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Abstract

Content-based publish/subscribe (pub/sub) systems
provide more flexibility and expressiveness than
subject-based pub/sub systems. They are attractive
solutions for distributed event dissemination. In this
paper, we address the issue of on-time delivery of
confidential events to authorized subscribers, which
is the paramount requirement for applications such
as the stock trade.

Besides ensured confidentiality, the proposed hi-
erarchical event forwarding scheme among brokers
greatly reduces the cost of matching operations per-
formed by a series of brokers; moreover, it enhances
event delivery by tolerating broker failures. We also
provide an encryption scheme for delivering event
from brokers to authorized subscribers. This encryp-
tion scheme explores the locality characteristics of
subscribers. These characteristics are generated by
our hierarchical event forwarding scheme. Our solu-
tions are scalable and particularly suitable for large-
scale content-based pub/sub systems. Experimental
results validate the high event throughput of our ap-
proach.

1 Introduction

Publish/Subscribe (pub/sub) systems provide a new
distributed paradigm for event (message) distribu-
tion. In these systems, a publisher publishes an event
through a broker, also called an event dispatcher.
Subscribers specify their interests by registering with
a broker. Brokers form a network in which they
forward events to each other and, when needed, de-

liver events to subscribers which have registered with
them.

Basically, there are two types of pub/sub systems.
The first, referred to as subject-based or type-based
pub/sub, is a system in which events are labeled with
predefined subjects to which subscribers may sub-
scribe. The second type, referred to as content-based
pub/sub system, is more flexible and powerful than
the subject-based one. In such a system, both sub-
scriptions and content are specified with respect to a
set of attributes. An attribute is an ordered pair of
name and type. A subscriber subscribes to events by
specifying predicates against attributes. For exam-
ple, if a schema for a stock trade is (company: string,
price: integer, shares: integer), a subscription could
be: (price < 20) ∧ company = “IBM”. Because there
are no explicit destination addresses associated with
an event, brokers are responsible for delivering each
event to subscribers whose subscriptions are satisfied
by the event, which is called event matching. Decou-
pling publishers from subscribers makes the system
scalable and powerful.

In this paper, we focus on the issue in which con-
fidentiality of events needs to be guaranteed and at
the same time, events should be delivered on time, be-
cause their value decreases with time. Stock trading
is one application where such issues are of paramount
importance.

Meeting these two requirements can be contradic-
tory, especially in large scale content-based pub/sub
systems where the volume of published events is huge.
To ensure confidentiality, an event should be en-
crypted during transmittal, so that only authorized
subscribers are able to decrypt it. Usually, a group
key shared by both the group members and the bro-
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kers is used to encrypt the event. However, since
there could be many attributes and thus a large num-
ber of complex predicates, for n subscribers, there
are possibly 2n subscription groups that may be in-
terested in an event. Therefore, encrypting the event
with group keys could result in a significant perfor-
mance cost and make the timely dissemination of
events difficult.

A simple approach such as multicasting an event by
the broker from which the event is published requires
replicating subscription information at each broker.
However, broker space requirements are a challenge
for such approach.

Another consideration for these timely confiden-
tial event distribution applications is fault tolerance.
A broker failure should not prevent subscribers from
receiving events on time. System architecture pro-
posed in [16, 5] where an event is distributed along a
spanning tree structure, may involve very expensive
reconfigurations [9] if there is a broker failure.

Moreover, the system should minimize registration
information propagating time (RIP time), which is
the time delay for new subscription information to
be propagated into the network. For example, broad-
casting an event to each broker, who then distributes
the event to authorized subscribers registered from
it, has minimal RIP time. Any newly accepted sub-
scribers will get matched events. However, if the
broker from which an event is published multicasts
directly to authorized subscribers, then it takes time
for new subscription to be propagated to each broker,
especially when the network is large. Therefore, some
newly accepted subscribers may miss some events.

Our contribution We propose an event forward-
ing scheme called hierarchical event routing. This
scheme increases system availability by tolerating
some broker failures. Additionally, our approach can
efficiently determine the subscription groups to which
an event has to be delivered by exploiting locality. We
also propose an efficient encryption scheme, under
which a broker encrypts an event only once. The en-
cryption key can be efficiently derived by subscribers,
even though they may belong to different subscrip-
tion groups. In our solution, a broker needs only to
keep the subscription information of its group, which
is a small number of brokers. Therefore, not only

are storage requirements reduced for each broker, but
also time and network traffic are reduced for subscrip-
tion information propagation. We provide theoreti-
cal proofs that our approach ensures event confiden-
tiality. Experiment results validate the high event
throughput of our approach.

The rest of the paper is organized as follows. We
describe our application model in Section 2, and then
present our hierarchy event routing scheme in Section
3 and our event distribution scheme in Section 4. Ex-
perimental results and related work are presented in
Sections 5 and 6, respectively. Section 7 concludes
the paper and outlines future work.

2 Model

In this paper, we focus on how to ensure that con-
fidential events are delivered on time to authorized
subscribers. It is important to note that pub/sub
systems involve several security and service quality
issues. Here we only address part of them. Other
issues, such as event access control policies, integrity
and authentication, are not the focus of this paper.
Therefore, we assume that brokers are trusted. They
will enforce event access control policies when sub-
scribers subscribe from them; and they only accept
events published by authorized publishers, and guar-
antee integrity of events they route.

In our system, a broker may fail, or come under
DoS attacks, therefore it may not be available to de-
liver events. An unauthorized subscriber of an event
(whose subscription is denied by brokers, or if ac-
cepted, the event does not match this subscriber’s
subscription) may want to access the event.

Note that even though our approach eliminates the
matching performed by brokers while an event is for-
warded among them, a matching algorithm is needed
when a broker has to decide to which groups of sub-
scribers an event should be delivered. However, such
a matching algorithm is likewise not the focus of this
paper. We assume that such an algorithm exists and
that locality is used in the algorithm for efficiency.

In the next two sections, we describe our schemes
for event distribution. It includes two steps: the first
one is that an event is routed from the broker from
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which the event is published to some brokers, and
the second one is the event is forwarded from these
brokers to authorized subscribers.

3 Hierarchial Event Routing

Scheme

In this section, we describe our event routing scheme
among brokers, followed by a discussion of the main
features of this scheme.

3.1 Hierarchy Event Routing

In our pub/sub system, all brokers are labeled with
an ID, such labeling can be performed by the party
responsible for accounting the services of the system.

Definition 1 A leaf broker group (LBG) with label i
is denoted as LBGi where LBGi = {bi1, bi2, . . . , bim}
such that

• brokers bi1, . . . , bim ∈ LBGi are located closely
in network topology;

• the ID of each broker in LBG has the same prefix
as its group ID;

• the size of LBGi is |LBGi| and |LBGi| ≥ t
where t is equal to d 1

1−r
e and r is the estimated

broker failure rate; and

• if a subscription request is submitted to and then
approved by broker bij ∈ LBGi, this subscription
will be securely multicasted by bij to all other bro-
kers in LBGi.

Therefore, any broker in a LBG maintains the sub-
scription information of subscribers who are regis-
tered with any broker in the LBG.

Based on the labels of LBGs, a tree is formed where
LBGs are the leaves and all inner nodes are formed
by virtual broker group (V BG). Specifically, a V BGi

has label i and is virtually formed by either all LBGi∗
or all V BGi∗.

Example 1 Figure 1 shows an example of 3-ary tree
with a height of 2. The leaves are LBGs. LBG11

VBG3

LBG31 LBG32 LBG33LBG13LBG12LBG11

VBG

LBG2VBG1

Figure 1: A 3-ary tree formed by broker groups

includes brokers b111, b112, b113 and b1113. All these
brokers share the same group label prefix (11). Figure
2 illustrates the locality of brokers in Figure 1.

Brokers in an LBG periodically authenticate each
other and exchange their subscription information;
however, a broker does not propagate its subscription
information to another LBG.

LBG11

LBG31

LBG32

LBG33

LBG12

LBG13

b113

b111

b1113

b112

b232 b221

b212

b231 b211

LBG2

Figure 2: The locality of brokers

An additional information kept by each broker is a
forwarding table. If a broker belongs to an LBG at
depth h′ of the tree, then the table is of dimension
h′× (n− 1). Each entry of such a table stores IP ad-
dresses of t brokers of other LBGs. Thus, if r = 10%,
each entry keeps information about 2 brokers. In such
a table, each column has n − 1 entries. For each of
these entries, the label of the stored brokers shares
the same prefix as the entry label. These brokers are
randomly choosen from their group. Table 1 shows
broker 111’s table and Table 2 shows broker 213’s
table.
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Table 1: Event forwarding table of broker 111
2*(211, 221) 12* (122, 121)
3*(311, 322) 13* (133, 135)

Table 2: Event forwarding table of broker 213
1**(114, 132)
3**(312, 321)

A broker periodically authenticates those brokers
kept in its forwarding table and updates the infor-
mation in case some brokers are under DoS attack or
system failure.

Algorithm 1 Hierarchy event forwarding algorithm

Input: (S, H, T ) //S: ID of event sender, H: ID
of host, T host’s routing table of dimension h′ ×
(n− 1)

1: if S = H then

2: for i = 1 to h′ do

3: for j = 1 to n− 1 do

4: choose a broker in entry (i, j) and forwards
the event;

5: end for

6: end for

7: else

8: let p = max number of matched prefix of S and
H

9: for i = p+ 1 to h′ do

10: for j = 1 to n− 1 do

11: choose a broker in entry (i, j) and forwards
the event;

12: end for

13: end for

14: end if

Algorithm 1 shows how a broker routes an event.
Line 1-5 is the case where the broker is the one where
the event is published. In this case, it routes the event
to one broker in each of its entry in the routing table.
Line 8-13 is the case where the broker receives the
event from another broker. In this case, the broker
uses the max common ID prefix with the sender to
determine to which level it should start forwarding an

event (Line 8), and then starts to forward the event
to all entries from that level.

3.2 Discussion

We now discuss our routing scheme with respect to
several metrics.

Broker Space Requirements: In most previous
approaches, a broker must keep subscription informa-
tion about the whole network. In large scale pub/sub
systems, such a requirement implies that all subscrip-
tion information is replicated at each broker. Under
our approach, a broker only needs to maintain 1/nh of
the whole network’s subscription information, where
n and h are the degree and height of the tree, respec-
tively. In a 4-ary tree with a height of 3, this is only
1/64 of the total network’s subscribe information.

Subscription Information Update: In most
previous approaches, new subscription may need to
be propagated to the whole network. Our approach
needs only to multicast such information to 1/nh of
the network, which greatly reduces network traffic.

Subscription Information Propagation De-

lay Time: Our approach decreases the delay time
by propagating this information only within 1/nh of
the network.

Execution of Sequential Matching: Our ap-
proach requires only a single broker in a group to
perform event matching, thus avoiding the execution
of sequential matching which must be performed by
brokers in most tree-based approaches.

Failure Tolerance: Our approach achieves the
same level of fault tolerance as approaches based on
event flooding; however, event delivery is faster in our
approach since it takes O(h) for an event to reach a
leaf broker. By contrast, under the flooding approach
it takes O(nh) for an event to reach a leaf broker.

Load Balancing: Most tree-based event delivery
systems suffer from unbalanced loads. Leaf brokers
in the tree seldom perform event matching and for-
warding to other brokers, while brokers which are
centroids1 of the tree suffer from a heavy load. In our
approach, the load is almost uniformly distributed

1A centroid of an n-node tree T is a node such that its

removal from T leaves no connected components of size greater

that n/2.
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among brokers, if a publisher publishes an event ran-
domly at any broker. Our broker routing table en-
sures this property.

Matching Cost: Instead of letting one broker
perform matching and event delivery to all sub-
scribers in the system, in our approach, event match-
ing and distribution are executed in parallel by nh

brokers, each supporting 1/nh of the load. Also, our
scheme possesses locality characteristics and there-
fore could use caching or popular group matching al-
gorithms for efficient matching.

Dynamic: When a LBG i has been added too
many brokers, such a group could be handled as a
VBG which is formed by several LBGs and all bro-
kers in previous i are divided into these LBGs. Or
when a LBG contains too few brokers as some bro-
kers have been deleted, such a group could be merged
with another LBG.

After a broker finishes routing an event, it needs to
distribute the event to authorized subscribers, if any
exist. Next, we describe how a broker encrypts an
event and distributes it to all the groups of authorized
subscribers within its broker group.

4 Confidentiality-Preserving

Event Delivery

We assume that brokers accept subscription requests
by following the policy of the system, such as requir-
ing payment evidence. After a subscriber submits
its subscription, if the request is permitted, the sub-
scriber receives one or more keys corresponding to
the groups in which its subscription falls. Since our
focus is not on event space partitioning algorithms,
we denote the event space as follows.

Let G = {G1, . . . , Gn} represent all event space of
the subscription information in a broker group B.

Group Gi is defined as (Si,Ki, Vi) where Si is part
of the subscription space, Ki is the secret key shared
by all brokers in B and these subscribers whose sub-
scription predicates p are satisfied by Si, and Vi is a
linked list of subscribers which belong to group Gi.
Furthermore, Ki is in {0, 1}l where l is a security pa-
rameter. For any Gi, Gj ∈ G, Si 6= Sj . However, we

do not require that Si ∩ Sj = ∅
Note that because brokers in a group share sub-

scription information, they will assign subscribers the
same group and the corresponding key. In another
word, all brokers in a group keep the same Gi.

Given an event e, a broker must first run a match-
ing algorithm match (e, G) which returns G ⊆ G,
that is, a set of groups to which the event should
be delivered. Next, the broker encrypts the event so
that it can be decrypted only by the subscribers in
these groups belong to G.

Because an event may match several groups, en-
crypting the event several times with different group
keys makes event delivery very inefficient. Here we
propose an efficient and practical encryption scheme,
which has the property that the encryption key is
independent from the group keys. However, all au-
thorized subscribers can derive the encryption key.
Our strategy is the following:

Assume G= {G1, . . . , Gm} are the groups to which
the event should be delivered. To encrypt an event,
the broker

1. generates a random symmetric encryption key T
such that T is in {0, 1}l and a nonce r where
r ∈ {0, 1}l;

2. encrypts the event with T ;

3. calculates A = ([G1, D1], . . . , [Gm, Dm]) such
that Di = h(Ki⊕r)⊕T (for i = 1, · · · ,m), where
⊕ is XOR operation and h is a secure one-way
function h : {0, 1}l → {0, 1}l.

Then the broker multicasts the encrypted event to all
subscribers in G. In the encrypted event, the broker
appends A and the nonce r. A member of group Gi

can obtain T by Di⊕h(Ki⊕ r) and thus decrypt the
event.

4.1 Discussion

In this subsection, we discuss several important cor-
rectness properties of our approach. We first provide
our correctness criteria and then prove that our en-
cryption scheme satisfies them.
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Definition 2 Completeness Each authorized sub-
scriber should be able to derive the key to decrypt an
event.

Definition 3 Soundness If an individual is not au-
thorized to access the event, then it is not able to
decrypt the event. Further, a member subj of some
group Gi ∈ G, knowing T , r and A, is not able to
derive any secret key Kj of group Gj ∈ G (j 6= i),
unless subj belongs to group Gj.

Definition 4 Collusion-resilience It is impossible
for any set of adversaries to derive a secret key that
none of them possesses.

Theorem 1 The proposed scheme is complete.

Proof: For an event, an authorized subscriber be-
longs to at least one of Gi ∈ G to which the event
falls; thus, it has at least one key Ki. As a result, the
subscriber can decrypt T as Di ⊕ h(Ki ⊕ r) from the
public Di and r, and the event too. 2

Theorem 2 The proposed scheme is sound.

Proof: To decrypt an event, an individual must
obtain the encryption key T . Since T is mixed in
Dis, in order to obtain T , the individual must get at
least one h(Ki ⊕ r). If the individual is an outsider
or a system subscriber but does not belong to any
of Gi ∈ G, the individual cannot compute any of
h(Ki ⊕ r)s. Thus, the individual cannot obtain T .

Consider a subscriber belonging to Gi ∈ G. Given
the nonce r, A and T , the subscriber can obtain T by
computing Hi = h(Ki ⊕ r) and then Di ⊕Hi. Once
knowing T , the subscriber can compute Hj = Dj⊕T
(for any j = 1, i − 1, . . . , i + 1,m). However, due to
the one-way property of h function, the subscriber
cannot get Kj from Hj(i.e., h(Kj ⊕ r)). Thus, the
proposed scheme is sound. 2

Theorem 3 The proposed scheme is collusion-
resilient.

Proof: We consider the collusion of subscribers not
outsiders since involvement of outsiders cannot con-
tribute any bit of information useful to reconstruct

the keys. There are three possible collusion: by
the subscribers not belonging to any Gi ∈ G; by
the subscribers belonging to some Gi ∈ G; and by
subscribers across several Gi’s in G. For the first
case, these subscribers are equivalent to outsiders,
and cannot get T or any Ki. For the second case,
these subscribers can get their T and any of other
Hj = h(Kj ⊕ r)s. Because the security of the one-
way function is independent of the number of users
trying to break it, the collusion of these subscribers
is no stronger than an individual subscriber trying to
get Kj from Hj . The same principle applies to collu-
sion of multiple subscribers from different groups.

As a result, the proposed scheme is resilient to any
kinds of collusion attacks. 2

4.2 Dynamics and rekeying

In a dynamic pub/sub system, the user can subscribe
to or unsubscribe/be revoked from the system, even
move from one group to the other. In order to guar-
antee that all (and only) current subscribers in a
group Gi can obtain the events destined to the group,
the group key Ki needs to be updated. The updated
key needs to be distributed to the users securely. We
propose using the same scheme a second time to ad-
dress such a requirement. During user registration,
the system will assign each user a unique personal
secret ID (denoted as UIDi for user Ui). As a re-
sult, if a new Ki needs to be securely distributed to
the current users {U1, U2, · · · , Un} of a group Gi, the
following message will be multicast (note: r is a new
random nonce): {r;h(UID1⊕r)⊕Ki, h(UID2⊕r)⊕
Ki, · · · , h(UIDn ⊕ r) ⊕Ki}.

As for the performance, the proposed scheme is
very efficient. The computation of h depends totally
on the algorithm selected and is independent of m,
so its computation complexity can be considered as
constant, such as O(c) where c is a constant. The
XOR operation is fast and can be considered to run
in O(1) time. Thus, time complexity of computing A
is O(mc) (i.e., O(m)).

As it can be seen from the discussion, the proposed
scheme is secure, efficient, and dynamic and is able to
enforce content confidentiality for pub/sub systems.
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5 Simulation Results

In this section, we evaluate the efficiency of our ap-
proach by simulation.

5.1 Methodology

The simulations were conducted using a 5-ary tree of
3 levels, i.e., there are total 125 broker groups, with
each group having 5 brokers. The total number of
brokers in the system is 625.

Each broker has 50 subscribers. For simplicity, the
event space is partitioned into units. Each subscriber
subscribes to 1 unit from the event space.

We experimented with different distributions for
event popularity and compared ours with a basic tree-
based approach and a multicast-based approach:

• Uniform: Subscribers from any broker subscribe
to event space units randomly.

• Normal distribution: Subscribers from a broker
i subscribe to event units following a normal dis-
tribution. For an event space of n units, the sub-
scription from broker i has a mean at the unit
n∗ (i+0.5)/625. We evaluate the effect of differ-
ent standard deviations: 1/6 of the event space,
5 and 50. This follows from the fact that a sub-
scription has locality characteristics: subscribers
within a broker have similar distributions of in-
terests, whereas the greater the distance between
brokers, the more different the subscription dis-
tributions.

5.2 Results

We present our results on space requirements for a
broker, and on the delay in receiving an event by
subscribers.

Space Requirements

We measure the space requirement for storing sub-
scription information by a broker. IP addresses are
4 bytes long and event space is 2 bytes. For each
event unit, if there is at least one subscription, then it
forms a subscription group. For each group, a linked
list is used to store subscribers information. Figure 3
shows the result of subscriptions which are uniformly

distributed. It reveals that a multicast approach re-
quires a dramatically large space. When comparing
our approach with the tree-based approach in detail,
our approach uses a relatively larger space than a
tree-based approach (see Fig. 4). We think this is
an acceptable space requirement (less than 1.4 KB).
The results for normal distributions are reported in
Fig. 5, 6, 7, 8, 9, 10. They follow similar patterns.
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Figure 3: Space requirement for
a broker (uniform)
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a broker (uniform)

Next, we check the number of subscription groups
formed under different subscription distributions.
These results are reported in Figure 11, 12, 13, 14, 15,
16. In multicast approach, the number of groups is
the same as the number of event space units. When
the standard deviation decreases, our approach has
a similar number of groups as the tree-based ap-
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Figure 5: Space requirement
(σ = 1/6 of event space)
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Figure 6: Space requirement
(σ = 1/6 of event space)

proach. For a tree-based approach, the routing infor-
mation is aggregated, therefore, a broker only needs
to maintain the subscription information from its
subscribers. Even for normal distribution with large
deviation, we found that a broker can aggregate these
brokers’ subscription information into a very small
space.

Time Delay

We evaluate the time delay for a subscriber to re-
ceive an event. In the evaluation, it takes 1 unit of
time to forward an event to a group. Figure 17 re-
ports the time to deliver an event in a uniform distri-
bution. The tree based approach takes more time due
to the series of event forwarding by brokers in such

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n 

S
pa

ce
 (K

B
)

Gossip−based
Tree−based
Multicast−based

Figure 7: Space requirement for
a broker (σ =50)
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Figure 8: Space requirement for
a broker (σ =50)

a structure. By contrast, multicasting needs to for-
ward to all subscription groups of the whole network.
Our hierarchy approach, however, uses parallel event
forwarding, which is very efficient. Figure 17 also
shows that when the number of subscription groups
increases, the performance of a multicast approach
degrades; it is slower than the tree-based approach
when the event space size reaches 350. Figures 18, 19,
20 report the results for normal distributions. The
tree-based approach is relatively stable regardless of
the standard deviation. When the standard deviation
increases, our approach takes a longer time.
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Figure 9: Space requirement
(σ = 5)
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Figure 10: Space requirement
(σ =5)

Broker Involvement

The number of brokers involved in forwarding an
event reflects the load that a broker takes. Figure
21 shows the number of brokers that are involved in
delivery of an event. The subscription rate of events
is uniformly distributed. The horizontal axis shows
the subscription rate of each broker. The vertical axis
shows the number of brokers involved in delivering
an event. For the tree-based approach, a spanning
tree is built by applying Dijkstra’s algorithm on a
graph of 625 nodes, each node with degree d where
d is uniformly distributed from 1 to 4. The result is

the average of ten runs, where at each run, an event
is published at a randomly chosen broker. We also
present the ideal approach, where only the brokers
subscribing to an event are those which participate
in the delivery of the event. From Fig. 21, the tree-
based approach needs more brokers to participate in
the event delivery, especially when subscription rate
is 20%, half of the brokers involved are not interested
in an event. As the subscription rate increases, the
tree-based approach reaches the same number as the
ideal approach at 100%. In that instance, all brokers
in a tree-based approach are interested in the event.

Hierarchical event forwarding uses an almost con-
stant number of brokers for forwarding an event. If
there is no broker failure, this number is equal to
the number of broker groups and it is not related to
the subscription rate. Therefore, when the subscrip-
tion rate is below 20%, our approach needs more bro-
kers than the ideal approach. Our approach uses less
brokers than the tree-based approach when the sub-
scription rate is above 6%. For a broker with 50 sub-
scriptions, this means an event has popularity below
0.12%. Thus, our approach seldom uses more brokers
than the tree-based approach.

6 Related Work

Several studies have been devoted to investigating ef-
ficiency issues concerning pub/sub systems [11, 10, 2,
1, 13, 2, 3, 6, 15, 8, 9, 5, 12, 17, 7, 14, 4] and sev-
eral prototype systems have been developed. Most
approaches like [8, 9, 5] use a spanning tree structure
for event routing. In order to reduce the matching
that has to be performed by brokers from the root
to the leaves, several optimization techniques have
been proposed. Virtual groups are used to reduce
the matching performed by brokers [16].

However, security issues [15] in content-based
pub/sub systems have not been so widely investi-
gated. Srivatsa and Liu [14] propose a resilient net-
work which, instead of providing only a single path
from each publisher to its subscribers which is in-
herited from the spanning tree structure, several in-
dependent paths from a publisher to each of its
subscribers are provided. Such paths are built de-
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terministically. In their approach, building several
independent paths from a publisher to every sub-
scriber involves complex topology computations. In
dynamic environments, such computation is expen-
sive. Such expensive reconfigurations of tree struc-
tures have been completely eliminated in our hierar-
chy event forwarding scheme. Each broker maintains
a forwarding table which ensures that at least one
broker in the next forwarding level is operative.

To avoid unnecessary event broadcasting,
Carzaniga et al. [5] proposes an approach that
broadcasts events only along the spanning tree. As
previously mentioned, in dynamic environments, a
tree structure is hard to maintain and may become
disconnected. Broadcasting along a disconnected
tree involves more redundancy and does not solve
the availability problem.

Opyrchal and Prakash [11] discuss how a broker
can encrypt an event and deliver it to a possibly very
large number of groups. As each group has a se-
cret key shared by members and brokers, encrypting
the event using a group key may involve performing
many encryption operations, and there may be sev-
eral groups to which this event should be delivered.
Caching and clustering are therefore used to make
fewer encryptions. In our confidentiality-preserving
encryption scheme, an event is encrypted only once.
All authorized subscribers can derive the key for de-
cryption the event efficiently. Our scheme is provably
secure.

7 Conclusions and Future work

In this paper, we address some security issues of
content-based pub/sub systems. We focus on increas-
ing the availability of events and ensuring confiden-
tiality when events are delivered to authorized sub-
scribers. Our schemes (hierarchical event forward-
ing and confidentiality-preserving encryption) are ef-
ficient and scalable. Our approach is especially suit-
able for large-scale content-based pub/sub systems.
Simulation results validate the efficiency of our ap-
proach.

We plan to investigate other security issues in
content-based pub/sub systems, especially how bro-

kers can efficiently authenticate each other, and
how to ensure confidentiality of events forwarded
among brokers. We would like to investigate an ef-
ficient mechanism for matching an encrypted event
against subscriptions, which is suitable for large-scale
content-based pub/sub systems.
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Figure 11: Number of subscrip-
tion groups (σ = 1/6 of event
space)
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Figure 12: Number of subscrip-
tion groups (σ = 1/6 of event
space)
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Figure 13: Number of subscrip-
tion groups (σ = 5)
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Figure 14: Number of subscrip-
tion groups (σ = 5)
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Figure 15: Number of subscrip-
tion groups (σ =50)
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Figure 16: Number of subscrip-
tion groups (σ =50)
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Figure 17: Time delay (uniform)
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Figure 18: Time delay (σ = 1/6
of event space)
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Figure 19: Time delay (σ =5)
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Figure 20: Time delay (σ =50)

0

100

200

300

400

500

600

700

0 20 40 60 80 100

N
um

be
r o

f b
ro

ke
rs

 in
vo

lv
ed

Subscription rate (%)

Spanning tree approach
Gossip-based approach

Ideal approach

Figure 21: The number of brokers involved
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