecture

helps reduce the negative performance impact of the elimination schemes in addition

to enabling authorities to identify the users of the covert channel.

1.3 Dissertation Outline

In this dissertation, we first provide a complete background on covert channel

research in Chapter 2. In Chapter 3, we introduce the IP simple covert channel,

which is a trivial (i.e., unhidden) covert channel implementation that uses packet

timings to convey secret information. In the same chapter, we investigate detection

schemes that counter these channels and report the results of our experimental study

on detection efficacy. In Chapter 4, we introduce a novel covert channel family, time-

replay covert channels, that hide the covert channel using replays of legitimate traffic

traces. These channels are resilient against the detection methods that we introduce

in Chapter 3 and to counter them, we discuss prevention and elimination techniques

specifically adapted to disrupt the channel activity in the same chapter. We present

our conclusions in Chapter 5 and provide insight on future directions one could take

as a continuation to this work.
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2. BACKGROUND AND RELATED WORK

Computer resources are scarce; so much so that dedicating these resources to individ-

ual entities is not a common practice in wide-area systems because of the cost and

under-utilization of the resources. Today, the general trend is to maximize the utiliza-

tion of these resources even in single systems through technologies such as virtualiza-

tion [18] and grid-computing. As a result, we have systems in which the resources are

utilized among many entities with different sensitivity levels. However, the sharing

of these resources creates potential unauthorized communication channels between

these entities, such as covert communication channels. A covert channel finds indi-

rect ways to exploit and use the shared resources to establish stealth communication

channels. These channels are then used to leak sensitive information to unauthorized

parties. To limit these channels in secure systems, resource sharing between different

security levels needs to be well-defined and controlled. The resulting secure system

with controlled resource sharing is called a multi-level secure (MLS) system. More

precisely, an MLS system is a computer environment in which a number of users

with different security levels share computer resources. The access to these resources,

most importantly read and write permission, is often controlled using access control

mechanisms.

In this chapter, we give a brief introduction to the confinement problem and a

complete background on covert channels in MLS systems. Since Lampson’s identifi-

cation of covert and storage channels, research in this area has focused on creating,

identifying, analyzing, eliminating, limiting, auditing, and detecting these channels.

The first step in covert channel handling is to search for potential covert channels

and identify them. Once these channels are identified, their capabilities must be an-

alyzed to assess the risk they pose to the system. Typically, an assessment calculates

the channel capacity. This analysis is particularly important because closing covert
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channels can be costly; thus, we need to focus merely on high-capacity channels. Af-

ter these potentially dangerous channels are identified, eliminating and limiting these

channels must be considered. An easy way to eliminate all covert channels and move

to a total isolation system would be to disallow the sharing of all resources between

different security levels. When this scenario is not practical, the elimination methods

mimic this idea to provide means of isolation. Finally, less attention has been paid

to auditing and detecting covert channels. In the literature, the detection problem

is often confused with the identification problem (as in [15, 16]). The identification

problem is to discover the potential covert channels that can be realized in the an-

alyzed environment, whereas the detection problem is to detect an actively running

covert channel. Next, we provide details on the confinement problem and covert

communication channels.

2.1 Confinement and Information Flow

To design access control schemes in MLS systems, the goal is to confine users to

their security levels and regulate their interactions with other users and resources as

much as possible. This problem is called the confinement problem, which was first

identified by Lampson [1]. As defined there, the problem is how to prevent a service

leaking information to its owner while serving a customer. In [1], Lampson illustrates

several examples to leak information, which he identifies as legitimate, storage, and

covert channels.

Lipner argues that Lampson’s storage and legitimate channels can be closed using

access control mechanisms, but closing the covert channel would be too costly [19]

(e.g., dedicating one CPU to each user). Instead of dedicating separate resources to

each user, a proposed solution to the confinement problem is to virtually separate the

users. One way to do this is by implementing virtual machines. A virtual machine is

a simulator program that mimics a physical computer(see [20]) and provides a virtual

separation of system resources made available to each user. One such example is the
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KVM/370 system [21]. This security kernel provides virtual machines to its users

and each virtual machine is given the same security clearance as its user. No direct

communication is allowed between different “machines” if they belong to different

security levels. Another solution to the confinement problem is to use sand-boxing

to confine the process’ actions and information flow models to control the flow of

information between the users (e.g., [22]).

Nevertheless, it has been shown that none of these traditional techniques com-

pletely counter the covert channel threat. For example, both access control schemes

and virtual machines provide a sense of separation of different security levels by re-

stricting the direct access between these levels and can be thought of as mimicking

a total isolation system [1]. However, neither model is secure against indirect com-

munication methods (i.e., covert channels). Lipner suggests that Lampson’s storage

channels can be eliminated using access control schemes. However, to do so, each

resource in the system needs to be carefully evaluated to determine if it can be used

as a communication medium [23].

In our research, we assume that the system is secured for direct access using access

control mechanisms to protect the system policies. The Bell-LaPadula model is a well

known example, which combines mandatory and discretionary access controls [2].

In this model, the users are seen as subjects and each subject is given a security

clearance. Each resource is an object and has a security classification. Without loss of

generality, we assume that the system has HIGH and LOW clearance and classification

levels for subjects and objects, respectively. The model works on two principles: a

LOW clearance subject cannot read a HIGH classified object (read-up), and a HIGH

clearance subject cannot write to a LOW classified object (write-down) [2].

In our scenario, the covert channel sender (Alice) and receiver (Eve) are subjects

with HIGH and LOW security clearances, respectively. The shared resource is an ob-

ject with HIGH security classification. Therefore, Eve cannot read from this resource

directly because this is disallowed by policy. The receiver may be an automated



14

process (i.e., a back-door) leaking information to its master1. A trojan horse is one

such program that performs back-door activity to steal information. These programs

usually arrive at the user environment through legitimate channels (i.e., through e-

mail) and their installation usually does not violate system policies (i.e., no read-up

or write-down is needed).

2.2 Covert Communication Channels

2.2.1 Channel Definition and Types

A covert channel is a general term used to define a mechanism that can be used to

violate a security policy by allowing sensitive information to leak to an unauthorized

party. To bypass the access control schemes in MLS systems, covert channels use the

shared resources in ways not intended in their design. Examples of covert channels

were first identified as a part of the confinement problem [1]. In such examples, the

servicing process (i.e., the sender) leaks information shared between the customer and

the service to the service owner (i.e., the receiver) by modifying the file access and

processor usage. The three classic examples are the file-lock [5], the disk-arm [6, 7],

and the bus-contention [8] covert channels. For example, the file-lock channel is

implemented by a sender process locking a shared file to send a one, and releasing

it to send a zero [5]. The receiver process then tries to access the file. It records a

one if it can access the file, and a zero otherwise. Another example is the disk-arm

channel identified in the KVM/370 security kernel of the systems with a shared read-

only disk drive [6, 7]. In this channel, the receiver process uses the direction of the

disk head to observe the sender process’ actions. To send a one, the sender process

seeks to the inner cylinders on the disk, and to send a zero, it seeks to the outer

cylinders. The receiver process then issues two reads: one from the inner cylinder

and one from the outer. Depending on which read completes first, the receiver decides

1In highly controlled environments where all communication channels are monitored, Alice may also
want to leak information covertly to avoid detection.
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whether the sender has issued a one or zero. The disk-arm channel is an example

showing that virtually separating the processes, as in KVM/370, is not sufficient for

total isolation. Hu [8] introduced the bus-contention channel, which exploits systems

with multi-processors running on a single bus. To send a one, the sender process

issues several CPU calls saturating the bus. To send a zero, it stays idle. The receiver

process continuously generates CPU calls and records a zero if the responses are faster

than a pre-specified threshold, and a one otherwise.

Covert channels can be characterized in variety of different ways: depending on the

type of shared resource used (storage or timing), the noise level (noiseless or noisy),

the type of the system they are found in (single or distributed), and the participation

of the source (active or passive).

Storage versus Timing Covert Channels

A covert storage channel “involves the direct or indirect writing of a storage lo-

cation by one process and the direct and indirect reading of the storage location by

another process” [4]. A timing covert channel involves a sender process that “signals

information to another by modulating its own use of system resources (e.g., CPU

time) in such a way that this manipulation affects the real response time observed

by the second process” [4]. Our use of terminology is the same as that found in

Lampson [1].

The classification of covert channels into storage and timing is not clear cut and

different definitions exist in the literature. In reality, this classification is only useful

when the channel capacity is calculated. In capacity analysis, we need to make a

distinction between storage and timing channels. This is because in storage channels,

the time to send each symbol is constant, whereas in timing channels the time varies

each time the symbol is sent (see Section 2.2.3).
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An alternative covert channel definition was given by Kemmerer [23] as a list of

conditions for storage and timing channels. A covert channel is a storage channel if

the following conditions are met:

1. The sending and receiving processes must be able to access to a common at-

tribute of a shared resource.

2. The sender must be able to force this shared attribute to change.

3. The receiver must be able to recognize this change.

4. The sender and receiver must be able to initiate this conversation (i.e., using a

lower bandwidth channel).

According to these criteria, the disk-arm channel discussed above is a storage

channel. In this example, the receiver and the sender processes share a common

attribute (i.e., the cylinder head) of a shared resource (i.e., the hard drive); the

sender can force this attribute to change (i.e., by moving the head); and the receiver

can recognize this change (i.e., by examining the read finish time). Additionally, the

processes need to negotiate on a start time, which can be accomplished by using

another low-bandwidth channel. Similarly, the file-lock channel is also a storage

channel.

Similar criteria for timing channels are:

1. The sending and receiving processes must have access to a common attribute

of a shared resource.

2. The sender and receiver must share a reference clock.

3. The sender must be able to modulate the receiver’s response time for detecting

a change in this attribute.

4. The sender and receiver must be able to initiate this conversation (i.e., using a

lower bandwidth channel).
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The bus-contention channel presented above is a timing channel. Timing channels

require access to a reference clock shared between the sender and receiver. In most

systems, the system clock is shared between different security levels and can serve as

a reference clock. If no such global clock is available, the receiver can still monitor the

number of instructions generated by the CPU to measure the progress of time [24].

Assuming that the parties share a reference clock in the bus-contention channel, the

sender and receiver both have access to a shared resource (i.e., the system bus); and

the sender process can modulate the receiver’s response time (i.e., by congesting the

bus or staying idle). And lastly, the parties need to negotiate on a start time (e.g.,

by using another low-bandwidth channel).

Observe that, according to this criteria, the disk-arm channel discussed above

may also be classified as a timing channel. This is because the sender modulates the

response time for the receiver process by positioning the disk head on different cylinder

positions. This is exactly the condition required in the third Kemmerer criterion for

timing channels. Because of this property, the disk-arm channel is sometimes referred

to as a timing channel with a storage exploitation [24, 25]. However, this is not true

for the bus-contention channel, as it uses a logical shared resource (the busy/idle

status of the bus).

The disk-arm channel example shows that the above criteria for channel classi-

fication by Kemmerer is ambiguous. This ambiguity can be eliminated by defining

covert hybrid channels2, which use shared resources with both timing and storage

characteristics. A non-ambiguous definition is given by Moskowitz et al [17], in which

the storage channel is defined as a channel “where the output alphabet consist of

different responses all taking the same time to be transmitted”. A timing channel

is thus a channel “where the output alphabet is made up of different time values

corresponding to the same response”. According to this definition, both disk-arm

and bus-contention channels are timing channels. The file-lock channel is a storage

channel. In our research, we use Moskowitz’s definition to classify our covert channels.

2This is our terminology. These channels are sometimes referred as mix channels [17].
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As a final note, we need to emphasize that none of the channel definitions above

explicitly specify how long the receiving process needs to observe the channel for one

bit of information. For example, to send a bit stream 001 using the file-lock chan-

nel, the sender process needs to release-release-lock the file in that order. However,

without specifying a timing interval (τ), it is not possible for the receiving process to

observe two consecutive zeros. Similarly, the receiver cannot distinguish consecutive

ones. However, this is only a problem for storage channels, because in timing channels

the timing of the events is defined implicitly. Moreover, the above is true for all stor-

age channels except those that do not use repeating symbols to send information. For

most storage channels the sender uses the same events (i.e., locking a file) to output

the same output symbols. These symbols belong to the alphabet used in encoding the

messages. Unless this encoding is chosen such that no symbol repeats consecutively,

there must be a pre-specified interval that the receiver process observes, and, for ex-

ample, records two ones if the file remains locked for two intervals. However, this

alternative solution reduces the message space substantially. For example, given an

alphabet consisting of n different symbols and messages of m length, the number of

different messages is limited to n(n−1)m−1 instead of nm. This suggests that storage

channels have a 5th criterion:

5. Unless a special encoding is chosen to avoid consecutive symbols, the sender

and receiver must be able to pre-negotiate on a timing interval τ during which

the receiving process will observe the change in the channel.

In this framework, the file-lock channel receiver observes the file for the duration

of the timing interval to decide on the bit the HIGH sender has intended to send.

If it decides the file is locked, it records a one, idles for the rest of the interval, and

restarts observing the file in the next interval. Otherwise, it records a zero and the

rest is the same as the one case.

Two other variations on covert channels have been introduced in the literature.

The covert sorting channel puts emphasis on the ordering of the events observed in
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a timing interval [26, 27]. In sorting channels, the covert information is transmitted

by the order of a set of events. For example, if the receiver is monitoring n events

given a timing interval, then the occurrence of n events in a particular order transmits

one message from message space of size n!. Another variation is the covert counting

channel, which transmits information by the number of occurrences of a single set of

events [28].

Noisy versus Noiseless Covert Channels

If a shared resource is used not only by the covert channel parties but also by other

legitimate users, the resulting channel is a noisy communication channel. Specifically,

a noisy covert channel is a channel in which both normal and covert traffic are ob-

served. In contrast, in a noiseless covert channel, the shared resource is solely used by

the parties involved in the covert communication. The channel noise described here

is not signal noise, but is contention noise caused by the contention for the shared

resources [9]. Noise is a degrading factor in covert channel accuracy. For example, in

the file-lock channel, the shared file may also be locked by other legitimate processes.

This deteriorates the channel accuracy, because the LOW process can no longer mon-

itor the HIGH process’ activity alone. The effects of noise in covert channels have

been analyzed to estimate channel capacity. Introducing noise into covert channels

has also been illustrated as a way limiting covert channel bandwidth. We present

these techniques in Section 2.2.4.

Network Covert Channels

A network covert channel is a covert channel in which the shared medium is the

network environment (i.e., the transmission lines, firewalls, routers, etc.). File-lock,

disk-arm, and bus-contention channels are all single system covert channels. This

is because the resources shared by these channels all belong to a central computer
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environment. Initial research in covert channels focused on single systems. However,

these results can be easily extended to include network channels [29].

Network covert channels have been used by attackers to communicate with com-

promised hosts (i.e., zombies), particularly in distributed denial of service (DDOS)

attacks [30]. Many tools exist for setting up network covert channels using a variety of

protocols including TCP, IP, HTTP, ICMP, AODV, and MAC protocols [26,27,31–44].

The common practice in most of these examples is to encapsulate covert channels in

legitimate protocols to bypass firewalls and content filters.

The data section of packets is the easiest place to convey covert information,

because of its large size and because it is relatively unstructured compared to headers.

Modifying the packet payload, which is used in steganography to hide data, is outside

the scope of our research. Unused header fields that are either designed for future

protocol improvements or in general go unchecked by firewalls and network intrusion

detection devices may convey information in the form of a covert channel. Many

covert channels have been illustrated in TCP and IP protocols using packet header

fields [26, 27, 31, 32, 34–37, 39, 41, 43, 44]. Rowland [44] illustrates three examples of

covert storage channels. The first encodes the messages into the identification field

(ID) of an IP header. The second embeds the messages into the initial sequence

number (ISN) field of a TCP header. And the third uses the TCP ACK sequence

number field. An improved version of Rowland’s TCP ISN covert channel, Nushu,

is presented in [43]. The main difference between Rowland’s TCP ISN channel and

Nushu is that Nushu encrypts the TCP ISN field to make it look like a random

number to better obscure the channel. A smart attacker can even devise means to

use some of the header fields that do fall under scrutiny, such as the IP checksum field.

Abad [31] illustrates that the sender can send any message using hash collision in the

checksum field. Sorting covert channels have been devised for the TCP/IP protocol,

in which it is the ordering of the packets that transmits the covert information to the

receiver side [26, 27]. However, for this channel to work, the receiver needs to know

the correct ordering of the packets. Therefore, these channels require the use of the
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IPSEC protocol, which provides the original order in which the packets were sent.

Murdoch et al [40] argue that the previous efforts to hide covert channels in packet

header fields alters the behavior of these fields. They claim that this change can be

detected and introduce Lathra, a covert channel that uses the TCP ISN field, but

tries to mirror the ISN generation process to avoid detection.

TCP and IP are not the only protocols used for covert channel exploitation. Re-

verse WWW Shell is a covert shell that uses HTTP request parameters to leak in-

formation [39]. In this channel, the sender issues a HTTP GET command with the

specified parameters, bypasses the HTTP-only firewall, and leaks the information to

the receiver side. Another HTTP covert channel was illustrated by Bauer [32] for

privacy purposes. In this channel the sender wants to remain unlinkable, hence it

redirects the communication via an unwitting client’s browser. The author shows

that this is possible using redirects, cookies, active content, etc. ICMP packets have

also been used to host covert shells. The Loki covert shell runs on ICMP and uses the

data portions of the ICMP ECHO packet to send a command to a remote receiver [34,35].

The receiver back-door then executes this command on the victim computer, and re-

turns the result embedded in the data portion of the ICMP ECHOREPLY packet. A list

of similar covert shells developed by the black hat community can be found in [37].

Other interesting examples of covert channels were illustrated in the OSI protocol

stack [42], in LAN networks [38, 45], and in ad-hoc wireless networks [33]. In LAN

networks, the destination ID, the packet length, the time between successive transmis-

sions [42], and the number of collisions in a resolution period (in MAC protocol) [45]

were used. In ad-hoc networks, Li et al [33] identify four covert channels in AODV

routing protocol. The authors consider the timing between the route requests, the

source sequence number, the lifetime field, and the destination ID.

At this point, we need to emphasize that although the above channel examples are

referred to as “network covert channels” in the literature, they rely on information

hiding principles [25]. That is, these channels use resources (i.e., packet headers) that

are directly accessible by the communicating parties, unlike the covert channels in
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MLS systems. The network channels we introduce in our work are covert channels

because we do not assume direct access to the packets transmitted over the network.

Active versus Passive Covert Channels

In the literature, covert channels are usually referred to as communication chan-

nels with an active sender and a receiver. The sender of this channel is usually a

malicious software component actively leaking information. However, the source of

this communication channel does not need to be active for a covert channel to exist

and a LOW receiver can still gain bits of information even if the HIGH source does

not actively leak information. Therefore, we make a distinction between active and

passive sources. An active-source covert channel is the one with a trojaned source

actively leaking information. A passive-source covert channel exists with no partic-

ipating source. Covert channels described in the literature are usually active source

channels. However, this may lead to the false implication that a system free of ma-

licious software is also free of covert channels. In fact, it is a popular practice for

password crackers to observe the running time of password checking algorithms to

extract information. The resulting communication channel in which the sender is the

algorithm and the receiver is the cracker is a passive-source covert timing channel.

Finally, our research does not focus on the following information hiding techniques.

The subliminal channel was first introduced in [3] as a solution to the prisoner’s prob-

lem. Simmons describes this problem as follows: Two prisoners are placed in two far

cells and want to coordinate an escape plan. Exchanging messages is allowed, however

the messages are open to the guardian. Moreover, the guardian may introduce fraud-

ulent messages to deceive them. Therefore, they need to authenticate the messages.

The channel the prisoners establish to deceive the guardian is called the subliminal

channel. These channels are considered as a special type of covert channels, and cryp-

tographic protocols are used to implement them [46,47]. However, they are different
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from Lampson’s definition of covert channels in MLS systems because direct access

to the shared resource is allowed.

Second, steganographic techniques were illustrated to hide information into a di-

rectly accessible resource (e.g., a picture) in ways to prevent detection (e.g., unde-

tectable to human eye). Detection of these concealed messages has also received

significant attention (see [48]). Similar to subliminal channels, steganoraphic proto-

cols work on information hiding principles, hence again are different from Lampson’s

definition of covert channels in MLS systems.

2.2.2 Channel Identification

Several methods were proposed for identifying covert channels in MLS systems [16,

23,49–52]. In one of the early examples, Denning et al [49] use lattice models to iden-

tify storage channels by determining insecure information flows between the subjects.

They particularly focus on identifying the implicit flows, which are not obvious from

analyzing the direct (explicit) flows. The following techniques all identify these im-

plicit flows between the resource attributes and the primitive operations by using

different data structures (e.g., resource matrices, flow trees, messaging charts). The

resource matrix was the first such data structure used to visually identify covert stor-

age channels [23]. In this shared resource methodology (SRM), the attributes and

operations are the rows and columns of a matrix, respectively. The relation between

these attributes and operations are then represented in the matrix cells. Moreover,

the implicit flows are identified by taking a form of transitive closure of the matrix.

In [23], Kemmerer et al argue that timing channels can be represented with this ma-

trix by including the system time as an attribute. But this methodology was mainly

designed for storage channels and extending it to include the timing channels does

not guarantee the identification of all timing channels in the system. A less efficient

but more effective data structure is the covert flow tree (CFT). CFT is a data struc-

ture that is used in goal-directed deductive reasoning. Porras et al [50] use the same
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goal-oriented approach using goals such as “Covert Storage Channel via Attribute

A”, and create CFT trees for each goal. Traversing this tree tells us whether this

goal is achievable or not. In comparison to SRM methodology, CFT trees provide a

more natural but less efficient technique to analyze the storage channels with multiple

resource exploitation.

Both the SRM and CFT methods were initially designed for single systems but can

be extended to network channels. A more natural way to represent the interactions

in network channels is by using message sequence charts (MSC). Helouet et al [16]

illustrate how to use MSCs to identify storage channels at the requirements level of

a software development cycle, however they do not provide analysis of how MSCs

can be used to detect implicit flows that use multiple attributes to leak information.

Tsai et al [51] argue that all of the above methods are high-level analysis techniques

and the covert channels identified at these levels (e.g., at the requirements level)

may not represent all channels that might occur in the source level. The authors

provide a detailed method that can be applied at the source-level which includes the

identification of implicit flows by analyzing the direct and indirect visibility of the

attributes. However, both SRM and CFT are generic methods and are not restricted

to a high-level (e.g., requirement level) analysis, although using these methods for

source-level analysis may be inefficient (especially CFT). Lastly, a technique similar

to SRM is used in [52]. In this method, covert channels with the same sender and

receiver are aggregated. This is particularly useful when the communicating parties

use more than one medium to communicate covertly in an attempt to create seemingly

unimportant low bandwidth channels.

Except for the SRM methodology, none of the methods presented above focus

on timing channels. Additionally, most of these techniques depend on the system

analyst’s input to the identification algorithm. Therefore, in all of the techniques the

methods require manually identifying all of the attributes of all shared resources in the

system. Covert channels exploit an attribute of a resource that is not initially thought

to be used as a communication medium (e.g., the disk cylinder head). Therefore, it
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is possible that one of these attributes will be overlooked and a covert channel can

be established later by exploiting this attribute.

2.2.3 Channel Analysis

The second step in covert channel handling is the analysis of each identified chan-

nel to assess the threat level of each covert channel. Essentially, the amount of

information that leaks through these channels needs to be calculated to identify high-

capacity channels for closure or rate limitation. Tsai et al [53] analyze covert storage

channel bandwidth using Markov models applied to both noiseless and noisy channels.

The bandwidth for both cases is presented in a closed form. However, the assump-

tions required by a Markov model are not realistic for real systems. A more general

approach to covert channel analysis is to treat these channels as legitimate communi-

cation channels and apply the results from information theory (i.e., Shannon’s notion

of channel capacity [54]). This idea was first used by Millen [55] which inspired the

more rigorous analysis presented later [9, 17, 56–59]. In the covert channel analysis

guide published by the National Computer Security Center (NCSC), the analysis by

Tsai et al [53] (the Markov model) and by Millen [55] (the maximum information

rate) are compared. Although they found the results comparable, the guide favors

Millen’s analysis because it defines a more realistic scenario of covert channel use [5].

In information theory, the capacity of a channel is defined as the maximum in-

formation rate. For noiseless channels, capacity C can be defined as (using a similar

notation as in [55]),

C = lim
n→∞

(
log(N(t))

t
) (2.1)

where N(t) is the number of possible messages that take t time. Millen [55] uses this

definition to calculate the capacity of noiseless channels using finite-state diagrams.

Later, Moskowitz et al [56] prove a theorem that provides a solution to this asymptotic

definition of capacity for simple timing channels in general. As illustrated in that
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paper, another way to define capacity is through mutual information. Let X and Y

be two random variables representing the channel’s input and output characteristics,

respectively. The amount of mutual information shared between the parties is denoted

by I(X, Y ). For noisy channels, I can be calculated in terms of entropy as follows,

I(X, Y ) = H(X) − H(X|Y ) (2.2)

where H(.) denotes the entropy and H(.|.) denotes the conditional entropy, or equiv-

ocation. The sender and receiver are said to be non-interfering if I(X, Y ) = 0.

Moreover, if the channel is noiseless, then I(X, Y ) = I(X). For timing channels, the

mutual information per tick (a tick is a unit measure of time) is given by,

It =
I(X, Y )

E(T )
(2.3)

where E(T ) is the expected value of time for a symbol to be transmitted. For storage

channels, E(T ) is the timing interval τ . For noiseless channels as in [55] and [56],

It =
I(X)

E(T )
(2.4)

Finally, the capacity of the channel is simply the maximum value of It, maximized

over the distributions of X,

C = max(It) (2.5)

The asymptotic and mutual information analysis of noiseless channel capacity are

equivalent. However, only mutual information analysis is easily extendable to noisy

channels. Costich et al [57] use mutual information to calculate the capacity of a

noisy storage channel that exists in the two-phase commit protocol used in MLS

transaction-based database systems (see [60]). In this channel, the HIGH sender
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passes information to the LOW receiver by either aborting (to send a zero) or com-

mitting (to send a one). The channel is a noisy channel, because the other parties

can participate in the commit or abort decision and can affect the output observed

by the receiver3. In this channel, if the sender inputs a zero, the output is zero inde-

pendent of other users’ inputs. In contrast, if the input is a one, there is a certain

probability for the receiver process to observe a one. The resulting communication

channel is called a Z-Channel. A Z-channel is a type of noisy communication channel,

in which one of the symbols is transmitted perfectly because it is independent of the

noise (e.g., the zero symbol in the two-phase commit protocol) [61]. The capacity of

this particular Z-channel is then calculated using the equations (2.2), (2.3), and (2.5)

from above. Detailed analysis of Z-channels can be found in [62].

Son et al [59] further analyze covert channels in MLS database systems by applying

the mutual information principles from above to calculate the covert channel capacity

in secure two-phase locking in database systems, with the added requirement of real-

time processing. Mutual information is also used to calculate the capacity of noisy

timing channels [9,58]. The major assumption in these analysis is that whenever there

is a contention for resources, the output signal is modeled to arrive exponentially

distributed with parameter λ. The capacity is then expressed using λ and p, where p

is the probability of the user sending a zero.

Shannon’s techniques for calculating capacity works only for finite-state commu-

nication channels [54]. Infinite-state covert channels cannot be analyzed using the

information theoretic results from above. Shieh [63] presents examples of storage

channels that belong to this category, and proposes an encoding technique by which

they can determine the capacity of infinite-state channels.

Covert channel guidelines often give a threshold for acceptable covert communi-

cation (e.g., 100 bits per second in the NCSC guideline [5]). However, this threshold

really depends on the system under question (e.g., depending on the importance of

3A transaction is committed if all of the participating parties commit individually. It is aborted if
at least one party aborts or timeouts.



28

the data [63]). Moreover, capacity is not the only measure that can be used to identify

the importance of the channel. Indeed, because capacity is an asymptotic measure, it

may be misleading. For example, Moskowitz et al [17] illustrate that a zero-capacity

covert channel can be used to send a short but important message. To deal with

these types of channels, the authors introduce small message criterion (SMC), which

can be used in conjunction with channel capacity. SMC focuses on short messages

and gives guidelines for what level of covert transmission will be tolerated.

In this dissertation, our goal is not to provide a full analysis of channel capacity

but to evaluate the efficacy of the IP covert channels we introduce. That is, we would

like to know how much information Alice can leak to Eve under the given channel

setup and how we can improve on this by improving the channel design. Therefore,

we do not employ the capacity analysis techniques presented above but provide simple

bandwidth analysis for our IP covert channels.

2.2.4 Elimination and Limiting

The next step is to eliminate or rate-limit high-capacity covert channels. In-

tuitively, covert channel capacity can be limited by adjusting the parameters that

appear in the capacity formula. For example, in the two-phase commit channel, the

capacity is inversely proportional to the number of other participants (n) and the

probability of aborting (p) [57]. Therefore, the capacity can be reduced by increasing

the value of either parameter. Similarly, parameter adjustments can be done in other

covert channels analyzed above. However, most of these adjustments work against

the system performance. For example, Moskowitz et al [17] argue that adjusting n

and p to limit the two-phase commit channel substantially degrades the overall sys-

tem performance. They conjecture that eliminating covert channels in high-assurance

systems is not easy and thus more sophisticated elimination schemes are needed.

Different approaches for limiting covert channels are illustrated. One possible

way is to introduce contention noise into the channel and separate the sender and
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receiver’s system clock. Hu [8] describes one such approach using fuzzy time. In

this scheme, random interrupts generate random clock shifts to disrupt the system

clock in different security levels. As a result, the sender and receiver of the covert

channel no longer share a reference clock; Hence, they cannot establish a channel

using the system clock as the shared resource. Trostle [64] improve this scheme by

further separating the processes with different security levels. Gray [65, 66] analyzes

the channel capacity with fuzzy time using the standard definition of discrete memo-

ryless channels. Further, Gray [28] presents another technique called the probabilistic

partitioning for limiting covert timing channels. This technique allows processes to

share accurate reference clocks and can be used to close the bus-contention channel

completely. In this scheme, the bus controller program randomly switches between

the secure mode (in which the bus is partitioned between different security levels)

and the insecure mode (in which covert channels can exist). Lastly, Giles et al [11]

discuss the use of jamming devices to disrupt the timing of the events in the system.

They additionally provide game-theoretic analysis of jammed channels to calculate

the channel capacity and the efficacy of the jammer.

Another way to rate-limit covert channels but still assure a certain level of system

performance is to use a data pump. A data pump, also called the NRL pump, is a

store-and-forward buffer that controls the data exchange between different security

levels [67, 68]. The pump 1) stores a message sent by the LOW process, 2) ACKs

the LOW process upon the receipt of the message, 3) forwards the message to the

HIGH process, and 4) waits for the ACK response from the HIGH process. If the

HIGH process’ ACK rate is slower than LOW’s message input rate, a covert channel

can be established using the data pump as follows: The LOW process first sends

back-to-back messages to the pump until it no longer receives ACK messages. The

LOW process thus blocks the pump. To send a one, HIGH removes one of the queued

messages from the pump. To send a zero, it stays idle. The LOW process constantly

monitors a timing interval τ . If it receives an ACK during this time, it records a one.

Otherwise, it records a zero. This channel does not exist if HIGH’s ACK rate is faster
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than LOW’s message input rate because in this scenario, LOW cannot fill the buffer to

create the channel. The solution to the above covert channel is to add probabilistic

delay to slow down LOW and reduce LOW’s message rate down to HIGH’s ACK

rate [67–69]. Montrose et al [70] present an implementation of the data pump called

the event driven pump. In [12,71], a network version of the NRL pump is introduced.

Different from the basic pump, the network pump serves multiple network users and

provides additional features. One such feature is fairness which is a scheme used to

provide fair load cuts when some of the network load needs to be cut by the pump

because of system limitations.

In this dissertation, we illustrate that the type of channels we introduce can

potentially survive channel elimination schemes such as jammers [11] and network

pumps [12] with lowered data rates. We then discuss two types of transformations on

packet inter-arrival times to increase the efficacy of these elimination schemes.

Finally, an effective way to eliminate most TCP/IP covert shells (i.e., information

hiding channels that use packet headers) is through traffic normalizers [72,73], which

modify both incoming and outgoing packets by standardizing fields that are unused,

redundant, or optional. Because covert shells are different schemes than the covert

channels we present in this dissertation, these techniques do not apply to our IP

covert channels (i.e., our channels do not use packet headers or payload to transmit

information).

2.2.5 Auditing and Detection

Auditing and detecting covert channels have received less attention compared to

other covert channel handling techniques. Both methods are common practices in

secure systems to monitor malicious activity [14] and applicable to covert channels

for three reasons:

1. Both methods provide a mechanism to discourage the use of these channels and

may work as a deterrent [5].
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2. Most identification systems need input from system analysts (i.e., to specify the

shared resources). Because of human error, a number of covert channels may

remain undetected. Auditing and detection can help record the activity of these

channels.

3. Covert channel elimination can be costly for high performance systems [17].

In this case, allowing these channels to exist but monitoring their activity is

crucial.

Additionally, both auditing and detection can co-exist with channel elimination

and limiting methods. In this context, auditing and detection can be used to identify

the users participating in a covert channel.

Auditing is a required activity for secure systems. However, it has been shown

that the audit practices described in the TCSEC requirements [4] are not sufficient

for covert storage channel auditing [74]. The problems with the TCSEC auditing

schemes are:

1. Determination of the shared resource in covert channel use.

2. Distinguishing covert channel senders and receivers.

3. Determination of whether a primitive alters or views the shared resource.

4. Circumvention of covert channel audit.

Sheih et al [74] discuss that these problems occur because 1) both view and alter

operations are allowed for the primitives, 2) a primitive can access many shared

resources used by many covert channels, and 3) many primitives can access the same

shared resource used by one covert channel. They propose an audit scheme that

identifies the shared resource for each covert channel and employs audit vectors to

unambiguously record who alters/views which shared resource in what order. Once

a trace of a covert channel is identified, its bandwidth can be determined. However,
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the actual information leaked through this channel may not be recovered (i.e., the

sender can encrypt the message [74]).

Detection of covert channels is a closely related problem. The detection problem

can be classified as online and offline detection. Online methods focus on the speed

of the detection algorithm to implement real-time on-the-fly detection schemes. In

contrast, offline detection mechanisms can be run as a batch process. Online detectors

use little data for fast detection, whereas offline detectors perform more complex data

analysis using as much data as needed. Both online and offline schemes rely on the

quality of the data logs generated by the above audit schemes.

Unusual traffic patterns may lead to discovery of storage covert shells. For exam-

ple, multiple ping requests within a small time interval may indicate a storage shell

in the ICMP protocol such as that used by Loki [34]. In addition, storage shells can

sometimes be detected by observing variations in unused packet header fields [73].

Sohn et al [75,76] illustrate an offline detection scheme that uses support vector ma-

chines (SVM) to detect ICMP (payload) and TCP/IP header (IP ID and TCP ISN)

covert shells. Murdoch et al [40] argue that TCP and IP specifications exhibit suffi-

cient structure to define what is normal, and that learning methods such as SVM is

an overkill. They present a suite of tests to detect whether the IP ID and TCP ISN

generating processes are in compliance with the specifications.
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3. SIMPLE NETWORK COVERT CHANNELS

In this chapter, we introduce simple network channels that exploit timing of IP net-

work packets to leak information from Alice to Eve. We first describe our implemen-

tation of an IP covert channel, both as a storage and a timing channel, and discuss the

subtle issues that arose in its design. We then report our results of channel efficacy

in terms of accuracy and bandwidth in Section 3.2. In Section 3.3, we show that the

regularity of a noiseless IP simple covert channel can be used to differentiate it from

legitimate channels and present two efficient online detection measures that provide

detection rates over 95%. In Section 3.4, we repeat similar analysis for noisy IP covert

channels in which legitimate and covert traffic are mixed in an attempt to hide the

covert channel. We show that our online detection measures fail to identify the covert

channel for noise levels higher than 10%. For such channels, we investigate effective

yet computationally expensive search mechanisms that are more suitable for offline

detection to locate the hidden covert channels locally for which the global measures

fail.

3.1 Covert Channel Creation

Within a distributed MLS system that properly follows policy, an observer with

a LOW security level may still be able to observe the presence of HIGH network

traffic without having access to the encrypted contents. Assuming that Alice is a

HIGH sender, Bob is a HIGH receiver communicating with Alice, and Eve is a LOW

observer, the only information shared between Alice and Eve is the timing of the

packets traveling from Alice to Bob. The IP simple covert channels (SCC) we present

in this chapter use this timing information to covertly transmit a secret message from

Alice to Eve by adjusting the transmission intervals of the network packets Alice sends
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to Bob. In this section, we detail the covert channel operation and implementation

for both storage and timing IP SCCs.

3.1.1 Channel Design

IP SCCs transmit a covert message from Alice to Eve bit-by-bit; hence the covert

channel symbol set is composed of zeros and ones. The lone event in the system is

packet arrival, which is controlled by Alice and observed by Eve. To send consec-

utive bits to Eve, Alice generates a sequence of packets each separated by a timing

interval (i.e., inter-arrival time). Depending on how this timing interval is chosen, a

storage or a timing channel can be devised. If Alice uses a single timing interval τ

to denote the inter-arrival times between the packets throughout the covert commu-

nication, then the resulting channel is a storage IP SCC. Alternatively, if Alice uses

a set of timing intervals τ1, τ2, ..., τn for the same purpose, the resulting channel is

a timing IP SCC. While the underlying operation is similar, we show that the latter

channel protocol is easier to implement and is more robust in the presence of timing

(i.e., synchronization) errors.

The storage IP SCC operates as follows: Alice and Eve agree a priori on a constant

timing interval (τ) and the starting protocol (either a particular time or in response

to a network event, such as the first packet sent). To send a zero, Alice maintains

silence throughout the interval τ and does not send any packets to Bob. To send a

one, she transmits a single packet to Bob in the middle of τ . On the receiving end (of

the covert channel), Eve monitors the transmission line between Alice and Bob. She

records a zero if no packets are observed throughout the interval τ , a one otherwise.

By observing each τ consecutively, Eve records the entire binary string transmitted

over the covert channel. Figure 3.1 illustrates a running example of a storage IP SCC.

The timing IP SCC operates as follows: Alice and Eve agree on a set of timing

intervals τ1, τ2, ..., τn, a set of associations for each timing interval (e.g., (τ1, zero), (τ2,

one), etc.), and the starting protocol. For simplicity, we assume that they agree on
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Fig. 3.1. IP storage SCC. The example text is first encoded with a
coding scheme and then sent bit by bit to the receiving end. The
message is rebuilt by decoding the bit stream.

two timing intervals τ1 and τ2 with associations (τ1, zero) and (τ2, one). To send a

zero, Alice sleeps for τ1 units of time and sends a packet at the end of this interval.

To send a one, she sends a packet after sleeping for τ2 units of time. On the receiving

end (of the covert channel), Eve monitors the transmission line between Alice and

Bob. Upon the observance of a network packet, Eve 1) records the inter-arrival time

τ , 2) compares τ to both τ1 and τ2, and 3) records a zero or one depending on the

previous comparison. Again by observing consecutive inter-arrival times, Eve records

the entire binary string transmitted over the covert channel. Figure 3.2 illustrates a

running example of a timing IP SCC. Our observations and assumptions in designing

both types of IP SCCs are:

1. Alice and Eve use a single covert channel to communicate, thus our research does

not address multiple channels that aggregate packet traffic to leak information.
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Fig. 3.2. IP timing SCC. The example text is first encoded with a
coding scheme and then sent bit by bit to the receiving end. The
message is rebuilt by decoding the bit stream.

2. Alice has a ready supply of network packets that she can send to Bob at any

given time and the channel protocol allows arbitrary sends from Alice (e.g., she

sends HTTP GET requests with arbitrary content to Bob who is a web server

with HIGH content).

3. Our research does not address the cases in which Bob might become suspicious

as a result of the amount of network traffic generated by Alice.

4. The original payloads of the network packets transmitted over the direct channel

between Alice and Bob are legitimate, hence do not violate any MLS policies.

Further, the covert message sent over the indirect channel is independent of the

original packet payloads.

5. The raw data that flows across the covert channel is binary but the actual

interpretation of the binary string is up to Alice and Eve.
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1 0 1 0 1 1 0 0 0 1 1 0

Start of frame (SOF) –
always a “1”

Message data bits – depends on the coding scheme

Error correcting parity bits – depends 
on the error correcting scheme

Fig. 3.3. Components of an example IP SCC frame: Data, error
correcting, and synchronization bits.

6. Additional bits may also be included in the transmission for three reasons:

1) Additional parity bits may be appended to the data to add redundancy for

error correction caused by transmission errors (e.g., errors arising when a packet

is lost/delayed), 2) additional bits may be added for purposes of maintaining

synchronization between Alice and Eve’s event clocks, and 3) the covert data

may be encrypted to add a further layer of privacy and obfuscation. In our

implementation, we employ error-correcting codes but not encryption.

7. The covert message for transmission is subdivided into smaller blocks of binary

data, referred to as frames in this paper. An example frame consists of data

bits, synchronization bits, and error-correcting bits. Figure 3.3 shows a repre-

sentation of a frame. While all the frames are of equal length, the actual length,

as well as the interval between frames, is influenced by parameters of the en-

coding scheme and the network. In our implementation, frames are composed

of the eight-bit ASCII encoding of each character, a start of frame (SOF) bit

(only for storage IP SCCs as we discuss in Section 3.1.2), and an optional six
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bits for error correction using (7-4)-Hamming codes. We explain the use of the

SOF bit and detail the use of Hamming codes in Section 3.1.2.

8. We assume a unidirectional communication model for the covert channel. Only

the indirect covert channel is assumed to be unidirectional; The direct channel

itself is still bidirectional and the TCP/IP packets are ACKed. Assuming a

unidirectional channel means that Eve cannot communicate with Alice using

the covert channel itself. Restricting the channel to be unidirectional increases

the difficulty in implementing an error-free channel. In detail, Eve cannot 1)

acknowledge the correct receipt of covert bits, 2) rate-limit Alice, or 3) indicate

when to resynchronize.

3.1.2 Channel Implementation

We implemented our covert channels using the C Berkeley socket library for our

communication protocol, and Python version 2.3 to encode/decode the data trans-

mitted over the channel and as a wrapper that called the C library functions. The

software was developed for and ran under Red Hat Linux 9.0 kernel version 2.4.22.

For simplicity, our IP SCC prototype transmits packets from Alice to Eve directly.

This scenario apparently violates policy because such direct communication is not

allowed in an MLS system. However, we argue that the traffic pattern generated

by this channel is the same as the packet traffic that would be generated in any

scenario described in Appendix A. This is because in this channel the traffic pattern

is shaped by the covert message and the timing interval, not by the direction of the

communication (i.e., Alice shapes the traffic and Eve has no effect on it). Further, we

argue that in terms of channel bandwidth, our IP SCC prototype provides an upper

limit. This is because in any other scenario in which Eve is eavesdropping, Eve can

only lose information caused by an error in the observation. Further, because the

traffic pattern remains the same, the detection schemes we introduce in Sections 3.3

and 3.4 that monitor the channel for anomalous traffic patterns will be unaffected.
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Fig. 3.4. Alice’s execution flow diagram for a storage IP SCC.

The channel implementation differs slightly for the storage and timing IP SCCs.

The storage IP SCC software uses both blocking and non-blocking Berkeley sockets

and alternates between them to transmit a covert message to Eve. In detail, Eve

uses a blocking socket to wait for the SOF packet to arrive at the beginning of

each frame. Once this packet is observed, she switches to a non-blocking socket to

record the remaining bits of the frame and reverts back to the blocking socket to

wait for the SOF packet of the next frame. We illustrate the execution flow of Alice

and Eve for a storage IP SCC in Figures 3.4 and 3.5. Given an encoded message,

Alice sends a packet in the middle of the timing interval for each one, and stays
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Fig. 3.5. Eve’s execution flow diagram for a storage IP SCC.

silent for each zero. Before sending the data bits of a frame, Alice sends the SOF

denoting the beginning of frame. After Eve receives the SOF bit, the blocking socket

is resolved and Eve switches to non-blocking mode. During non-blocking mode, Eve’s

receiver program continues its execution and checks whether a packet arrives during

the timing interval or not. If Eve receives at least one packet during the interval, a

one is recorded. Otherwise a zero is recorded and Eve advances to the next interval
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Fig. 3.6. Alice’s execution flow diagram for a timing IP SCC.

until the necessary number of bits for a frame is received. Once a frame is completed,

Eve switches back to the blocking mode and listens for the next SOF. Because the

blocking socket pauses and waits for SOF in between two frames, this implementation

provides an inherent synchronization. However, this scheme itself does not entirely

solve the synchronization problem because of network congestion and jitter, and we

discuss various other solutions for synchronization problems in Section 3.2.1.

In contrast, the timing IP SCC software is much simpler. The main difference

from the storage channel is that in timing channels, the events (i.e., packet arrivals)

are tied to the symbols (i.e., the bits), whereas in storage channels the events are

tied to intervals. An advantage of this scheme is that we no longer need non-blocking

sockets to wait for the silent intervals because each event is explicitly signaled by

a packet arrival. Therefore, timing IP SCCs use a single blocking socket to record

the packet arrival times and do not employ an SOF bit. The latter is because the

implementation of timing IP SCCs is more straightforward and is less prone to timing
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Fig. 3.7. Eve’s execution flow diagram for a timing IP SCC.

(i.e., synchronization) errors as we discuss in Section 3.2.1. We illustrate the execution

flow of Alice and Eve for a timing IP SCC in Figures 3.6 and 3.7.

Both IP SCCs can be configured to run on any application port. Because the

traffic pattern is expected to vary based on the application, choice of the protocol

in which to hide the channels can affect detection ability. For example, as we show

experimentally in Section 3.3.2, UDP traffic generates patterns almost as regular as

covert channel traffic caused by its best-effort nature. Therefore, running the covert

channel software on a UDP port will hide the channel better than running it, for

example, on the Telnet port.
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3.2 Covert Channel Analysis

We assess the efficacy of IP SCCs in terms of bit/character accuracy (the number of

bits/characters transmitted correctly divided by the total number of bits/characters)

and channel bandwidth. Two factors affect channel accuracy and bandwidth:

1. Contention noise is the amount of non-covert traffic Eve observes in the covert

channel and can potentially reduce channel accuracy [9].

2. Clock skew is the amount of jitter in the network and can potentially result in

the loss of synchronization between Alice’s and Eve’s event clocks.

In this section, we investigate the effects of these factors on channel accuracy and

bandwidth, and present the results of our empirical study with different choices of

timing intervals.

3.2.1 Channel Accuracy

To evaluate the channel efficacy alone and provide an upper bound on character

accuracy, we investigate noiseless IP SCCs. We assume that IP SCCs are free of

contention noise, hence Eve is capable of isolating the network packets generated by

Alice and destined to Bob from the ones originating from or destined to other users

in the network. In this scenario, clock skew is the only factor that affects channel

accuracy. IP SCCs leak information using the timings of packets generated by Alice

and observed by Eve. In distributed systems, there may be a delay between the time

a packet is generated and it is observed. If the delay is constant, Eve can simply

adjust the packet clock to compensate for this delay. However if the delay is varying,

that is the time that a packet travels from Alice to Eve jitters, the inter-arrival times

observed by Eve are no longer exactly the same as the ones generated by Alice. This

effect is called clock skew. Clock skew in a network is mostly caused by varying

network conditions that result in slight increase or decreases in the latency between



44

ALICE EVE

1
0
1
0 1

0
1
0

1
0
1
01

0
0
1

0
1
0
0

0
1
0
1

1
0
0
1

1
0
1
0
0
0
0
1

.

.

.

1
0
1
0

1
0
1
0

0
1
0
0

1
1
0
1
0
0
0
0

.

.

.

delay

.

.

.

.

.

.

ALICE EVE

1
0
1
0 1

0
1
0

1
0
1
11

0
0
1

0
0
1
0

0
1
0
1

1
0
0
1

1
0
1
0
0
0
0
1

.

.

.

1
0
1
1

1
0
1
1

0
0
1
0

0
1
0
0
0
0
1
0

.

.

.

delay

.

.

.

.

.

.

Fig. 3.8. A zero-insertion and a zero-deletion example for a storage IP SCC.

Alice and Eve (also known as network jitter). This can potentially affect the timing of

network packets traveling from Alice to Bob (Eve) and thus reduce channel efficacy.

Channel Synchronization

An important problem for IP SCCs related to clock skew is the synchronization

of Alice and Eve’s packet clocks. For example clock skew can cause Eve to record

packets as arriving in a time interval before or after the intended one. For a storage

IP SCC, this skew can result in an individual bit flip, a zero-insertion, or a zero-

deletion as we illustrate in Figure 3.8. The individual bit-flips can be corrected using

error-correcting codes; however, insertion and deletion errors can potentially cause

an entire series of transmission to be shifted. One-insertions and one-deletions are

not possible for IP SCCs. Further, insertion and deletion errors only apply to storage

IP SCCs. This is because in timing IP SCCs, each network packet has a one-to-

one correspondence with a single bit of information, whereas in a storage IP SCC a

packet delay can cause additional zeros to be inserted. Therefore, in timing IP SCCs

bit errors are independent from each other and are not carried to the next bit as in
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the storage case, in which an insertion can potentially shift the entire bit-string. This

advantage over the storage IP channels makes the timing channel more suitable for

one-bit error-correction which we discuss next.

One way to remedy clock skew is to use error-correcting codes (ECC) to correct

the individual bit errors. ECCs add additional bits to the message that can be

used to detect and correct some errors in transmission [77, 78]. The code rate of

an ECC is defined as the ratio between the length of an original message word and

the length of its codeword. A drawback of ECCs is that they increase the number

of bits to be transmitted. In our study, we employed Hamming codes, which are

computationally simple to encode and decode and are capable of correcting one error

per codeword [78]. To increase accuracy, one could also employ more sophisticated

ECCs such as the Reed-Solomon codes or turbo codes [77]. Another scheme one could

also use for storage channels would be to employ coding schemes that take advantage

of the lack of one-insertions and one-deletions.

An additional scheme we employed to prevent synchronization errors for storage

IP SCCs is to use an SOF bit at the beginning of each frame and to switch to a

blocking socket every time a frame is completely transmitted. This scheme isolates

transmission errors within individual frames and stop the propagation of errors to the

following frames by aligning Alice and Eve’s timing windows each time an SOF bit is

transmitted.

We enhanced the SOF scheme by introducing silent intervals between frames.

During a silent interval, no packet transfer occurs between Alice and Eve, thus the

channel recovers from the errors that occurred before this period. We assume that

the parties have previously determined the length of the silent interval. This interval

can either be a default value or the covert channel itself can be initially used to send

this value before the actual data transfer starts. Alice can enter the silent state at

any time during the transmission. However, she has no way of knowing whether Eve

received the covert bits correctly or not (i.e., the covert channel is unidirectional).

Therefore, it is up to Alice to observe the changing network conditions and make the
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decision about when to pause the transmission. As an example, a sudden change

in the round-trip time (RTT) between Alice and Eve might be a good signal that

Alice should enter the silent state. On the receiving end, Eve simply waits for the

arrival of the SOF packet (i.e., the first packet that arrives after a string of possibly

erroneous zeros) and takes no action. A simpler option is to enter the silent state

periodically to clear the channel. This method increases channel accuracy at the

expense of transmission rate.

Rather than slow down the transmission by introducing silent periods in which

no transfer occurs, the channel could adapt to the changes gradually as the network

conditions change. In our interval adjusting scheme, Eve closely monitors the time

each packet arrives and compares it to the projected ideal case (i.e., the expected

arrival time of the next packet) based on the current timing interval. Comparing the

two, a δ is computed, which is the deviation between the ideal and actual times and

can be positive or negative depending on whether the packet has arrived early or late.

Eve then simply adds this value to the timing interval and adjusts the clock for the

next arriving packet. This scheme is most useful when there is an incremental change

in the network conditions that persists for longer than the lifetime of a single packet.

It can however lead to errors if the change in the network delay is greater than 50%

of the timing interval (e.g., adjust to an incorrect timing interval). As a precaution,

we restrict the maximum adjustment to be less than 10% between two consecutive

intervals.

More advanced solutions for combating synchronization errors caused by clock

skew are self-synchronizing codes and phase-locked loops (PLL). The former method

employs encoding schemes that are specifically designed to detect the loss of synchro-

nization and to recover from this state (i.e., resynchronization). The latter method

is a closed-loop feedback circuit that is designed to track or synchronize an output

signal with an input signal in frequency and phase [79]. Both methods were proved

to be effective in communications and could be applied to our channels to achieve

better accuracy.
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3.2.2 Channel Bandwidth

Ideally, using the shortest timing intervals possible yields the highest data rate.

However, this rate is limited by three factors:

1. Alice’s packet generator is the bottleneck as she cannot generate packets at a

higher rate than the generator’s rate. Another limiting factor on Alice’s side

is the precision of the packet delayer. As we use shorter timing intervals, the

delayer routine may fail to sleep precisely for the required amount of time. The

same constraints also apply to Eve’s observer routine.

2. In networks with jitter, the negative impact of clock skew on channel accuracy

increases as we use shorter timing intervals. This is because with short timing

intervals a small variation on the interval may alter its symbol association (i.e.,

place it in a different partition) whereas the same variation may be negligible

for long intervals.

3. Timing intervals that yield high data rates may be anomalous in comparison to

normal traffic in the network.

3.2.3 Empirical Evaluation

To assess the efficacy of the covert channel experimentally, we used our implemen-

tation of a storage IP SCC. Our covert channel ran between Purdue and Georgetown

university networks and was subject to changing network conditions. During nor-

mal network conditions, the route between communicating parties was twelve hops

with an average RTT of 31.5 msec. For one-bit error-correction, we used Hamming

codes that are computationally simple to encode and decode [78]. To calculate bit

and character accuracy we used an implementation of the Levenshtein distance (i.e.,

the edit distance [80]). IP SCCs are capable of sending both binary and text data

and we used ASCII encoding for the latter. In both cases, the software divided the
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Fig. 3.9. Timing interval versus accuracy with different values of k
for the silent interval synchronization scheme.

resulting bit-string into eight-bit codewords that were expanded to 14 bits when we

used (7,4)-Hamming error-correction.

Effect of timing interval size

We first investigated the potential data rate of our channel by decreasing the

timing interval until the accuracy drops. We mark this point as a threshold that can

be thought as a boundary between lossless and lossy communication and calculate

the corresponding channel bit and character rate. In this experiment, we employed

a storage IP SCC channel with the periodic silent intervals synchronization scheme

described in Section 3.2.1, with k denoting the frequency the synchronization scheme

goes into a silent period (e.g., every twenty timing intervals). The character coding is



49

eight bit ASCII with no error correction. We report the trade-off between the timing

interval and the channel accuracy in Figure 3.9. Our channel provided nearly lossless

communication for larger intervals at the cost of lower transmission bandwidth.

The results show that the threshold value for the timing interval is around 0.06

seconds and intervals greater than 0.06 guarantee nearly 98% character accuracy for

all three values of k. The equivalent bit transfer rate is 16.666 bits per second (bps).

With ASCII encoding and the SOF bit taken into account, we calculate the character

transfer rate 2.083 characters per second. As expected, the channel accuracy remains

high for larger timing intervals. It also remains slightly higher when the transmissions

are periodically paused for resynchronization.

Effect of network conditions

We additionally investigated a case with network congestion and its effects on the

performance of the covert channel. To do so, we ran our covert channel on a congested

network with a highly varying RTT between Alice and Eve with mean RTT at 42.07

msec. The normal RTT values for this channel showed a steady behavior with mean

RTT at 31.5 msec. Our evaluations showed that the congestion results in a lower

accuracy rate. For example, with the timing interval set to 0.08, we observed 100%

average character accuracy under normal conditions, but the accuracy dropped to

82.11% for the congested network. Clearly, the interval must be increased to retain

accuracy during periods of high congestion.

3.2.4 Storage or Timing?

In designing IP SCCs, we investigated storage and timing channels separately and

noted subtle differences between them. Despite these differences, storage and timing

IP SCCs are related constructs and, for example, given a storage channel, one can

provide a reduction to show that an equivalent timing channel can be constructed

and vice versa. To see this, consider a timing IP SCC with a single state (response)
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packet observed and timing intervals τ1 and τ2. Using this channel, we can construct

a storage IP SCC with states packet present and packet absent (both derived from

the single state packet arrival), and τ = τ1 + τ2. Similarly, given a storage IP SCC

with timing interval τ , we can construct a timing IP SCC with τ1 = τ and τ2 = 2τ .

Additionally, we claim that if we can detect a storage IP SCC that transmits a bit-

string over the network, we can detect the timing equivalent of the same channel. As

we present in the next two sections, our detection methods use measures that capture

the regularity of packet inter-arrival times generated by these channels. Consider a

storage IP SCC with timing interval τ that generates k different inter-arrival time

values, where k is equal to the number of different number of zeros we can have

between two ones in a codeword (e.g., for the set {11, 101, 1001}, k = 3). In contrast,

the timing equivalent of this IP SCC uses two timing intervals τ1 and τ2 that generates

only two clusters of inter-arrival times, thus generating a more regular inter-arrival

time pattern. Therefore, we concentrate only on storage IP SCCs in covert channel

detection and conjecture that detection measures that work for these channels would

also work for timing IP SCCs.

3.3 Noiseless Channel Detection

For a storage IP SCC, there must be a pre-specified timing interval between con-

secutive network packets sent by Alice and observed by Eve. Similarly for a timing

IP SCC, there must be pre-specified timing intervals. This behavior implies regular-

ity in terms of packet inter-arrival times in comparison to packet inter-arrival times

generated by a legitimate process and we argue that the packet traffic generated by

IP SCCs is highly regular (thus anomalous) in comparison to the traffic generated by

legitimate processes (e.g., as compared to WWW traffic). To show an example, we

plot the inter-arrival times generated by both channels while sending a sample text1

from Alice to Bob (Eve) in Figure 3.10. For the storage IP SCC, we observe that the

1“All human beings are born free and equal in dignity and rights. They are endowed with reason
and conscience and should act towards one another in a spirit of brotherhood.[EOL]” [81]



51

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Packet number

In
te

r−
a

rr
iv

a
l 
ti
m

e
 (

s
e

c
)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Packet number

In
te

r−
a

rr
iv

a
l 
ti
m

e
 (

s
e

c
)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Packet number

In
te

r−
a

rr
iv

a
l 
ti
m

e
 (

s
e

c
)

Fig. 3.10. Inter-arrival times for different traffic types. (a) A sim-
ulated IP storage SCC with τ = 0.2 secs (no clock skew). (b) A
simulated IP timing SCC with τ1 = 0.1 secs and τ2 = 0.2 sec (no
clock skew). (c) An example NZIX-II WWW traffic.

packet inter-arrival times can be grouped into six clusters. Similarly, the inter-arrival

times for the timing IP SCC can be grouped into two clusters. Figure 3.10(c) shows

that no such clustering is obvious for a sample WWW traffic taken from the NZIX-II

dataset [10].

To identify this type of a covert channel requires being able to capture such reg-

ularity. In this section, we introduce two measures to do so and empirically evaluate

the efficacy of both in terms of Type I (false positive (FP)) and Type II (false negative

(FN)) error rates.
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Fig. 3.11. Inter-arrival times from an actual run of a storage IP SCC
with τ = 0.04 secs. (a) Actual values. (b) Sorted values. (c) Relative
differences.

3.3.1 Measures for Detection

To capture the type of regularity we described above, we introduce two detection

measures: ǫ-similarity and compressibility.

ǫ-Similarity

To derive our first similarity measure, we sort the inter-arrival times we collected

using IP SCCs. From this sorted list we compute the relative difference between each

pair of consecutive points. For example, the relative difference between Pi and Pi+1

is computed as Pi+1−Pi

Pi

. We illustrate this process in Figure 3.11 for a compilation

of inter-arrival times we collected using our implementation of a storage IP SCC

we ran between Purdue and Georgetown universities. As a result of network jitter
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that created clock skew, the inter-arrival times no longer create perfect clusters as

in Figure 3.10. From the sorted inter-arrival times we compute an efficient measure

of similarity, which we call ǫ-similarity, by computing the percentage of relative dif-

ferences that are less than a constant number ǫ. Our claim is that for noiseless IP

SCCs, the majority of the pairwise differences in the sorted inter-arrival time list will

be small. (It is large only for jumps in the step function.) Thus, the similarity scores

for IP SCCs will be high. We further claim that the IP SCC ǫ-similarity scores will

be comparably higher than that of legitimate channel scores.

Compressibility

The Kolmogorov complexity of a string S is defined as the shortest universal

computer program that produces this string (see [82]). Denoted as K(S), this notion

provides a lower bound on the representation of the string and computes the maximum

available compression on S, hence producing the shortest possible compressed string

C. For an arbitrary string S, Kolmogorov complexity is not a computable [82];

however, off-the-shelf compression algorithms can be used as an approximation [83].

To derive our second similarity measure, let S ∈ Σs be a string we want to

compress with any off-the-shelf compressor, where Σ is the alphabet of symbols from

which the string is drawn, and s is the length of S. Let the resulting compressed

string be C ∈ Σc. We define the compressibility of S as the compression rate we

obtain by dividing the length of S by the length of C. Formally,

∀S ∈ Σs, ∃C ∈ Σc such that

C = ℑ(S), and κ(S) = |S|
|C|

where ℑ is the compressor (e.g., gzip), κ(S) is the compressibility of S, and |.| is

the length operator. Our claim is that the compressibility of the inter-arrival packet

times generated by a noiseless IP SCC will be higher than the ones generated by

legitimate channels. Inter-arrival times are numerical values whereas compression
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works on strings. In Section 3.3.2, we detail how we convert these numbers to strings

as a pre-processing step to compression.

A Discussion of Other Approaches

We additionally investigated several approaches that were not fruitful, but were

more obvious from a statistical point of view.

Indexes of dispersion of a point process have been used as a tool in network

characterization [84, 85]. An index of dispersion for intervals (IDI) can be used to

qualitatively compare the inter-arrival times of a point process with the Poisson pro-

cess serving as the basis (for which the IDI is unity) [86]. IDI provides a finer measure

for defining the variability of the process than does a second order moment analysis.

Gusella defines the variability, or the burstiness, of the network traffic as “the changes

in the variance of the sum of consecutive inter-arrivals” [84]. Although this measure

appears promising, it requires a number of assumptions including stationarity, that

need to be made for the correct interpretation of the results. In this study, we do not

impose such assumptions on the distributions of covert or legitimate traffic.

Another avenue we examined was statistical non-parametric tests similar to those

used in network traffic analysis [87–89]. Applications of these tests have mainly

concentrated on network traffic characterization and modeling. The goal is often

to determine whether two streams come from the same empirical distribution, for

example, using a non-parametric goodness-of-fit test such as the Kolmogorov-Smirnov

test. In our research, we are not seeking to model either the legitimate or the covert

network traffic. Our goal is to define measures that differentiate covert from legitimate

traffic, therefore, these methods are not directly applicable to the detection of IP

SCCs.
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3.3.2 Empirical Evaluation

In this section, we empirically show that both ǫ-similarity and compressibility

measures are able to detect IP SCCs, and that compressibility performs better than ǫ-

similarity. In our experiments, we applied these measures on both legitimate channels

and IP SCCs. Our legitimate traces were extracted from the second version of NZIX

datasets (NZIX-II) which is a collection of TCP (WWW, FTP-Data, and SSH) and

UDP traces collected by the WAND research group [10]. We used twenty different

traces for each legitimate traffic type and each trace contained a sufficient number of

packets that we could run the covert channel over it without running out of packets.

To collect the inter-arrival times for the covert channel, we ran three storage IP SCCs

(with τ set to 0.04, 0.06, and 0.08 secs) that transmitted the sample text between

Purdue and Georgetown universities.

For each trace, we first eliminated values larger than one second to eliminate large

inter-arrival time values from the data that occur when there is no packet transfer.

This allows us to deal only with short values and therefore concentrate on the network

effects on the inter-arrival times rather than the user effects (e.g., time gaps between

the HTTP requests). Our goal is not to model or identify a traffic distribution, but

to determine whether we can accurately detect a covert channel in a short window

(i.e., for on-line detection). Therefore, in our experiments we report the results for

windows of size 2000. Although we ran the IP SCC on a real network between Purdue

and Georgetown, for the legitimate traffic we used the recorded inter-arrival times in

the datasets. A drawback is that we cannot have the same network conditions (e.g.,

number of hops, same jitter), but excluding the case of jitter, this does not impact

our results. This is because none of our measures look at absolute inter-arrival time

values, but rather compute measures of regularity in terms of the relative differences

between these values.
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Fig. 3.12. ǫ-similarity scores for various types of covert and legitimate channels.

ǫ-Similarity Results

We report the results for our first measure in Figure 3.12 and Table 3.1. The

x-axis shows seven different arbitrarily chosen ǫ values and the y-axis shows the

mean ǫ-similarity score (averaged over twenty traces of each traffic type), that is the

percentage of all pairs of sorted inter-arrival time values whose difference is less than

ǫ. As anticipated, the results show a striking difference between the IP SCC and

NZIX-II scores. For example, the 0.005-similarity score for the IP SCC with τ = 0.06

is 52 while it is 21 for FTP-Data. Thus, on average 52% of the sorted IP SCC inter-

arrival times relatively differ less than ǫ = 0.005 while only 21% of FTP-Data differ

less than the same ǫ. Another result we observe in Table 3.1 is that the higher τ

we use for the storage channel (i.e., to get better accuracy), the higher the similarity

scores. This implies that more accurate channels are easier to distinguish from normal

traffic, hence they are easier to detect.
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Table 3.1
ǫ-similarity scores for storage IP SCCs for various τ .

τ 0.005 0.008 0.01 0.02 0.03 0.1

0.04 39.97 52.88 58.63 72.84 79.84 91.90

0.06 52.08 63.28 69.68 80.74 86.24 95.60

0.08 64.88 75.19 78.54 87.89 91.55 97.50

Compressibility Results

Before applying the compressibility measure, we needed to convert our numerical

dataset into a set of strings because compression works on strings. To do so, we

first smoothed each dataset by taking two significant digits (and rounding the third

digit), and added a letter at the beginning depending on the number of zeros after

the decimal point. For example, we transformed 0.00247 to B25, and 0.0247 to A25,

etc. This way, we could still identify the same values without using repeating zeros,

which would create more compressible datasets2.

After this added pre-processing phase, we performed our experiments using gzip

as the compressor [90]. We report the mean compressibility score for each traffic type

in Figure 3.13 averaged over twenty traces for the legitimate channels. Our results

show that the compressibility scores for the SSH, WWW, and FTP-Data datasets

are much lower than IP SCC compressibility scores. For example, the compressibility

score for the storage IP SCC with τ = 0.06 is 6.76 while it is 3.27 for WWW on

average. In addition, we observe that as we increase the timing interval for IP SCC,

it becomes more compressible. For example, the compressibility score for a 0.04 IP

SCC is 5.76, whereas it is 7.01 for 0.08. We conjecture that the more accurate the

covert channel, the more compressible its dataset.

2Even though B25 and A25 compress better than B25 and B31, this effect is evenly distributed
among all datasets, whereas repeating zeros favor datasets with data points with small magnitudes.
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Fig. 3.13. Compressibility scores for various types of covert and legitimate channels.

Automatic Detection

To assess the efficacy of channel detection experimentally, we evaluated the efficacy

of both measures in terms of FN and FP rates. Our procedure worked as follows: For

each legitimate traffic type (WWW, FTP-Data, and UDP3), we randomly chose ten

traces out of twenty for training. We reserved the remaining ten independent traces

for testing. In the training phase, we calculated the ǫ-similarity or compressibility

scores for each training trace and computed the mean µ and the standard deviation

σ to determine our thresholds µ + 1.5σ and µ + 2σ. The main difference between

ǫ-similarity and compressibility was that in the former we calculated seven different

learned thresholds for each of seven ǫ values (0.005, 0.008, 0.01, 0.02, 0.03, 0.1, and <

0.1) that were chosen arbitrarily. For compressibility we calculated only one threshold.

To classify a test trace as legitimate or covert, we calculated its ǫ-similarity (for

each ǫ value) or compressibility score that we compared to the learned threshold. A

dataset was classified as covert if its combined score was above the learned threshold

and legitimate otherwise. For ǫ-similarity, the combined score was determined by

3We omit the SSH results because NZIX-II did not contain enough SSH traces for training and
testing.
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Table 3.2
IP SCC detection efficacy for ǫ-similarity and compressibility with
thresholds µ + 1.5σ and µ + 2σ.

Threshold Application fp fn(0.04) fn(0.06) fn(0.08)

ǫ-similarity

µ + 1.5σ www 0.06 0.00 0.00 0.00

ftp-data 0.04 0.00 0.00 0.00

udp 0.14 0.65 0.19 0.00

µ + 2σ www 0.04 0.08 0.00 0.00

ftp-data 0.00 0.28 0.00 0.00

udp 0.08 0.90 0.66 0.38

Compressibility

µ + 1.5σ www 0.14 0.00 0.00 0.00

ftp-data 0.09 0.00 0.00 0.00

udp 0.12 0.19 0.00 0.00

µ + 2σ www 0.07 0.00 0.00 0.00

ftp-data 0.03 0.00 0.00 0.00

udp 0.09 0.63 0.02 0.00

taking the majority vote over seven different ǫ values. For example, we classified the

trace as covert if the scores for four out of seven ǫ values were over the threshold. For

compressibility, the combined score was simply the compressibility score.

In our results, we report the averages of 100 runs of the above procedure. Each run

used a different partition of the twenty legitimate traces into training and testing. We

report the average FP and FN rates for the ǫ-similarity and compressibility measures

in Table 3.2. We list our observations and conclusions as follows:

1. The results suggest that we can distinguish IP SCC traces from WWW and

FTP-Data traces (i.e., FN = 0%) with low false alarm rates using both ǫ-
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similarity and compressibility measures with thresholds µ + 1.5σ and µ + 2σ

respectively.

2. UDP results with high FN rates suggest that we cannot distinguish IP SCC

traces from UDP traces with a reasonable false alarm rate. UDP is a best-effort

protocol in which the packets are sent as soon as they are ready (i.e, there is no

flow control). Therefore, UDP inter-arrival times tend to be regular under stable

network conditions, and thus generate higher ǫ-similarity and compressibility

scores as compared to TCP inter-arrival times.

3. The compressibility measure fares better than the ǫ-similarity measure in terms

of the FN rates with comparable FP rates. Further, compressibility uses only

one measurement whereas ǫ-similarity requires a majority vote over seven mea-

surements. Therefore, we conjecture that compressibility is a superior measure.

4. As claimed before, IP SCCs with higher τ yield higher detection rates. This

is because using higher timing intervals yields more accurate channels which

generate more regular inter-arrival times as a result.

5. We claim that the FP rates for both measures can potentially be lowered by

increasing the number of datasets we use in the training phase. Using only ten

datasets for training was an experimental short-coming as we were limited by

the available legitimate data. In a real detection environment, hundreds of such

traces can be used to train the classifier.

3.4 Noisy Channel Detection

A noisy IP SCC is a network covert channel in which we observe both legitimate

and covert traffic. This channel may arise in cases where Eve cannot isolate the net-

work packets originating from Alice as a result of the shared use of the transmission

line that is being tapped. In addition, introducing noise into the channel artificially

has been shown to be effective in jamming the covert channel and limiting its band-
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width [11]. In our study, we assume that Alice injects noise into the transmission line

intentionally to increase the irregularity of the packet inter-arrival times and thwart

the regularity-based detection schemes.

In this section, we first empirically show that if channel noise reaches a certain

level, the regularity-based detection measures fail to identify the covert channel and

Alice can potentially hide the covert channel by mixing it with legitimate traffic.

Given this observation, we argue that to detect such hidden IP SCCs, we need more

localized measures to focus on the suspicious segments of the dataset. To do so, we

employ compression-based similarity measures accompanied with a sliding window

algorithm to search for covert channels in mix datasets. We conclude the section

with an empirical study to evaluate the efficacy and performance of our methods.

3.4.1 Empirical Evaluation with Noiseless Measures

In this section, we show that regularity-based measures fail to detect noisy IP

SCCs with reasonable false alarm rates for noise levels higher than 10%. We apply the

ǫ-similarity and compressibility measures to mix datasets that we formed by mixing

packet inter-arrival times extracted from WWW, FTP-Data, and UDP datasets with

the ones generated by IP SCCs. As an example, to create a 10% FTP-Data mix

dataset with 2000 data points, we picked 200 consecutive data points from a FTP-

Data dataset and inserted it as a block within 1800 data points we selected from the

IP SCC dataset at a randomly selected location. This scheme resembles the cases

in which we apply our measures on a larger window than the duration of the covert

communication. Actually, how we mix these data points does not matter for our

detection measures because neither measure pays attention to the relative ordering of

the individual data points. This is because both measures rearrange the data points

as a pre-processing step (e.g., the ǫ-similarity measure sorts the data points).

In our experiments, we used the same setup and datasets as in Section 3.3. We

report the average scores for the ǫ-similarity measure for each mix dataset with noise
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Fig. 3.14. ǫ-similarity scores for a noisy IP SCC with different traffic
types and noise levels set at 10%, 25%, and 50%.

levels at 10%, 25%, and 50% in Figure 3.14. The ǫ-similarity scores for the mix

datasets are comparably lower than the ones we calculated in Section 3.3. For exam-

ple, the mean 0.005-similarity score for the pure IP SCC (τ = 0.06) is 52 while a 25%

FTP-Data mix dataset generates a score of 34.

The average scores for the compressibility measure show a similar trend which we

illustrate in Figure 3.15. The compressibility scores for the mix datasets are substan-

tially lower than the ones we calculated for the pure covert channels in Section 3.3.

For example, the mean compressibility score for the pure IP SCC (τ = 0.06 secs) is

6.76 while a 25% FTP-Data mix dataset generates a score of 4.98.

To determine how automatic detection with both measures would fare in the pres-

ence of noise, we repeated the automatic detection study we presented in Section 3.3 to

compute the FN rates. We chose ten training traces out of twenty legitimate datasets

to compute the mean µ and the standard deviation σ to determine our thresholds

µ+1.5σ (for ǫ-similarity) and µ+2σ (for compressibility). We reserved the remaining

ten independent traces for testing. We averaged the results over 100 runs each time
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Fig. 3.15. Compressibility scores for a noisy IP SCC with different
traffic types and noise levels set at 10%, 25%, and 50%.

using a different partition of the twenty legitimate traces into training and testing.

We report the results in Table 3.3 and list our observations and conclusions as follows:

1. The results suggest that both measures can detect WWW and FTP-Data mix

datasets up to 10% noise level. We conclude that our measures work for low

noise levels.

2. Compressibility further detects WWW and FTP-Data mix datasets up to 25%

noise level for which the ǫ-similarity measure completely fails. We conclude that

compressibility is a more robust measure when detecting noisy IP SCCs.

3. Neither measure can detect 50% mix datasets with a reasonable false alarm rate

regardless of the mix type and UDP mix datasets regardless of the noise level.
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Table 3.3
Noisy IP SCC detection efficacy for ǫ-similarity and compressibility
with thresholds µ + 1.5σ (ǫ-similarity) and µ + 2σ (compressibility).

Application Noise fn(0.04) fn(0.06) fn(0.08)

ǫ-similarity

www 10% 0.00 0.00 0.00

25% 0.76 0.23 0.00

50% 1.00 0.98 0.80

ftp-data 10% 0.04 0.00 0.00

25% 0.99 0.64 0.00

50% 1.00 1.00 1.00

udp 10% 0.81 0.45 0.08

25% 0.99 0.95 0.80

50% 1.00 1.00 0.99

Compressibility

www 10% 0.00 0.00 0.00

25% 0.00 0.00 0.00

50% 0.95 0.92 0.74

ftp-data 10% 0.00 0.00 0.00

25% 0.52 0.00 0.00

50% 1.00 0.96 0.95

udp 10% 0.71 0.48 0.22

25% 0.94 0.90 0.84

50% 0.99 0.99 0.99
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3.4.2 Measures for Detection

The previous section suggests that our regularity-based detection measures alone

fail to detect the presence of IP SCCs with reasonable detection rates given a mix

dataset. To detect noisy IP SCCs, we take the approach of identifying and elimi-

nating the noise from the mix dataset instead finding a measure that is robust in

the presence of noise. To do this, we need a more localized methodology that fo-

cuses on the suspicious segments of the dataset individually and also in relation to

each other. Therefore, we employ a sliding window methodology that traverses the

mix dataset using windows of size w and strides of size s. The idea is to collect

local information about each window individually, and also in relation to each other.

To collect individual and relative information about each window, we introduce the

compressibility-walk and the CosR-walk methods, respectively.

Once we identify the mixed dataset windows that are suspected to be generated

by a covert channel, we can then eliminate the other windows and apply our mea-

sures only on the suspicious window. Because our regularity-based measures work

effectively for low noise levels, this local approach can potentially generate higher

detection rates as compared to the cases where we apply the measures globally.

Compressibility-Walk

Compressibility-walk traverses the mixed dataset in strides of size s and computes

the compressibility score for each window of size w. The windows are allowed to

overlap in cases where s < w and we investigate cases in which w is much larger than

the covert channel window (i.e., a noisy covert channel). Our claim is that because

the compressibility scores of the datasets generated by IP SCCs are higher than the

ones generated by legitimate channels, the windows that contain covert channels will

reveal themselves as peaks when plotted on a graph. As an alternative, we could

also devise an ǫ-similarity-walk methodology, but we omit this approach because as
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we showed in Section 3.3, compressibility is a superior measure as compared to ǫ-

similarity, particularly in the presence of noise.

CosR-Walk

In the next section where we evaluate our sliding window approach empirically,

we show that examining individual windows alone is not sufficient. Therefore we need

to investigate the relation between two consecutive windows, and to do so we need a

metric that measures the similarity between the two.

Compression can be used as a similarity metric, which is an approximation to

conditional Kolmogorov complexity [91]. Given two strings S and T , the conditional

Kolmogorov complexity K(S|T ) is defined as the shortest representation of S given

T . Intuitively, the more information S and T share, the shorter the representation of

S given T .

Compression-based similarity metrics have been used in various research areas [83,

92–96]. Let ℑ be a compressor that approximates Kolmogorov complexity. In [92],

the conditional compression of S given T is approximated by the compression-based

distance measure (CDM), defined as:

CDM(S, T ) = ℑ(S|T )
ℑ(S)+ℑ(T )

where | is the concatenation operator. CDM is a dissimilarity measure. In [91], the

authors show that the CosR metric performs better than CDM , which is defined as:

CosR(S, T ) = 1 − ℑ(S)+ℑ(T )−ℑ(S|T )√
ℑ(S)ℑ(T )

Combining this metric with our sliding window approach, CosR-walk traverses the

mixed dataset in a similar fashion to compressibility-walk, only this time computing

the CosR scores for consecutive windows. Again, we allow the windows to overlap.

Our claim this time is that because CosR is a similarity measure, the score when one

window has data points generated by a legitimate channel and the other generated
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by a covert channel will be lower than the score when both windows contain data

points generated by a legitimate channel.

3.4.3 Empirical Evaluation

In this section, we empirically show that both compressibility-walk and CosR-walk

were successful in identifying hidden covert channels in mix datasets, although CosR

yielded superior performance (i.e., it was able to identity the covert channel in more

cases). In our experiments, we used the same setup and datasets as in Section 3.3. To

demonstrate the sliding window approach, we ran compressibility-walk on a WWW

dataset with 2000 data points, with w and s set to 500 and 20. The dashed lines

in top two graphs in Figure 3.16 illustrate the cases in which the dataset was purely

generated by a WWW channel. The solid line on each graph illustrates the results

for a 50% WWW mix dataset. Clearly, the peaks in each of the upper two graphs

show the location of each hidden covert channel. We conclude that IP SCCs will

reveal themselves as peaks as long as the compressibility of the legitimate and covert

channels are distinguishable.

Similarly, we ran our conditional compressibility method CosR-Walk on the same

datasets, with w and s set to 500 and 20. The dashed lines in the bottom two graphs

in Figure 3.16 show the results when the procedure was run on pure WWW datasets.

The solid line on each graph again illustrates the results for a 50% WWW mix dataset.

For this metric, a V-shaped curve in each bottom graph suggests the existence of a

covert channel. As expected, the locations of these channels are consistent with the

compressibility graphs.

To show that CosR-walk is superior to compressibility-walk, both methods tra-

versed an example 50% UDP mix dataset. In Figure 3.17 on the left, we illustrate one

unsuccessful attempt by compressibility-walk to locate the covert channel. The curve

on this graph appears to be flat suggesting that no covert channel exists, even though

there is a covert channel hidden in the middle section. In contrast, the CosR-walk
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Fig. 3.16. (Top row) Compressibility-walk results for (dashed) a pure
WWW channel, (solid) a 50% WWW mix channel. (Bottom row)
CosR-walk results for (dashed) a pure WWW channel, (solid) a 50%
WWW mix channel.
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Fig. 3.17. (Left) Compressibility-walk fails to identify the hidden
channel in a 50% UDP mix dataset. (Right) CosR-walk identifies the
hidden channel.
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Fig. 3.18. (Left) Compressibility-walk identifies both channels when
w = 500. (Right) Compressibility-walk identifies only one channel
when w = 1000.

performs as it should do and the covert channel is again identified by the signa-

ture V-shape as we illustrate on the right graph. This phenomenon occurs because

the compressibility scores for the UDP datasets are as high as the IP SCC scores,

which causes compressibility-walk to fail. (Compressibility-walk works only when

the compressibility score of the covert channel is significantly higher than the legit-

imate channels’ scores.) In contrast, CosR-walk is a relative measure for which the

individual compression scores do not matter.

3.4.4 Limitations

We conclude the section with a discussion on the limitations of these two measures

in detecting noisy IP SCCs. In our experiments we used window and stride sizes that

gave us the best results. However, in reality both of our search methods are sensitive

to the choice of parameters w and s and choosing a window size larger than the

covert channel size may not reveal the channel at all. We illustrate one such example

for compressibility-walk in Figure 3.18. On the left graph, both covert channels are

identified by setting w = 500, whereas on the right only one covert channel is visible

by setting w = 1000. Because the size of the covert channel is not known at the time
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of detection, the methods need to be run with different sets of parameters to identify

the hidden covert channels.

The time complexity of both methods is a function of data points n, window size w,

slide size s, and the running time of the compression algorithm C(.). Compressibility-

walk performs one compression per window and CosR-walk performs three. Hence

the running time for both algorithms is O((n/s)C(w)). Practically, compression is

an expensive operation and our implementation of the search algorithms compress

each window independently. However, the performance can be improved if some

compression information is carried over to the current window from the previous

window when windows are overlapping.

Lastly, one can always create a mix dataset that does not reveal the covert channel

hidden inside. One example is to use a scattered approach and hide short bursts of

covert channel communication throughout the dataset to create balanced windows

(i.e., balanced in terms of compression scores and similarity). Although this type of a

noisy IP SCC would be difficult to identify, the resulting covert channel is rate-limited.

For example if Alice uses a 50% mix dataset to avoid detection, in reality this means

that the covert channel bandwidth is halved. Additionally, by forcing Alice to use

short bursts of covert channel traffic, we avoid a continuous covert channel between

Alice and Eve (i.e., Alice needs to switch between covert and legitimate channels and

both parties need to know which packets belong to the covert channel at all times).

3.5 Chapter Summary

A crucial step in covert channel design is to find and exploit a shared resource

that is unlikely to be used as a communication medium by design. Less emphasis

has been given to hiding the traffic generated by these channels – the secrecy of a

covert channel mostly relies on the secrecy of knowing the shared resource. In this

chapter, we argued that once this shared resource is identified, unhidden covert traffic

can be distinguished from legitimate traffic in most cases because of the way in which
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event-based covert channels adjust the timing of the events to signal information.

We first described our implementation of an IP covert channel, discussed the subtle

issues that arose in its design, and presented a discussion on its efficacy. Further, we

showed that the regularity of a noiseless IP covert channel can be used to differentiate

it from legitimate channels and presented two efficient online detection measures that

provided detection rates over 95%. We repeated similar analysis for “noisy” IP covert

channels in which legitimate and covert traffic were mixed to obfuscate the covert

traffic. We showed that our online detection measures failed to identify the covert

channel with a reasonable false alarm rate for noise levels higher than 10%. For such

channels, we investigated effective search mechanisms to find regions of the traffic that

appear to be covert channels. Such “local” methods are computationally expensive

and are thus best deployed offline.
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4. TIME-REPLAY NETWORK COVERT CHANNELS

Time-replay channels hide the channel traffic in normal traffic patterns by replaying a

previously recorded or a specifically engineered sequence of timing intervals. In certain

cases, the event sequence generated by a time-replay covert channel can be equal in

distribution to the sequences generated by legitimate channels in the system; Thereby

creating channels that are undetectable through analyzing localized distribution of

inter-arrival times. Formally, a time-replay covert channel is an event-based covert

channel in which the timing intervals between events (i.e., inter-event times) are taken

from a sequence of values each of which is associated with a symbol by a rule and used

only once.

Time-replay covert channels represent a family of event-based covert channels

rather than a particular channel or a channel type. Therefore, a time-replay covert

channel can be categorized as a storage, timing, or a hybrid channel depending on

the number of different events and timing intervals it uses. In this chapter, we first

detail the time-replay covert channel definition, design, and operation in Sections 4.1

and 4.2. We provide a discussion on channel efficacy and list the factors that af-

fect both channel accuracy and bandwidth in Section 4.3. In Section 4.4, we discuss

detection schemes that are applicable to time-replay covert channels in general and

investigate the conditions under which these schemes can potentially work. In Sec-

tion 4.5, we investigate the efficacy of the existing channel prevention and elimination

techniques as applied to these channels and provide a discussion how the existing

elimination techniques can be improved.
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4.1 Covert Channel Definition

Time-replay covert channels replay previously recorded event activity using a sim-

ple but an effective three-fold strategy: 1) obtain a pre-recorded event sequence as

input, 2) divide the sequence into k partitions, where k is the size of the message

alphabet, and associate each partition with a symbol using a set of thresholds (i.e.,

rules), and 3) send the symbol s by delaying for the amount of time indicated by the

timing value in the corresponding partition before generating the event. For example,

suppose that a malicious user Alice wishes to leak code C to an eavesdropper Eve

using a time-replay covert channel. Suppose C is composed of two types of symbols:

s1 and s2 (e.g., zero and one for binary code). To send s1, Alice chooses a timing value

τs1
from the s1-partition of the input sequence and generates an event after idling for

τs1
time. To send s2, she uses the s2-partition. Each timing value in each partition

is used only once. On the receiving side, Eve monitors the events. Upon observing

an event, Eve 1) calculates the inter-event time τ between the current and the most

recent event, 2) determines to which partition τ belongs, and then 3) records s1 or s2

depending on the decision in step 2.

In a time-replay covert channel, Alice’s sending routine takes code C and sequence

S as the inputs and generates a sequence of events ES with the message encoded along

with the inter-event times of this event sequence. To do so, Alice uses the rules R

that divide S into k partitions. A rule always applies to an interval of timing values

associated with a symbol, such as < ti, tj, s > where ti and tj are timing values

(ti ≤ tj) and s is a symbol. For example, if C is composed of zeros and ones, the

rule < 0, tmedian,zero> divides S into two partitions where partition [0, tmedian) is

associated with a zero and [tmedian, tmax] is associated with a one. One can also create

a rule for a single timing interval by setting ti = tj. Applying R on C using S, the

sending routine generates a sequence of events that are transmitted to Eve. On the

receiving end (of the covert channel), Eve’s observing routine takes the observed event
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sequence ES as the only input and computes C by reversing Alice’s sending routine

operations.

For this channel to work, Alice and Eve must be able to pre-negotiate on the

rules, event types, and the encoding scheme. One alternative is to have the informa-

tion hard-coded in the covert channel software so that no pre-negotiation is needed

between the parties. A second alternative is to use another covert channel (e.g.,

an implementation of a storage SCC) to exchange the necessary information on the

fly. In either case, Eve’s receiving routine does not need to know the original time

sequence S, but does need to know the rule set R.

4.2 Covert Channel Creation

Within a distributed MLS system that properly follows policy, an observer with

a LOW security level may still be able to observe the presence of HIGH network

traffic without having access to the encrypted contents. Assuming that Alice is a

HIGH sender, Bob is a HIGH receiver communicating with Alice, and Eve is a LOW

observer, the only information shared between Alice and Eve is the timing of the

packets traveling from Alice to Bob. The IP time-replay covert channels (TRCC)

we present in this section use this timing information to covertly transmit a secret

message from Alice to Eve by adjusting the transmission intervals of the network

packets Alice sends to Bob under the following assumptions:

1. Alice and Eve use a single covert channel to communicate, thus our research does

not address multiple channels that aggregate packet traffic to leak information.

2. Alice has a ready supply of network packets that she can send to Bob at any

given time and the channel protocol allows arbitrary sends from Alice (e.g., she

sends HTTP GET requests with arbitrary content to Bob who is a web server

with HIGH content).
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3. Our research does not address the cases in which Bob might become suspicious

as a result of the amount of network traffic generated by Alice.

4. The original payloads of the network packets transmitted over the direct channel

between Alice and Bob are legitimate, hence do not violate any MLS policies.

5. The raw data that flows across the covert channel is binary but the actual

interpretation of the binary string is up to Alice and Eve.

6. Additional bits may also be included in the transmission for three reasons:

1) Additional parity bits may be appended to the data to add redundancy for

error correction caused by transmission errors (e.g., errors arising when a packet

is lost/delayed), 2) additional bits may be added for purposes of maintaining

synchronization between Alice and Eve’s event clocks, and 3) the covert data

may be encrypted to add a further layer of privacy and obfuscation. In our

implementation, we employ error-correcting codes but not encryption.

7. The covert message for transmission is subdivided into smaller blocks of binary

data, referred to as frames in this paper. An example frame consists of data bits,

synchronization bits, and error-correcting bits. While all the frames are of equal

length, the actual length, as well as the interval between frames, is influenced

by parameters of the encoding scheme and the network. In our implementation,

frames are composed of the eight-bit ASCII encoding of each character and an

optional six bits for error correction using (7-4)-Hamming codes.

8. We assume a unidirectional communication model for the covert channel. Only

the indirect covert channel is assumed to be unidirectional; The direct channel

itself is still bidirectional and the TCP/IP packets are ACKed. Assuming a

unidirectional channel means that Eve cannot communicate with Alice using

the covert channel itself. Restricting the channel to be unidirectional increases

the difficulty in implementing an error-free channel. In detail, Eve cannot 1)
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acknowledge the correct receipt of covert bits, 2) rate limit Alice, or 3) indicate

when to resynchronize.

4.2.1 Channel Design

IP TRCCs transmit a covert message from Alice to Eve bit-by-bit, hence the

replay channel symbol set is composed of zeros and ones. The lone event in the

system is the packet arrival, which is controlled by Alice and observed by Eve. To leak

consecutive bits to Eve, Alice generates a sequence of packets and encodes the covert

message by adjusting the timing between these packets (i.e., inter-arrival times).

To impersonate legitimate behavior further and to avoid generating regular (thus

anomalous) packet sequences, IP TRCCs adjust packet timings according to a pre-

recorded normal sequence. Therefore, in IP TRCCs, the choice of which inter-arrival

sequence directly impacts the secrecy of the channels and the better the input inter-

arrival sequence impersonates normal behavior, the more covert the channel. We

illustrate the covert channel operation in Figure 4.1.

We present three alternative IP TRCC designs; They differ in how the channel

symbols are associated with the inter-arrival times:

Binary-Matching Channel (BMC)

Given an inter-arrival time sequence, suppose that Alice and Eve are capable of

negotiating a single cutoff value τcutoff , for example the median of the sorted inter-

arrival time sequence as calculated by Alice. In the binary-matching channel (BMC),

the parties share one rule to partition the sequence into [0, τcutoff ) and [τcutoff , τmax].

The inter-arrival times shorter than τcutoff are associated with a zero and inter-arrival

times longer are associated with a one. Alternatively, one can use a buffered cutoff

value τcutoff ± δ to increase channel accuracy. In either case, Alice maintains two
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Fig. 4.1. IP time-replay covert channel. The example text is first
encoded with a coding scheme and then sent bit by bit to the receiving
end. The message is rebuilt by decoding the bit-string.

bins; one for each timing value partition. On the receiving end, Eve does not need to

know the exact inter-arrival times, only the cutoff value τcutoff and δ.

BMC operates as follows: To send a zero, Alice randomly chooses a timing value

τzero from the zero-bin and sends a packet to Bob (Eve) after idling for τzero time. To

send a one, she uses the one-bin for selection. Each timing value is used only once. On

the receiving side, Eve monitors the transmission line between Alice and Bob. Upon

detecting the presence of a packet traveling from Alice to Bob, Eve 1) calculates the

inter-arrival time τobserved between the currently observed packet and the last one, 2)
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compares τobserved to τcutoff ± δ, and she 3) records a zero if τobserved ≤ τcutoff − δ, a

one if τobserved ≥ τcutoff + δ, and nothing otherwise.

Rule-Matching Channel (RMC)

Arranging inter-arrival times as in BMC may lead to detection because similar

timing intervals are associated with the same symbol (i.e., short values with a zero

and long values with a one). The two other alternative channels that we designed use

more complex rules to hide the channel structure better. In the rule-matching channel

(RMC), we use k rules that divide n inter-arrival time values into ⌈n
k
⌉ partitions. As

an example, one can use a sample rule set (0, τ1,zero), (τ1, τ2,one), and (τ2, τ3,zero),

that partitions the inter-arrival space into three mutually exclusive blocks. Each rule

partition is associated with a symbol randomly, hence no relation exists between the

partitions.

RMC operates as follows: To send a zero, Alice randomly chooses a timing value

τzero from the zero-bins and sends a packet to Bob (Eve) after idling for τzero time. To

send a one, she uses the one-bins for selection. On the receiving side, Eve monitors

the transmission line between Alice and Bob. Upon detecting the presence of a packet

traveling from Alice to Bob, Eve 1) calculates the inter-arrival time τobserved between

the currently observed packet and the last one, 2) compares τobserved to the complete

set of rules, and 3) records a zero if τobserved belongs to a rule partition with a zero

association, a one otherwise.

Exact-Matching Channel (EMC)

The last alternative IP TRCC that we designed uses an independent rule for each

timing interval, which we call the exact-matching channel (EMC). The EMC rule

set is composed of 3-tuples such as (τ1, τ1,zero), (τ2, τ2,zero), (τ3, τ3,one), etc. In this

scheme, there is a one-to-one correspondence between the rules and the timing values.

As in RMC, each rule is associated with a symbol randomly, hence no relation exists
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between the timing intervals. The EMC operation is identical to RMC, only this time

we have as many rules as timing intervals.

4.2.2 Comparison and Limitations

Both BMC and EMC are special cases of RMC where we have k = 1 or k = n− 1

rules to divide the sequence into two and n partitions, where n is the length of the

input sequence. In the rest of this chapter, we will mainly concentrate on BMC-type

IP TRCCs and refer to EMC for the sake of comparison. This is because BMC-type

channels have many design advantages over the other two as we list below:

Rule Negotiation: To initiate the covert channel, Alice and Eve need to pre-negotiate

on one rule for BMC, k rules for RMC, and n − 1 rules for EMC.

Rule Comparison: On observing a packet arrival, Eve needs O(1) rule comparisons

for BMC, O(k) comparisons for RMC, and O(n) comparisons for EMC to decide

on the observed symbol.

Correctness: For the correct operation of the channel, RMC and EMC need the

same timing values to be associated with the same symbols, whereas BMC

requires only timing values equal to the cutoff value to be associated with the

same symbol. For example, in EMC, if τ occurs more than once, each value

needs to be associated with the same symbol s. In BMC, this is guaranteed by

design except the τcutoff value.

Accuracy: For the accurate operation of the channel, RMC and EMC need similar

timing values to be associated with the same symbols, which is guaranteed in

BMC by design.

Stability: Both EMC and RMC are unstable channels that are extremely vulnerable

to perturbations on individual inter-arrival time values caused by channel noise

or intentionally, whereas BMC is a stable channel that is not affected by small

changes of each inter-arrival value.
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Given these observations, we concentrate only on BMC-type channels in the next

section where we discuss the efficacy of IP TRCCs. In Sections 4.4 and 4.5, we

include EMC into our discussion to compare the two in terms of channel detection

and elimination.

4.3 Covert Channel Analysis

We assess the efficacy of IP TRCCs in terms of bit/character accuracy (the number

of bits/characters transmitted correctly divided by the total number of bits/characters)

and channel bandwidth. Three factors affect channel efficacy:

1. Contention noise is the amount of non-covert traffic Eve observes in the covert

channel and can potentially reduce channel accuracy [9].

2. Clock skew is the amount of jitter in the network and can potentially result in

the loss of synchronization between Alice’s and Eve’s event clocks.

3. Sequence selection is the choice of which inter-arrival sequence will be used and

can potentially affect channel accuracy.

In this section, we investigate the effects of these factors on channel accuracy and

bandwidth, and present the results of our empirical study with different choices of

inter-arrival time sequences.

4.3.1 Channel Accuracy

To evaluate the channel efficacy alone and provide an upper bound on character

accuracy, we assume that IP TRCCs are free of contention noise. Thus, Eve is capable

of isolating the network packets generated by Alice and destined to Bob from the ones

originating from or destined to other users in the network. In this scenario, clock

skew and sequence selection are the only factors that affect channel accuracy. Clock

skew in a network is mostly caused by varying network conditions that result in a
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slight increase or decrease in the latency between Alice and Eve (i.e., network jitter).

This factor can potential affect the timing of network packets traveling from Alice

to Bob (Eve), thus reduce channel accuracy. For example, a temporary congestion

in the network can delay a packet further and change its symbol association at the

receiving side. Sequence selection also plays an important role in determining how

much damage clock skew can cause and the choice of which sequence affects channel

accuracy. Ideally, in a sequence, timing intervals that are associated with different

symbols need to be as distinct from each other as possible. As an example, in BMC,

Eve needs to be able to differentiate timing values that belong to the zero partition

from the ones that belong to the one partition. This depends on both sequence

selection as well as how individual timing intervals are associated with each partition.

In this section, we illustrate the effects of sequence selection on channel accuracy

empirically.

An effective way to remedy clock skew and sequence selection deficiencies is to

use error-correcting codes (ECC). ECCs add additional bits to the codeword that can

be used to detect and correct some errors in transmission [77, 78]. The code rate of

an ECC is defined as the ratio between the length of an original codeword and the

length of the codeword with added error-correcting bits. A drawback of ECCs is that

they increase the amount of information to be transmitted over the channel. In this

study, we use Hamming codes [78] for one-bit error correction.

4.3.2 Channel Bandwidth

Ideally, using sequences with the shortest inter-arrival times possible yields the

highest data rate. However, this rate is limited by three factors:

1. Alice’s packet generator is the bottleneck as she cannot generate packets at a

higher rate than the generator’s rate. Another limiting factor on Alice’s side is

the precision of the packet delayer. As we use shorter inter-arrival times, the
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delayer routine may fail to sleep precisely for the required amount of time. The

same constraints also apply to Eve’s observer routine.

2. In networks with jitter, the negative impact of clock skew on channel accuracy

increases as we use shorter timing intervals. This is because with short timing

intervals, a small variation on the interval may alter its symbol association (i.e.,

place it in a different partition) whereas the same variation may be negligible

for long intervals.

3. Sequences that yield high data rates may be anomalous in comparison to normal

sequences in the network.

4.3.3 Empirical Evaluation

To assess the efficacy of the covert channel experimentally, we implemented a BMC

prototype using the Berkeley socket library in Python. For one-bit error-correction,

we used Hamming codes that are computationally simple to encode and decode [78].

To calculate bit and character accuracy, we used an implementation of the Levenshtein

distance (i.e., the edit distance [80]). In our experiments, BMC replayed ten WWW,

FTP-data, UDP, and five SSH inter-arrival time sequences we extracted from the

NZIX-II dataset1. Each sequence contained 3000 data points and we eliminated inter-

arrival times longer than two seconds to avoid long delays between the packets. BMC

is capable of sending both binary and text data and we used ASCII encoding for the

latter. In both cases, BMC divided the resulting bit-string into eight-bit codewords

that were expanded to 14 bits when we used (7,4)-Hamming error-correction.

Accuracy Analysis

To get an upper-bound on channel accuracy, we ran BMC between two machines

on the same LAN to send the ASCII-encoding of the sample text listed in Chap-

1A collection of real world IP traces captured by the WAND research group [10].
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Fig. 4.2. Character accuracy results for BMC replaying NZIX-II se-
quences with no error correction.

ter 3. We report the character accuracy results with and without error-correction for

all 35 NZIX-II inter-arrival time sequences in Figures 4.2 and 4.3 using histograms.

We observe that with no error-correction, 11 out of 35 sequences yielded over 90%

character accuracy and 14 sequences yielded less than 50% accuracy because of cer-

tain sequence properties as explained in the next section. With error-correction, 22

sequences yielded over 80% character accuracy rates, 17 of which yielded over 90%

accuracy. On average, error-correction yielded a ten percent increase in character

accuracy and we observed no specific advantage of using one type of traffic type over

another as sequences from each traffic type gave a mixture of good/bad results. (As

an exception, SSH sequences fared slightly better as four out of five sequences yielded

over 98% accuracy with error-correction.)
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Character accuracy with ECC
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Fig. 4.3. Character accuracy results for BMC replaying NZIX-II se-
quences with (7,4)-Hamming error correction.

Bit accuracy results followed a similar trend as we illustrate in Figure 4.4. Our

results show that, 22 out of 35 sequences yielded better than 90% accuracy rates and

the rates for the remaining sequences were uniformly distributed over the interval 90-

40%. We also observed that a sequence with bit accuracy over 90% yielded character

accuracy over 80% with error-correction. Additionally, as expected, bit accuracy rates

with and without error-correction were similar.

As a final note, whether a 100% accuracy rate is necessary or not depends on the

application type. While an 80% accuracy rate may be sufficient for Eve to decode

a reasonably understandable message, 100% accuracy is absolutely necessary if the

covert channel is transmitting a binary and/or an encrypted file. Although, for the

cases in which 100% accuracy is not required (e.g., streaming traffic), the covert
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Binary accuracy
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Fig. 4.4. Bit accuracy results for BMC replaying NZIX-II sequences.

channel can employ sequences that yield higher data rates at the expense of lowered

accuracy.

Sequence Analysis

In Figures 4.5 and 4.6, we illustrate four example NZIX-II inter-arrival time se-

quences we used in our experiments. We sorted the inter-arrival times and used a

different precision for each graph’s y-axis to focus on the intersection point between

the cutoff value and the sequence. In each graph, the solid line represents the cutoff

value (τcutoff , which is the median), and the dashed line is the packet generator’s

minimum processing time (Pgen), which was 0.0044 secs for Python. (In Figure 4.5,

these appear to lie on the x-axis because of resolution.) The example sequences in

Figure 4.5 provided 98% and 96% character accuracy with no error-correction and
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Fig. 4.5. Example NZIX-II WWW and FTP inter-arrival time se-
quences that yield high character accuracy with one-bit error correc-
tion. The solid line is τcutoff and the dashed line is Pgen.
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Fig. 4.6. Example NZIX-II FTP and UDP inter-arrival time sequences
that yield low character accuracy with one-bit error correction. The
solid line is τcutoff and the dashed line is Pgen.
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100% with error-correction. The results in this graph are as a result of three factors

that can be generalized to all BMC sequences: 1) Each sequence provides a good sepa-

ration of short and long inter-arrival times, 2) the cutoff value intersects the sequence

at one point, 3) Pgen ≪ τcutoff . In contrast, the example sequences in Figure 4.6

provided 0.23% and 0% character accuracy with no error-correction and 0.35% and

0% with error-correction. This is because both sequences in the latter graph violate

the above conditions – particularly the third, in which the packet generator cannot

keep up with the desired packet rate dictated by the input inter-arrival time sequence.

However, this is an experimental deficiency as one can design a faster packet generator

that will allow using sequences with short timing values. Further, Alice can devise

a more accurate channel by specifically engineering a more suitable sequence using

the original sequence. To do so, one alternative is to avoid the timing values that

are within the δ-neighborhood of τcutoff (e.g., the flat lines in Figure 4.6). However,

choosing a big δ value can create anomalous output sequences that can potentially

lead to detection. A second alternative is to use the sequence as it is but ignore the

timing values that are within the δ-neighborhood of τcutoff (i.e., do not associate a

symbol with a timing value that falls within this interval). In this scheme, Alice still

sends packets with such inter-arrival times, but these carry no information bits. Upon

observing an inter-arrival time value that falls under this category, Eve updates the

arrival time but does not record any bits. The resulting channel is rate-limited but

is more difficult to detect as compared to the former alternative.

As a final note, one can specifically engineer an ideal sequence that follows all three

conditions we listed above for a BMC channel. However, in doing so, the resulting

sequence should not deviate from the normal sequences to avoid creating anomalous

traffic patterns.
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4.4 Covert Channel Detection

Detection is a common practice in secure systems to monitor malicious activ-

ity [14]. In this section, we discuss the detection of EMC and BMC-type IP TRCCs,

which represent two extreme cases of the generalized RMC-type channels. We investi-

gate the cases in which these channels are detectable/undetectable through analyzing

localized distribution of inter-arrival times.

IP TRCCs leak a covert message from Alice to Eve by replaying a pre-recorded

inter-arrival time sequence. Let Sin be one such sequence we want to use to transmit

a message text M . We can generate Sin by either utilizing a pre-recorded sequence

that is recently generated by a legitimate channel, or by producing a sample from

the legitimate distribution if no previous sequence is accessible. In the former case,

the first line of defense could be to devise methods to determine if certain inter-

arrival times are the exact same ones that were observed recently. However, because

the covert channel window size is not known at the time of detection, this scheme

would need to employ costly search mechanisms similar to the ones we presented in

Chapter 3. Further, Alice can perturb the timing values deterministically (e.g., by

adding a constant to the timing values that is only known to Eve) or randomly (which

would only work for BMC at the expense of lowered channel accuracy) to by-pass such

schemes.

In this section, we focus on schemes that analyze localized distribution of inter-

arrival times sequences to detect time-replay covert channels. Suppose we are given

an inter-arrival time sequence Sin, a covert message M , and a rule set R. To generate

an output sequence Sout, Alice first encodes M into a bit-string B (e.g., using ASCII

encoding) and chooses the timing values from Sin according to B and R as we detailed

in Section 4.2 and illustrate in Figure 4.7. Using this protocol, the channel generates

Sout, which is a permutation of the timing values in Sin chosen in a particular way to

embed B. Further, we assume that |Sout| ≪ |Sin|.
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Fig. 4.7. Factors that affect the output sequence Sout for a time-replay
channel: the input sequence Sin, the input message M , the encoder
E, the input bit-string B = E(M), and the rule set R.

Given this setup, Sin is equal in distribution to a normal sequence N by construc-

tion and we investigate whether Sout is also equal in distribution. If Alice can generate

Sout in such a way that this is true, then the channel is virtually undetectable through

traffic distribution analysis. If no such sequence can be generated, that is one can

always distinguish the distribution of Sout from that of N , a detection scheme can be

devised to detect the anomalous activity. In this section, we investigate the cases in

which Alice can devise such indistinguishable Souts and the cases in which this is not

possible.

Whether Alice can generate such an output sequence Sout or not depends on

various factors such as the input sequence Sin, the message encoder E(M) = B, and

the rule set R. Further, because the input sequence is a replay of a previously recorded

sequence, Alice does not have control of Sin. Hence, she can only devise a generation

scheme by choosing different rule sets and message encoders. In terms of time-replay

channels, Alice can employ three types of channels (BMC, RMC, and EMC) that use

different rule sets. Additionally, we show that by adjusting the encoding scheme, Alice

can ensure that Sout is generated by uniformly sampling Sin, which can potentially

preserve its distribution for certain distribution types (e.g., uniform distribution).

4.4.1 Detecting EMC-type Channels

First, we examine the case in which Alice uses an EMC-type IP TRCC to create

a covert channel that is virtually undetectable through distribution analysis under
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certain conditions. An EMC-type IP TRCC uses n−1 rules to divide the inter-arrival

sequence into n partitions, where n is the size of the input sequence. Further, Alice

arranges the channel rule set such that, given the symbol to be transmitted (i.e., a zero

or a one), the probability of selecting a timing value is equally likely for all remaining

timing values. In this setup, we argue that if Alice can also ensure the uniform

sampling of the timing values from Sin regardless of the transmitted message, Sout can

potentially be equal in distribution to Sin depending on the distribution type. A trivial

example is the uniform distribution for which uniform sampling produces an output

that is also uniformly-distributed. Another example is the Poisson distribution. It

can be shown that randomly tagging a Poisson-distributed sequence produces two

sub-sequences, each Poisson-distributed (see [97]). Therefore, if a parametric test

does not reject the null hypothesis that Sin is D-distributed, it will not reject the

same hypothesis for Sout.

Furthermore, in cases Sin does not follow a certain distribution and does not retain

a rigid structure (e.g., a timing value is always followed by a certain value), uniform

sampling can potentially preserve the structure of the sequence. This is because

a series of numbers (with no assumed distribution) and its uniform sampling are

equivalent under a non-parametric comparison. Thus, uniform sampling only reduces

the sample size but it can potentially preserve the structure. Therefore, if Sout is

generated by uniformly sampling Sin, a non-parametric test (e.g., the Kolmogorov-

Smirnov test) comparing the two will not reject the null hypothesis that Sin and Sout

are drawn from the same underlying population.

One way to ensure uniform sampling for EMC-type channels is to make sure that

the bit-string that will be transmitted (i.e., E(M) = B) is uniformly distributed. This

is because it is B that determines which values will be selected from Sin. Because

Alice does not have control of the message M , she can only choose an appropriate en-

coding for the message, or use a transformation on B following the message encoding.

However, finding an appropriate encoding that will ensure the uniform distribution

of ones and zeros in B is a hard problem as Alice will also need to take character
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frequencies into account. A simpler solution is to find an appropriate transformation

T that will produce a uniformly distributed output BT when input any bit-string

B. One such transformation is bit-by-bit encryption. Indeed, Alice can employ a

probabilistic encryptor such that the transformed (i.e., encrypted) bit-string BT is

guaranteed to be indistinguishable from a random bit-string [98].

In cases uniform sampling preserves the distribution, Alice can devise an EMC

prototype that is virtually undetectable through distribution analysis by using the

following protocol:

1. Run the covert channel on an application port for which the inter-arrival times

are characteristically divided into several clusters (e.g., Telnet (Yes), Streaming

(No)).

2. Use an EMC-type channel with a recently recorded normal input sequence Sin

and a rule set R for which the probability of selecting a timing value is uniform.

3. Either exchange a session encryption key K with Eve or use a publicly known

bit-string as the key.

4. Encode M into B and encrypt B bit-by-bit with a bit-secure probabilistic en-

cryptor into BE using the session key K.

5. Send BE bit-by-bit using the covert channel.

However, uniform sampling does not guarantee preserving the distribution of the

input sequence for every distribution type. For example if the input sequence is

bursty, uniform sampling might fail to spot the windows in which this characteristic

property is observed. Further, for such distribution types how accurate the output

sample represents the input sample depends on the sampling rate. We conjecture

that the EMC-type covert channel is undetectable through distribution analysis only

for the cases in which Sout is a sample for which the distribution of Sin is preserved.
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4.4.2 Detecting BMC-type Channels

As we discussed in Section 4.2, implementing EMC-type channels and finding in-

put sequences (Sin) that are characteristically divided into several clusters can be

infeasible. In comparison, BMC-type channels are easy to implement channels that

are more resilient to the factors that decrease channel accuracy. In this section, we

examine the case in which Alice uses a BMC-type IP TRCC to generate output se-

quences (Sout) that are indistinguishable from normal sequences. BMC-type channels

use only one rule to divide Sin into two partitions. Further, Alice arranges the tim-

ing values such that, given the symbol to be transmitted (i.e., a zero or a one), the

probability of selecting a timing value is equally likely for all timing values associated

with that symbol. Again, if Alice can also ensure the uniform sampling of the timing

values from Sin regardless of the transmitted message, Sout can potentially be equal

in distribution to Sin depending on the distribution type.

Creating a uniform sampling scheme in BMC-type channels, however, is not as

trivial as in the EMC case. This is because, unlike EMC, the BMC rule set determin-

istically divides Sin into two partitions using a cutoff value τcutoff , whereas in EMC,

each timing value is associated with a symbol randomly. This difference has a major

effect on the structure of the transformed sequence (i.e., Sout). As an example to

illustrate this effect, assume that Sin is a Poisson-distributed sequence2. Again, it is

easy to show that deterministically tagging the sample points (as in the BMC case)

creates two sub-samples neither of which are Poisson-distributed (see [97]). There-

fore, a detection scheme could use a parametric test to determine that the output

sequence Sout is not Poisson-distributed.

The cases for which the input sequences are not from a particular distribution

also suffer from deterministic tagging. For example, consider the case in which Sin

is composed of a group of short inter-arrival time values followed by a group of long

values and so on. In this case, if Alice applies uniform sampling as in the EMC case,

2We are not assuming that normal sequences are Poisson-distributed but use this assumption as an
example.
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the output sequence Sout will not show the same behavior as the Sin as it will be a

mixture of short and long values that can be detected as anomalous behavior by a

detection scheme. To avoid this, Alice could choose an appropriate transformation

over B or Sout to make the output sequence look more like Sin. For example, Alice

can use redundant bits to increase consecutive zeros and ones; hence, consecutive

short and long inter-arrival time values. Eve also needs to know the transformation

to apply the inverse at the receiving end.

In either case, whether the output sequence Sout shows similar structure to Sin

depends on whether Alice can find and implement an appropriate sampler or trans-

formation on B or Sout. This depends on the distribution type (parametric case)

and how rigid the structure of the input sequence is (non-parametric case). However,

Alice has access to Sin, thus she can check whether the generated Sout resembles the

input sequence. Further, she can apply various transformations to determine which

yields the closest match to Sin.

4.4.3 Freshness of the Input Sequence

In the previous sections we assumed that Alice has access to an inter-arrival time

sequence Sin that is equal in distribution to a normal sequence by construction (i.e.,

it is a recently recorded normal sequence). This assumption is valid for systems in

which the normal behavior does not change over a long period of time. However,

for distributed systems in which network conditions change over time, Sin may be-

come outdated as conditions change and may no longer be indistinguishable from the

sequences generated under the new conditions.

In such cases, Sin can no longer represent the normal behavior and the output

sequence Sout, which is a permutation of the values in Sin, will also be anomalous.

Hence, a distribution analysis scheme comparing the distribution of Sout to that of a

normal sequence may detect the anomalous behavior, hence the covert channel. In

this case, Alice needs to refresh Sin to reflect the current conditions. For example, she
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can record a new sequence under the current network conditions to use as the input

sequence to the time-replay covert channel. In this case, Eve also needs to relearn

the sequence information to be able to decode the message correctly. In a BMC-type

channel, Alice only needs to exchange the new cutoff value, which can be transmitted

to Eve using the channel. Upon receiving the new cutoff value, Eve simply adjusts

her packet monitor that decides on the symbol. In an EMC-type channel, the entire

sequence needs to be transmitted to Eve along with the symbol associations.

4.5 Covert Channel Prevention and Elimination

Eliminating high-capacity covert channels is also a crucial requirement for trusted

systems [5]. In the previous section, we showed that time-replay channels can po-

tentially be hidden from detection schemes that perform distribution analysis under

certain conditions. Therefore, to counter these channels, one needs to ensure that

certain prevention and elimination schemes are in place. In this section, we present

systems in which time-replay channels can be prevented by design. We then investi-

gate two covert channel elimination schemes, jamming [11] and the network pump [12],

and provide methods that aid these schemes in stopping time-replay channels.

4.5.1 Preventing Time-Replay Channels

Time-replay covert channels are not applicable to every system. As an example,

consider the case in which Alice runs an IP TRCC on an application port that is

normally used to transmit streaming traffic. In this case, to hide the covert channel

Alice uses a recently recorded sequence that was previously used in streaming commu-

nication. However, it is easy to see that covert channels that employ such sequences

will be extremely error-prone. This is because the inter-arrival times generated by

a streaming application show uniform behavior over time. Thus, the inter-arrival

times cannot be grouped into well-separated partitions (e.g., short and long clusters)

as required by a time-replay covert channel. Therefore, we say that a time-replay
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covert channel is inherently prevented for such setups in which the normal traffic is

not suitable for covert communication.

In our empirical evaluation of the efficacy of IP TRCCs in Section 4.3.3, we showed

that certain sequences are not suitable to be used in covert communication because

they provided extremely low character accuracy rates. These sequences suffered from

the fact that many values were grouped around the τcutoff value; thus, there was

not a clear separation between short and long values that would ensure that Eve can

determine which timing value belongs to which partition (see Figures 4.5 and 4.6).

Hence, sequence selection plays an important role in covert channel accuracy. Further,

if the normal sequences belong to the set of sequences for which time-replay covert

channels fail the system is inherently protected against channels of this type.

We argue that one can utilize this characteristic as a strategy to design systems

that explicitly prevent time-replay covert channels and event-based covert channels

in general. Time-replay channels use the differences between the event timings as

a medium to leak information. Contrapositively, if the time between the packets

(i.e., packet inter-arrival times) is uniformly distributed, time-replay channels can

be prevented completely. The main difficulty with this approach is that the packets

are generated and transmitted following a protocol and are responsive to changes in

the environment (e.g., network) conditions. One solution to this problem is to allow

packets to be transmitted according to the protocol but employ certain constructs

(e.g., a data pump) along the transmission line that could transform the inter-arrival

times to make them more uniform. In the next two sections, we discuss two such

existing channel elimination schemes, jammers [11] and the network pump [12], that

adjust packet timings to disrupt the channel in a similar way.

4.5.2 Eliminating EMC-type Channels

As we discussed in Section 4.2, EMC-type time-replay channels are unstable chan-

nels that are extremely vulnerable to perturbations on individual inter-arrival time
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values. As a result, one can eliminate these channels easily by adding small perturba-

tions to the packets traveling through the channel. Therefore, both jammers and data

pumps work effectively on EMC-type channels without any modification because both

schemes add a probabilistic delay to each packet disrupting the association between

the symbols and the inter-arrival times.

4.5.3 Eliminating BMC-type Channels

Unlike EMC, BMC-type channels are less affected by perturbation on packet ar-

rival times. This is because in BMC, each symbol is not tightly associated with

a timing value as in EMC but it is associated with an interval (i.e., [0,τcutoff ) to

zero, and [τcutoff ,τmax) to one). Therefore, small perturbations on timing values do

not necessarily change the timing value’s symbol association. For example, added

packet delays with a low variance (regardless of the mean) cannot eliminate BMC-

type channels because Eve observes relative timing values (i.e., packet inter-arrival

times) rather than the actual arrival time. This effect is especially visible for chan-

nels that use sequences with a good separation of inter-arrival times into short and

long values. For these channels, both jammers and data pumps may fail to eliminate

the covert activity completely because neither scheme has a policy that observes by

how much the timing values should be perturbed. As a result, BMC-type channels

may survive these elimination schemes with a slightly lowered data rate. (The actual

amount by which the data rate is reduced depends on the amount of added average

delay to the packets.)

To eliminate BMC-type channels as well as EMC, elimination schemes need to

transform packet timings more intelligently to remove the associations between the

timing values and symbols. For BMC-type channels it is important that the timing

values are perturbed significantly so that their symbol association can be disrupted.

One method to do so is to use a random transformation with high variance that results

in sequences with different symbol associations compared to the original sequence.
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However, this transformation can only partially eliminate the channel because some

of the timing values (e.g., the ones that are most distant from τcutoff ) can potentially

retain their original association. A more effective way is to mimic systems for which

these channels are prevented by design and transform the sequences in a way such that

no separation into short and long values is possible for the resulting sequence (i.e.,

create sequences with more uniform inter-arrival times). Using such a transformation,

time-replay channels can be completely eliminated as the transformation additionally

disrupts the shape of the output sequence in a way a time-replay channel cannot be

deployed. However, such schemes introduce additional control over packet timings

usually at the expense of performance. Therefore, one needs to investigate the effects

of these transformations on system performance to guarantee fair-scheduling of the

packets as an example.

4.6 Chapter Summary

In this chapter, we introduced IP time-replay covert channels (TRCC). This is a

new covert channel family that hides channel traffic by replaying a previously recorded

or a specifically engineered sequence of timing intervals. We presented different types

of IP TRCCs each of which utilized a different rule set to associate time values with

the symbols from the encoded message (e.g., zero or one for a binary message). Our

analysis showed that the binary-matching channel (BMC), which has only one rule

to partition the timing value space into two, has many advantages over the other

two alternatives we presented: the rule-matching channel (RMC) and the exact-

matching channel (EMC). Accuracy analysis on our BMC prototype implementation

that replayed example sequences extracted from the NZIX-II dataset [10] yielded high

data-rates for some sequences and low rates for some others. We concluded that some

traffic inter-arrival sequences are more suitable for time-replay covert channels simply

because they provide a good separation of inter-arrival time values.
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To counter time-replay channels, we investigated detection, prevention, and elimi-

nation techniques. Our analysis showed that for EMC-type channels, a motivated user

can adjust the message encoder such that she can devise a channel that can poten-

tially be undetectable through distribution analysis. We also argued that searching

for such a transformation is more difficult for a BMC-type channel because of the

way its rule set deterministically partitions the timing value set. We conjectured

that whether a time-replay covert channel is detectable through distribution analysis

depends on whether Alice can find and implement a suitable sampling scheme that

preserves the distribution of the input sequence. Our analysis showed that certain

systems can inherently avoid time-replay covert channels because of the uniformity of

the inter-arrival times they generate (e.g., streaming traffic). We argued that one can

mimic this behavior and avoid time-replay channels by creating systems that explic-

itly transform their event sequences into more uniform ones. Lastly, we investigated

the efficacy of the existing channel eliminating schemes such as jammers [11] and the

network pump [12] as applied on EMC and BMC-type channels. We argued that

EMC-type channels can be easily eliminated with current schemes as they are very

sensitive to changes in packet timing. For BMC-type channels, though, one needs to

transform packet timings more intelligently to remove the associations between the

timing values and symbols.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

A crucial step in covert channel design is to find and exploit a shared resource that

is unlikely to be used as a communication medium by design. Little attention has

been given to methods for hiding the traffic generated by these channels – the secrecy

of a covert channel mostly relies on the secrecy of knowing the shared resource. In

this dissertation, we showed that traffic analysis can counter traditional event-based

covert channels, which do not employ any additional scheme to obfuscate the channel

further, although rate-limited and more complex channels can be indistinguishable

from normal channels through traffic distribution analysis. To prove this statement,

we argued that once the shared resource is identified, covert traffic can often be

distinguished from legitimate traffic because of the way in which event-based covert

channels adjust the timing of the events to signal information. We first described our

implementation of an IP covert channel prototype, discussed the subtle issues that

arose in its design, and presented a discussion on its efficacy. Further, we showed

that the regularity of a noiseless IP covert channel can be used to differentiate it

from legitimate channels and presented two efficient online detection measures that

provided detection rates over 95%. We repeated our analysis for “noisy” IP covert

channels in which legitimate and covert traffic were mixed to obfuscate the covert

traffic. We showed that our online detection measures failed to identify the covert

channel with a reasonable false alarm rate for noise levels higher than 10%. For

such channels, we investigated effective search mechanisms to locate regions of the

traffic that appear to be covert channels. Such “local” methods are computationally

expensive and are thus best deployed offline.

In the second part of the dissertation, we introduced IP time-replay covert channels

(TRCC) that are a new covert channel family that hide channel traffic by replaying

a previously recorded or a specifically engineered sequence of timing intervals. We
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presented different types of IP TRCCs, each of which utilized a different rule set

to associate time values with the symbols from the encoded message (e.g., zero or

one for a binary message). Our analysis showed that the binary-matching channel

(BMC), which has only one rule to partition the timing value space into two, has

many advantages over the other two alternatives we presented: the rule-matching

channel (RMC) and the exact-matching channel (EMC). Accuracy analysis on our

BMC prototype implementation that replayed example sequences extracted from the

NZIX-II dataset [10] yielded high data-rates for some sequences and low rates for

some others. We concluded that some traffic inter-arrival sequences are more suitable

for time-replay covert channels simply because they provide a good separation of

inter-arrival time values.

To counter time-replay channels, we investigated detection, prevention, and elimi-

nation techniques. Our analysis showed that for EMC-type channels, a motivated user

can adjust the message encoder such that she can devise a channel that can potentially

be undetectable through distribution analysis. We also argued that searching for such

a transformation is more difficult for a BMC-type channel because the way its rule

set deterministically partitions the timing value set. We conjectured that whether

a time-replay covert channel is detectable through distribution analysis depends on

whether Alice can find and implement a suitable sampling scheme that preserves the

distribution of the input sequence. Our analysis additionally showed that certain

systems can inherently avoid time-replay covert channels because of the uniformity of

the inter-arrival times they generate (e.g., streaming traffic). We argued that one can

mimic this behavior and avoid time-replay channels by creating systems that explic-

itly transform their event sequences into more uniform ones. Lastly, we investigated

the efficacy of the existing channel eliminating schemes such as jammers [11] and the

network pump [12] as applied on EMC and BMC-type channels. We argued that

EMC-type channels can be easily eliminated with current schemes as they are very

sensitive to changes in packet timing. For BMC-type channels, though, one needs to
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transform packet timings more intelligently to remove the associations between the

timing values and symbols.

In summary, the contributions of this dissertation are:

1. We presented an implementation of an IP covert channel prototype that effec-

tively transmits covert information over the network using IP packet timings.

2. We introduced novel detection measures that effectively detect both noiseless

and noisy IP covert channels (and all event-based covert channels in general)

using traffic analysis and force malicious users to either design more complex

channels and/or rate-limit the channel to avoid detection.

3. We introduced time-replay covert channels (TRCC) that are a covert channel

family that hides event-based channels, and argued that TRCCs are virtually

undetectable through distribution analysis under certain assumptions.

4. We discussed prevention and elimination techniques for time-replay covert chan-

nels that aid current elimination schemes in stopping these channels.

Additionally, we provided simple bandwidth analysis for both unhidden and hid-

den IP covert channels and investigated the efficacy of detection and elimination

techniques through an experimental study.

5.1 Future Directions

Future directions one might take to extend this work can be grouped into two cat-

egories: Designing more effective covert channels and increasing the efficacy of coun-

termeasures against these channels. To design better simple and time-replay covert

channels, one alternative is to employ better synchronization techniques that can po-

tentially have a positive impact on channel accuracy. For example, one can employ

more advanced solutions for combating synchronization errors caused by clock skew

such as self-synchronizing codes and phase-locked loops (PLL). The former method
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employs encoding schemes that are specifically designed to detect the loss of synchro-

nization and to recover from this state (i.e., resynchronization). The latter method

is a closed-loop feedback circuit that is designed to track or synchronize an output

signal with an input signal in frequency and phase [79]. Both methods were proved to

be effective in communications and could be applied to our channels to achieve better

accuracy. Further, one can implement faster packet generators that will allow the

sender to use inter-arrival time sequences with shorter timing intervals. Additionally,

one can extend this work by applying the same channel design principles to implement

other examples of event-based covert channels that use different events to transmit

information. As an example, one can use the inter-arrival times of CPU requests to

design a simple or a time-replay covert channel and investigate the efficacy of the

channel using techniques similar to the ones presented in this dissertation.

To improve the countermeasures against time replay covert channels, one can

provide further analysis on detection, prevention, and elimination schemes. An inter-

esting direction one could take is to investigate the cases in which Alice can devise

a scheme to hide a binary-matching channel completely and the cases in which this

is not possible. This depends on whether Alice can find a way to imitate the input

sequence such that the output sequence shows similar behavior, regardless of the mes-

sage transmitted. Another direction is to investigate schemes that can help prevent

time-replay covert channels completely. To do so, one need to introduce techniques

that transform the inter-event sequences in such a way that it is no longer possi-

ble to leak information using the differences in timing values (e.g., by making them

uniform). Further, one needs to investigate the effects of these transformations on

system performance to guarantee fair-scheduling of the events as an example.
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A. IP SCC SCENARIOS

Scenario I: To observe packet presence, Eve can monitor the shared communication

line at MAC level to see if there is any packet collision. If there is such collision,

she can deduce that Alice has issued a packet.

Scenario II: Another option is to monitor the shared communication line between

Alice and Bob at the physical level and observe the signal. If there is a high

signal, Eve can deduce that Alice has issued a packet.

Scenario III: A relatively different scenario is to use the TCP/IP acknowledgment

(ACK) packets in MLS systems that allow Alice to notify the successful receipt

of a packet sent by Eve to Alice (write-up). In this case, the timing of these

ACK packets can be used to create a covert channel.
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