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ABSTRACT
k-anonymization techniques are a key component of any
comprehensive solution to data privacy and have been the
focus of intense research in the last few years. An important
requirement for such techniques is to ensure anonymization
of data while at the same time minimizing the information
loss resulting from data modifications such as generalization
and suppression. Current solutions, however, suffer from one
or more of the following limitations: reliance on pre-defined
generalization hierarchies; generation of anonymized data
with high information loss and with high classification er-
rors; and the inference channel arising from lack of diversity
in the sensitive information.

In this paper we propose an approach that addresses these
limitations. Our approach uses the idea of clustering to min-
imize information loss and thus ensure good data quality.
The key observation here is that data records that are nat-
urally close with respect to each other should be part of the
same equivalence class. Current clustering techniques, how-
ever, are not directly applicable in this context because they
do not consider the requirement that each cluster should
contain at least k records. We thus formulate a specific
clustering problem, referred to as k-member clustering prob-
lem. We prove that this problem is NP-hard and present
a greedy algorithm, the complexity of which is in O(n2).
As part of our approach we develop a suitable metric to es-
timate the information loss introduced by generalizations,
which works for both numeric and categorical data. We also
present extensions to our proposed algorithm that minimize
classification errors in the anonymized data and eliminate
the inference channel arising from lack of diversity in the
sensitive attributes. We experimentally compare our algo-
rithm with two recently proposed algorithms. The experi-
ments show that our algorithm outperforms the other two
algorithms with respect to information loss, classification
errors, and diversity.

1. INTRODUCTION
Since the early age of information technology, privacy has

been a challenging issue. Among many aspects of privacy,
data privacy, which refers to the privacy of the individual
to which the data1 is related, has been one of the difficult
research problems. The difficulty comes from the fact that
data utility (i.e., data quality) and data privacy conflict with
each other. Intuitively, data privacy can be enhanced by
hiding more data values, but it decreases data utility; on
the other hand, revealing more data values increases data
utility, but it decreases data privacy. Therefore, we need to
devise solutions that best address both utility and privacy

1Note that although the concept can be easily broaden, in
this paper we consider mainly person-specific data often re-
ferred to as micro-data.

requirements of data.
A recent approach addressing data privacy relies on the

notion of k-anonymity [26, 30]. In this approach, data pri-
vacy is guaranteed by ensuring that any record in the re-
leased data is indistinguishable from at least (k − 1) other
records with respect to a set of attributes called the quasi-
identifier. Although the idea of k -anonymity is conceptu-
ally straightforward, the computational complexity of find-
ing an optimal solution for the k -anonymity problem has
been shown to be NP-hard, even when one considers only cell
suppression [1, 23]. The k -anonymity problem has recently
drawn considerable interest from research community, and a
number of algorithms have been proposed [5, 11, 18, 19, 29].
We categorize these algorithms into two classes: hierarchy-
based generalization and hierarchy-free generalization.

In the hierarchy-based generalization [5, 11, 18, 29],
a generalization-hierarchy is first defined for each quasi-
identifier attribute. Then an algorithm tries to efficiently
find an optimal (or good) solution which is allowed by the
generalization hierarchies. Here an optimal solution is a so-
lution that satisfies the k -anonymity requirement and at the
same time maximizes data utility (i.e., minimizes a partic-
ular cost metric). On the other hand, the hierarchy-free
generalization technique [19] does not require any general-
ization hierarchy. Instead, the algorithm in this class tries
to find an optimal (or good) solution without any restric-
tion of generalization hierarchies from a much larger solu-
tion space. Each of these two approaches, however, has sig-
nificant limitations. In the hierarchy-based generalization,
the quality and usefulness of results depends heavily on the
choice of the generalization hierarchy, which relies on the
user’s knowledge of the specific domain [2]. This approach
also suffers from relatively high information loss due to un-
necessary generalizations. In the hierarchy-free generaliza-
tion, the existing algorithm requires a total order for each
attribute domain, which makes it not applicable to most
categorical data. Moreover, the focus is too heavily placed
on preserving the quality of the quasi-identifier. As a result,
the algorithm is unable to address other issues such as clas-
sification and diversity. We further discuss these two classes
of generalization techniques in Section 3.

The main goal of our work is to develop a new k-
anonymization approach that addresses these limitations.
The key idea underlying our approach is that the k-
anonymization problem can be viewed as a clustering prob-
lem. Intuitively, the k -anonymity requirement can be natu-
rally transformed into a clustering problem where we want
to find a set of clusters (i.e., equivalence classes), each of
which contains at least k records. In order to maximize
data quality, we also want the records in a cluster to be as
similar to each other as possible. This ensures that less dis-
tortion is required when the records in a cluster are modified
to have the same quasi-identifier value. Current clustering
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techniques, however, are not directly applicable in this con-
text because they do not consider the requirement that each
cluster should contain at least k records. We thus formulate
a specific clustering problem, which we call k-member clus-
tering problem. We prove that this problem is NP-hard and
present a greedy algorithm which runs in time O(n2). Al-
though our approach does not rely on generalization hierar-
chies, if there exist some natural relations among the values
in a domain, our algorithm can incorporate such informa-
tion to find more desirable solutions. We note that while
many quality metrics have been proposed for the hierarchy-
based generalization, a metric that precisely measures the
information loss introduced by the hierarchy-free generaliza-
tion has not yet been introduced. For this reason, we define
a data quality metric for the hierarchy-free generalization,
which we call information loss metric. We also show that
with a small modification, our algorithm is able to reduce
classification errors [15] and eliminate the inference channel
arising from lack of diversity in the sensitive attributes [21].

In summary, the key contributions of our work are as fol-
lows.

• We model the k -anonymization problem as a new clus-
tering problem, referred to as k-member clustering
problem, and show that the problem is NP-hard.

• We introduce data quality metrics which naturally
capture the effect of data generalization.

• We discuss how to minimize classification errors in the
anonymized data and how to eliminate the inference
channel arising from lack of diversity.

• We present a greedy k-member clustering algorithm
which has time complexity O(n2). Our experimental
results show that our algorithm outperforms existing
algorithms with respect to information loss, classifica-
tion errors, and diversity.

The remainder of this paper is organized as follows. We
review the basic concepts of the k -anonymity model in Sec-
tion 2. We then discuss existing generalization techniques
and their limitations in Section 3. We formally define the
problem of k -anonymization as a clustering problem and in-
troduce our approach in Section 4. In Section 5, we describe
how we extend our approach to address the issues of classi-
fication errors and inference channel. Then we evaluate our
approach based on the experimental results in Section 6. We
survey related work in Section 7 and conclude our discussion
in Section 8 with some suggestions for future work.

2. BASIC CONCEPTS
The k -anonymity model assumes the relational data

model; that is, data are stored in a table (or a relation) of
columns (or attributes) and rows (or records). We assume
that the table to be anonymized contains entity-specific in-
formation and that each record in the table corresponds to a
unique real-world entity (e.g., a person or an organization).
Thus, each attribute value in a record represents a piece of
information about an entity. The process of anonymizing a
table starts with removing all the explicit identifiers, such
as name and SSN, from the table. However, even though a
table is free of explicit identifiers, some of the remaining at-
tributes in combination could be specific enough to identify
individuals if the values are already known to the public.
For example, as shown by Sweeney and Samarati [30, 26],

ZIP Gender Age Diagnosis

47918 Male 35 Cancer
47906 Male 33 HIV+
47918 Male 36 Flu
47916 Female 39 Obesity
47907 Male 33 Cancer
47906 Female 33 Flu

Figure 1: Patient records of a hospital

ZIP Gender Age Diagnosis

4791∗ Person [35-39] Cancer
4790∗ Person [30-34] HIV+
4791∗ Person [35-39] Flu
4791∗ Person [35-39] Obesity
4790∗ Person [30-34] Cancer
4790∗ Person [30-34] Flu

Figure 2: 3-anonymous version of patient records

most individuals in the United States can be uniquely iden-
tified by a set of attributes such as {ZIP, gender, date of
birth}. That is, even if each attribute alone may not be
specific enough to identify individuals, the combination of a
group of attributes may be. When one individual’s values
of these attributes are known, then one can link a record
to that individual. The set of such attributes called quasi-
identifier.

Definition 1. (Quasi-identifier) A quasi-identifier of ta-
ble T , denoted as QT , is a set of attributes in T that can be
potentially used to link a record in T to a real-world identity
with a significant probability. �

In addition to the quasi-identifier, the table may contain
publicly unknown attributes some of which are highly sen-
sitive. In other words, a table typically consists of three
types of attributes: publicly known attributes (i.e., quasi-
identifier), sensitive and publicly unknown (simply, sensi-
tive) attributes, and non-sensitive and publicly unknown
(simply, non-sensitive) attributes. For instance, consider
Figure 1, where the table contains patient records of a fic-
tional hospital. Obviously, Diagnosis is an example of sen-
sitive attribute. The quasi-identifier and non-sensitive at-
tributes are determined based on background information
such as previous data releases, knowledge of potential ad-
versary, or the content of externally available data. The
main objective of the k -anonymity problem is to anonymize
a table so that no one can make high-probability associa-
tions between records in the table and the corresponding
entities.

Definition 2. (k-anonymity requirement) Table T is
said to be k-anonymous with respect to a quasi-identifier
QT if and only if each distinct set of values in QT appears
at least k times in T . �

In other words, any record in a k -anonymous table is in-
distinguishable from at least (k − 1) other records with re-
spect to the quasi-identifier. A group of records that are
indistinguishable to each other is often referred to as an
equivalence class. Through the k -anonymity requirement,
it is guaranteed that even though an adversary knows that
a k -anonymous table T contains the record of a particular
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individual and also knows some of the quasi-identifier at-
tribute values of the individual, she cannot determine which
record in T corresponds to the individual with a probability
greater than 1/k. For example, a 3-anonymous version of
the table in Figure 1 is shown in Figure 2.

3. HIERARCHY VS. NO-HIERARCHY
The k -anonymity requirement is typically enforced

through generalization, where real values are replaced with
“less specific but semantically consistent values” [30]. Given
a domain, there are various ways to generalize the values in
the domain. For instance, ZIP code ‘47907’ can be gener-
alized to ‘4790∗’ (i.e., ‘[47900-47909]’), or even (suppressed)
to ‘∗’ (i.e., a range covering every possible ZIP codes). No-
tice that we consider only the quasi-identifier of a table as
the target of generalization. That is, the publicly unknown
attributes are not allowed to be altered or omitted in order
to make the released table as useful as possible.

Another important technique often used for k -
anonymization is tuple suppression. Suppressing a
tuple means that the entire tuple is removed from the table.
Note that although tuple suppression reduces the number of
tuples in the table (thus, results in relatively high informa-
tion loss), this technique can often enhance the overall data
quality. For example, suppose that we want to k -anonymize
a table of n tuples with respect to quasi-identifier Q. For
the purpose of illustration, let us assume that n = k + 1
and that k records have the same quasi-identifier value;
that is, there exists one outlier with respect to Q. Without
tuple suppression, all n records have to be generalized until
the table satisfies the k -anonymity requirement. However,
if the outlier is removed from the table, no record needs
to be modified at all as the table already satisfies the
k -anonymity requirement. Thus, by allowing a limited
number of outliers to be suppressed, one can often achieve
k -anonymity with much less generalization.

In this paper, we consider only generalization, leaving the
support for tuple suppression as part of our future work.
In the following sections, we briefly discuss existing algo-
rithms, categorizing them into two classes; hierarchy-based
generalization and hierarchy-free generalization.

3.1 Hierarchy-based generalization
The approaches in this class require that the generaliza-

tion strategy of each attribute in the quasi-identifier be pre-
defined by a domain generalization hierarchy (DGH), which
is a totally ordered set of domains that indicates how the
corresponding attribute should be generalized in multiple
steps. Based on a DGH, one can derive a value generaliza-
tion hierarchy (VGH), which is a partially ordered set of
values. Figure 3 illustrates examples of DGH’s and VGH’s
defined for attributes ZIP, gender and age.

The k -anonymization problem is to find a generaliza-
tion for the entire quasi-identifier, which satisfies the k-
anonymity requirement and also maximizes the data quality
(or minimizes the desired cost metric). Although finding an
optimal solution has been proven to be NP-hard [1, 23],
recent research effort has produced many algorithms that
efficiently find acceptable k -anonymizations [5, 11, 18, 26,
29, 33]. While most of earlier work on k -anonymization is
based on the hierarchy-based generalization, this approach
has some significant limitations. First of all, the hierarchy-
based generalization suffers from relatively high information

 

479**   Z2 = {479**}  

  Z1 = {4790*, 4791*}  

  Z0 = {47906, 47907, 47916, 47918}  

4790* 4791* 
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Figure 3: Domain and value generalization hierar-
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Figure 4: Various partitions of a record space

loss due to unnecessary generalizations. For instance, as-
sume that we want to 3-anonymize the table in Figure 1
with respect to the quasi-identifier Q = {age}, using the
DGH and VGH given in Figure 3 (e) and (f). Observe that
although the records with value 33, which are already 3-
anonymous, all have to be generalized to have [30 − 34] as
the other records should be generalized to have [35−39]. An-
other, and perhaps more significant, limitation is that the
quality and usefulness of anonymized data depends heavily
on the choice of generalization hierarchies [2]. As the con-
struction of a domain generalization hierarchy often relies
on the user’s knowledge of the specific domain, it is difficult
to guarantee the usefulness of results.

3.2 Hierarchy-free generalization
Recently, a k -anonymity technique that does not re-

quire pre-defined generalization hierarchies has been pro-
posed [19]. In this multidimensional approach, the k -
anonymity problem is transformed into a partitioning prob-
lem. Specifically, the approach consists of the following two
steps. The first step is to find a partitioning scheme of the
d-dimensional space, where d is the number of attributes in
the quasi-identifier, such that each partition contains at least
k records. Then the records in each partition are generalized
so that they all share the same quasi-identifier value. Clearly
the solution space is exponentially large, and as an approx-
imate algorithm, they propose a greedy algorithm that re-
cursively splits a partition at the median value (of a selected
dimension) until no more split is allowed with respect to the
k -anonymity requirement.

Notice that previously proposed k -anonymization algo-
rithms all assume the single-dimensional generalization
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where a necessary generalization for each attribute is often
separately determined and uniformly applied to its entire
domain space. However, in the multidimensional approach,
it is possible that the values in a domain may be generalized
into different levels. For instance, while two values 31 and
40 may be generalized into an interval [31 − 40], the other
values in the same range may be generalized to different in-
tervals or even may not be generalized at all. Although this
approach may introduce some inconsistency in the domain,
it allows much more flexible generalization strategies. Con-
sider the records in Figure 4 (a), where the quasi-identifier
is assumed to consist of two attributes for simplicity. While
a single-dimensional approach may produce solutions such
as Figure 4 (b) and (c), a multidimensional approach can
consider a finer-grained generalization such as Figure 4 (d)
as well as (b) and (c).

While this new approach has addressed some of the limita-
tions of the earlier work, the proposed algorithm has some
major drawbacks. First, it requires a total order for each
attribute domain. This requirement works well for numeric
or continuous data, but does not work for most categorical
data. We note that this is not a problem that can be dis-
missed easily, as most person-specific records consist of cat-
egorical attributes. For example, in the Adult dataset [25],
eight out of fourteen attributes contain categorical domains
that do not have any natural ordering. Second, although
there may exist natural relations among values in a particu-
lar domain, the proposed algorithm cannot incorporate such
information to find more desirable solutions. Moreover, the
focus is too heavily placed on preserving the quality of the
quasi-identifier. As a result, the algorithm lacks the abil-
ity to address other issues (e.g., classification and diversity)
to find more desirable solutions. Finally, because the pro-
posed algorithm tries to minimize the number of records in
each partition, the quality of the resulting anonymized data
cannot be guaranteed.

4. ANONYMIZATION AND CLUSTERING
In this section, we present a new k-anonymization ap-

proach that is free from the limitations of existing algo-
rithms. The key idea underlying our approach is that the k-
anonymization problem can be viewed as a clustering prob-
lem. Clustering is the problem of partitioning a set of ob-
jects into groups such that objects in the same group are
more similar to each other than objects in other groups with
respect to some defined similarity criteria [14]. Intuitively,
an optimal solution of the k -anonymization problem is in-
deed a set of equivalence classes such that records in the
same equivalence class are very similar to each other, thus
requiring a minimum generalization. To be precise, the k -
anonymization problem is a specific clustering problem with
an additional requirement that each cluster (i.e., equivalence
class) contains at least k records.

4.1 k-Anonymization as a clustering problem
Typical clustering problems, such as k-center [12] and k-

means [22], require that a specific number of clusters be
found in solutions. However, the k -anonymity problem does
not have a constraint on the number of clusters; instead, it
requires that each cluster contains at least k records. To
the best of our knowledge, this particular constraint has not
been addressed in the existing clustering literature. Thus,
we pose the k -anonymity problem as a new clustering prob-

lem, referred to as k-member clustering problem.

Definition 3. (k-member clustering problem) The k -
member clustering problem is to find a set of clusters from
a given set of n records such that each cluster contains at
least k (k ≤ n) data points and that the sum of all intra-
cluster distances is minimized. Formally, let S be a set of n
records and k the specified anonymization parameter. Then
the optimal solution of the k -clustering problem is a set of
clusters E = {e1, . . . , em} such that:

1. ∀ i 6= j ∈ {1, . . . ,m}, ei ∩ ej = ∅,

2.
S

i=1,...,m
ei = S,

3. ∀ ei ∈ E , |ei| ≥ k, and

4.
P

ℓ=1,...,m
|eℓ| ·MAXi,j = 1,...,|eℓ|∆(p(ℓ,i), p(ℓ,j)) is min-

imized.

Here |e| is the size of cluster e, p(ℓ,i) represents the i-th data
point in cluster eℓ, and ∆(x, y) is the distance between two
data points x and y. �

Note that in Definition 3, we consider the sum of all intra-
cluster distances, where an intra-cluster distance of a cluster
is defined as the maximum distance between any two data
points in the cluster (i.e., the diameter of the cluster). As we
describe in the following section, this sum captures the total
information loss, which is the amount of data distortion that
generalizations introduce to the entire table.

4.2 Distance and cost metrics
At the heart of every clustering problem are the distance

functions that measure the dissimilarities among data points
and the cost function which the clustering problem tries to
minimize. The distance functions are usually determined
by the type of data (i.e., numeric or categorical) being clus-
tered, while the cost function is defined by the specific ob-
jective of the clustering problem. In this section, we describe
our distance and cost functions which have been specifically
tailored for the k -anonymization problem.

As previously discussed, a distance function in a cluster-
ing problem measures how dissimilar two data points are.
As the data we consider in the k -anonymity problem are
person-specific records that typically consist of both numeric
and categorical attributes, we need a distance function that
can handle both types of data at the same time. In [13,
14], Huang introduces such a measure that uses the simple
matching similarity measure [16] for categorical attributes.
We generalize the approach in [13, 14] by considering the
effect of taxonomy trees.

For a numeric attribute, the difference between two val-
ues (e.g., |x − y|) naturally describes the dissimilarity (i.e.,
distance) of the values. This measure is also suitable for
the k -anonymization problem. To see this, recall that when
records in the same equivalence class are generalized, the
generalized quasi-identifier must subsume all the attribute
values in the equivalence class. That is, the generalization
of two values x and y in a numeric attribute is typically rep-
resented as a range [x, y], provided that x < y. Thus, the
difference captures the amount of distortion caused by the
generalization process to the respective attribute (i.e., the
length of the range).
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Age Country Occupation Salary Diagnosis

41 USA Armed-Forces ≥50K Cancer
57 India Tech-support <50K Flu
40 Canada Teacher <50K Obesity
38 Iran Tech-support <50K Flu
24 Brazil Doctor ≥50K Cancer
45 Greece Salesman <50K Fever

Figure 5: Sample data

 

Country 

America Asia 

North West 

USA  Canada  Iran    Egypt   

East 

India    Japan 

South 

Brazil  Mexico 

Figure 6: Taxonomy tree of Country

 

Occupation 

    Armed-Forces  Teacher  Doctor  Salesman   Tech-Support   

Figure 7: Taxonomy tree of Occupation

Definition 4. (Distance between two numeric val-

ues) Let D be a finite numeric domain. Then the normalized
distance between two values vi, vj ∈ D is defined as:

δN (v1, v2) = |v1 − v2| / |D|,
where |D| is the domain size measured by the difference be-
tween the maximum and minimum values in D. �

Example 1. Consider the records in Figure 5. The dis-
tance contributed by the Age attribute for the first two
records is |57 − 41|/|57 − 24| = 0.485, while the distance
between the last two records with respect to the same at-
tribute is |24 − 45|/|57 − 24| = 0.636. Note that a small
distance between two values implies that the values are sim-
ilar to each other.

For categorical attributes, however, the difference is no
longer applicable as most of the categorical domains cannot
be enumerated in any specific order. The most straightfor-
ward solution is to assume that every value in such a domain
is equally different to each other; e.g., the distance of two
values is 0 if they are the same, and 1 if different. However,
some domains may have some semantic relationships among
the values. In such domains, it is desirable to define the
distance functions based on the existing relationships. Such
relationships can be easily captured in a taxonomy tree. We
assume that a taxonomy tree of a domain is a balanced tree
of which the leaf nodes represent all the distinct values in
the domain. For example, Figure 6 illustrates a natural tax-
onomy tree for the Country attribute. However, for some

attributes such as Occupation, there may not exist any se-
mantic relationship which can help in classifying the domain
values. For such domains, all the values are classified under
a common value as in Figure 7. Note that this is equivalent
to the straightforward solution where we assume that every
value in the domain is equally different to each other. To
accommodate all these cases, we define the distance function
for categorical values as follows:

Definition 5. (Distance between two categorical val-

ues) Let D be a categorical domain and TD be a taxonomy
tree defined for D. The normalized distance between two
values vi, vj ∈ D is defined as:

δC(v1, v2) = H(Λ(vi, vj)) / H(TD),
where Λ(x, y) is the subtree rooted at the lowest common
ancestor of x and y, and H(T ) represents the height of tree
T . �

Example 2. Consider attribute Country and its taxonomy
tree in Figure 6. The distance between India and USA is
3/3 = 1, while the distance between India and Iran is 2/3 =
0.66. On the other hand, for attribute Occupation and its
taxonomy tree in Figure 7 which goes up only one level, the
distance between any two values is always 1.

Combining the distance functions for both numeric and
categorical domains, we define the distance between two
records as follows:

Definition 6. (Distance between two records) Let
QT = {N1, . . . , Nm, C1, . . . , Cn} be the quasi-identifier of
table T , where Ni(i = 1, . . . ,m) is an attribute with a nu-
meric domain and Ci(i = 1, . . . , n) is an attribute with a
categorical domain. The distance of two records r1, r2 ∈ T
is defined as:

∆(r1, r2) =
X

i=1,...,m

δN (r1[Ni], r2[Ni])+
X

j=1,...,n

δC(r1[Ci], r2[Ci]),

where ri[A] represents the value of attribute A in ri, δN is
the distance function defined in Definition 4, and δC is the
distance function defined in Definition 5. �

Example 3. Assume that the quasi-identifier of the table
in Figure 5 is {Age, Country, Occupation}. Then the dis-
tance between the first two records is (16/33) + (3/3) + 1 =
2.485, while the distance between the first and third record
is (1/33) + (1/3) + 1 = 1.363.

We note that our distance function in Definition 6 can be
viewed as a Manhattan distance [4]. We also note that one
can easily control the contribution of each attribute to the
distance by adding a non-negative weight for each attribute
as desired.

Now we discuss the cost function which the k -members
clustering problem tries to minimize. As the ultimate goal
of our clustering problem is the k -anonymization of data, we
formulate the cost function to represent the amount of dis-
tortion (i.e., information loss) caused by the generalization
process. Recall that, records in each cluster are general-
ized to share the same quasi-identifier value that represents
every original quasi-identifier value in the cluster. We as-
sume that the numeric values are generalized into a range
[min, max] [19] and categorical values into a set that unions
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all distinct values in the cluster [5]. With these assumptions,
we define a metric, referred to as Information Loss metric
(IL), that measures the amount of distortion introduced by
the generalization process to a cluster.

Definition 7. (Information loss) Let e = {r1, . . . , rk} be
a cluster (i.e., equivalence class) where the quasi-identifier
consists of numeric attributes N1, . . . , Nm and categorical
attributes C1, . . . , Cn. Let TCi be the taxonomy tree defined
for the domain of categorical attribute Ci. Let MINNi and
MAXNi be the min and max values in e with respect to
attribute Ni, and let ∪Ci be the union set of values in e with
respect to attribute Ci. Then the amount of information loss
occurred by generalizing e, denoted by IL(e), is defined as:

IL(e) = |e| · D(e)

D(e) =
X

i=1,...,m

(MAXNi −MINNi)

|Ni|

+
X

j=1,...,n

H(Λ(∪Cj ))

H(TCj )

where |e| is the number of records in e, |N | represents the size
of numeric domain N , Λ(∪Cj ) is the subtree rooted at the
lowest common ancestor of every value in ∪Cj , and H(T ) is
the height of tree T . �

Using the definition above, the total information loss of
the anonymized table is defined as follows:

Definition 8. (Total information loss) Let E be the
set of all equivalence classes in the anonymized table AT .
Then the amount of total information loss of AT is defined
as:

Total-IL(AT ) =
P

e∈E IL(e). �

We note that like the distance metric, one can easily con-
trol the contribution of each attribute to the information
loss by adding a non-negative weight for each attribute.

Recall that the cost function of the k -members problem is
the sum of all intra-cluster distances, where an intra-cluster
distance of a cluster is defined as the maximum distance be-
tween any two data points in the cluster. Now, if we consider
how records in each cluster are generalized, minimizing the
total information loss of the anonymized table intuitively
minimizes the cost function for the k -members clustering
problem as well. Therefore, the cost function that we want
to minimize in the clustering process is Total-IL.

4.3 Anonymization algorithm
Armed with the distance and cost functions, we are now

ready to discuss the k -member clustering algorithm. As in
most clustering problems, an exhaustive search for an opti-
mal solution of the k -member clustering is potentially expo-
nential.

In order to precisely characterize the computational com-
plexity of the problem, we define the k -member clustering
problem as a decision problem.

Definition 9. (k-member clustering decision prob-

lem) Given n records, is there a clustering scheme E =
{e1, . . . , eℓ} such that

1. |ei| ≥ k, 1 < k ≤ n: the size of each cluster is greater
than or equal to a positive integer k, and

2.
P

i=1,...,ℓ
IL(ei) < c, c > 0: the Total-IL of the clus-

tering scheme is less than a positive constant c. �

Theorem 1. The k-member clustering decision problem
is NP-complete.

Proof. That the k-member clustering decision problem
is in NP follows from the observation that if such a clustering
scheme is given, verifying that it satisfies the two conditions
in Definition 9 can be done in polynomial time.

In [1], Aggarwal et al. proved that optimal k-anonymity
by suppression is NP-hard, using a reduction from the Edge

Partition Into Triangles problem. In the reduction,
the table to be k-anonymized consists of n records; each
record has m attributes, and each attribute takes a value
from {0, 1, 2}. The k-anonymization technique used is to
suppress some cells in the table. Aggarwal et al. showed
that determining whether there exists a 3-anonymization of
a table by suppressing certain number of cells is NP-hard.

We observe that the problem in [1] is a special case of the
k-member clustering problem where each attribute is cate-
gorical and has a flat taxonomy tree. It thus follows that the
k-member clustering problem is also NP-hard. When each
attribute has a flat taxonomy tree, the only way to general-
ize a cell is to the root of the flat taxonomy tree, and this is
equivalent to suppressing the cell. Given such a database,
the information loss of each record in any generalization is
the same as the number of cells in the record that differ
from any other record in the equivalent class, which equals
the number of cells to be suppressed. Therefore, there exists
a k-anonymization with total information loss no more than
t if and and only if there exists a k-anonymization that sup-
presses at most t cells.

Faced with the hardness of the problem, we propose a sim-
ple and efficient algorithm that finds a solution in a greedy
manner. The idea is as follows. Given a set of n records,
we first randomly pick a record ri and make it as a cluster
e1. Then we choose a record rj that makes IL(e1 ∪ {rj})
minimal. We repeat this until |e1| = k. When |e1| reaches
k, we choose a record that is furthest from ri and repeat the
clustering process until there are less than k records left.
We then iterate over these leftover records and insert each
record into a cluster with respect to which the increment
of the information loss is minimal. We provide the core of
our greedy k -member clustering algorithm, leaving out some
trivial functions, in Figure 8.

Theorem 2. Let n be the total number of input records
and k be the specified anonymity parameter. Every cluster
that the greedy k-member clustering algorithm finds has at
least k records, but no more than 2k − 1 records.

Proof. Let S be the set of input records. As the algo-
rithm finds a cluster with exactly k records as long as the
number of remaining records is equal to or greater than k,
every cluster contains at least k records. If there remain less
than k records, these leftover records are distributed to the
clusters that are already found. That is, in the worst case,
k − 1 remaining records are added to a single cluster which
already contains k records. Therefore, the maximum size of
a cluster is 2k−1.

Theorem 3. Let n be the total number of input records
and k be the specified anonymity parameter. If n ≫ k, the
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Function greedy_k_member_clustering (S, k) 
Input: a set of records S and a threshold value k. 
Output: a set of clusters each of which contains at least  k 
records. 

1. if( | S | 
�
  k )  

2.     return S; 
3. end if; 
4.  
5. result = ∅; 
6. r = a randomly picked record from S; 
7. while( | S | ≥ k )  
8.     r = the furthest record from r; 
9.     S = S – {r}; 
10.     c = {r}; 
11.     while( | c | < k ) 
12.          r = find_best_record(S, c); 
13.          S = S – {r}; 
14.          c = c ∪ {r}; 
15.     end while; 
16.     result = result ∪ {c}; 
17. end while;       
18. while( | S |  ≠ 0 ) 
19.     r = a randomly picked record from S; 
20.     S = S – {r}; 
21.     c = find_best_cluster(result, r); 
22.     c = c ∪ {r}; 
23. end while; 
24. return result; 

End; 

Function find_best_record (S, c) 
Input: a set of records S and a cluster c. 
Output: a record r ∈ S such that IL(c ∪ {r}) is minimal. 

1. n = |S|; 
2. min =  ∞; 
3. best = null; 
4. for(i = 1,…n) 
5.     r = i-th record in S; 
6.     diff = IL(c ∪ {r}) – IL(c); 
7.     if( diff < min ) 
8.         min = diff; 
9.         best = r; 
10.     end if; 
11. end for;   
12. return best; 

End; 
 
Function find_best_cluster (C, r) 
Input: a set of clusters C and a record r. 
Output: a cluster c ∈ C such that IL(c ∪ {r}) is minimal. 

1. n = |C|; 
2. min =  ∞; 
3. best = null; 
4. for(i = 1,…n) 
5.     c = i-th cluster in C; 
6.     diff = IL(c ∪ {r}) – IL(c); 
7.     if( diff < min ) 
8.         min = diff; 
9.         best = c; 
10.     end if; 
11. end for;   
12. return best; 

End; 

 Figure 8: Greedy k-member clustering algorithm

time complexity of the greedy k-member clustering algorithm
is in O(n2).

Proof. Observe that the algorithm spends most of its
time selecting records from the input set S one at a time
until it reaches |S| = k (Line 9). As the size of the input
set decreases by one at every iteration, the total execution
time T is estimated as:

T = (n− 1) + (n− 2) + . . .+ k ≈

n(n− 1)

2
,

when k ≪ n. Therefore, T is in O(n2).

5. USABILITY AND SECURITY
In this section, we address two critical issues which have

not been investigated thoroughly. In most k -anonymity
work, the focus is heavily placed on the quasi-identifier, and
therefore the other types of attributes (i.e., non-sensitive at-
tributes and sensitive attributes as described in Section 2)
are often ignored. However, we believe that these attributes
deserve more careful consideration. In fact, the anonymiza-
tion (i.e., generalization) of quasi-identifier is not to pro-
tect the quasi-identifer values as they are assumed to be al-
ready known to public. The reason to anonymize the quasi-
identifier is thus to protect the sensitive attributes from be-
ing inferred by using the uniqueness of quasi-identifier. For
instance, in a health record, a person’s age or ZIP-code may
not be so sensitive, compared to the person’s disease. Also,
we want to minimize the distortion of quasi-identifier not
only because the quasi-identifier itself is meaningful infor-

mation, but also because a more accurate quasi-identifier
will lead to good predictive models (e.g., association rules or
classification labels) on non-sensitive attributes. Therefore,
the security and the utility of these two types of attributes
must be carefully considered when a k -anonymization algo-
rithm is developed. We now describe how our greedy k -
member clustering algorithm can be extended to address
each of these issues.

5.1 Diversity
Perhaps the information that requires the highest pri-

vacy is in the sensitive attributes. However, the security
of such information has not received enough attention from
most k -anonymity work. In fact, the k-anonymity model
is specifically designed to address identity disclosures (i.e.,
re-identification of records) and does not address attribute
disclosures (i.e., exposure of sensitive data). However, note
that an attribute disclosure can occur with or without an
identification through various inference channels [17]. For
instance, consider a k-anonymized table such that all records
in an equivalence class have the same sensitive attribute
value. Then although the records may not be re-identified
with a significant probability, the sensitive attribute value
can be inferred with a probability of 1. Such an inference
is referred to as a homogeneity attack in [21]. This problem
can be serious especially when there exists a strong correla-
tion between the quasi-identifier and the sensitive attributes.
The k-anonymization algorithms group records with simi-
lar quasi-identifier values together in order to minimize the
amount of generalization, and as a result, records with sim-
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ilar sensitive attribute values are indeed grouped together.
Recently, Machanavajjhala et al. [21] pointed out such in-

ference issues in the k-anonymity model and proposed the
notion of ℓ-diversity, which requires records in every equiv-
alence class to have at least ℓ distinct sensitive attribute
values. Building upon this idea, we develop two versions of
diversity metrics which measure the total number of records
in a k-anonymized table that are vulnerable to inference. In
the first version, called the Equal Diversity metric (ED), we
assume that all sensitive attribute values are equally sensi-
tive. Now, if every record in an equivalence class has the
same sensitive attribute value, then all records in that class
equally contribute to the cost of the ED metric. In the
second version, called the Sensitive Diversity metric (SD),
we assume that there are two types of values in a sensitive
attribute; those that are truly-sensitive and the others not-
so-sensitive. This may sound odd at first, but we believe
this assumption to be realistic in many cases. For example,
consider medical records which contain the name of each pa-
tient’s disease. Although some diseases (e.g., HIV+, cancer,
and STD) may be highly sensitive, some common diseases
(e.g., flu and itchy eye) may not be so sensitive. With this
assumption, we can relax the previous metric as follows. If
every record in an equivalence class has the same sensitive
attribute value and the value is truly-sensitive, then all these
records contribute to the cost of the SD metric. In other
words, the SD metric does not penalize the records with
not-so-sensitive values although the values can be inferred.
We now formally define our diversity metrics as follows.

Definition 10. (Diversity Metrics) Let AT be a k -
anonymized table which contains a sensitive attribute s. Let
E = {e1, . . . , em} represent the set of all equivalence classes
in AT . Then the Equal Diversity cost for AT is defined as:

ED(AT , s) =
X

i=1,...,m

φ(ei, s) × |ei|,

where φ(e, s) = 1 if every record in e has the same s value;
φ(e, s) = 0, otherwise.
Provided that only a subset of s values is truly-sensitive, the
Sensitive Diversity cost of AT is defined as:

SD(AT , s) =
X

i=1,...,m

ψ(ei, s) × |ei|,

where ψ(e, s) = 1 if every record in e has the same s value
that is truly-sensitive; ψ(e, s) = 0, otherwise. �

In order to address the issue of diversity, our greedy
algorithm is modified by replacing Line 6 of Function
find best record with the following.

For equal diversity:
if (isDiverse(c) == true)

diff = IL({c ∪ {r}) − IL(c);
else if (majority-class(c) 6= class(r))

diff = IL({c ∪{r}) − IL(c) + diversityPenalty;

For sensitive diversity:
if (isDiverse(c) == true)

diff = IL({c ∪ {r}) − IL(c);
else if (majority-class(c) is sensitive &&

majority-class(c) 6= class(r))
diff = IL({c ∪{r}) − IL(c) + diversityPenalty;

The underlying idea is as follows. When choosing a record
to insert into a cluster, the modified algorithm explicitly
penalizes records that have the same sensitive value as the
majority of the records already in the cluster; thus result-
ing in a diversified cluster. Observe that the magnitude of
enforcement can be controlled by the weight of penalty. We
demonstrate the effectiveness of this modification in Sec-
tion 6.

5.2 Classification
The predictive modeling of attributes is well motivated

by Iyengar [15]. In fact, the correlation between the quasi-
identifier and non-sensitive attributes can be significantly
weakened or perturbed due to the ambiguity introduced by
the generalization of quasi-identifier. Thus, it is critical that
the generalization process does not significantly weaken the
discrimination of classes using quasi-identifier. Considering
this issue, Iyengar also proposed the classification metric
(CM) as:

CM =
P

all rows
Penalty(row r) / N ,

where N is the total number of records, and
Penalty(row r) = 1 if r is suppressed or the class
label of r is different from the class label of the majority in
the equivalence group.

Motivated by this metric, we modify our algorithm in Fig-
ure 8 by replacing Line 6 of Function find best record with
the following.

if (majority-class-label(c) == class-label(r))
diff = IL({c ∪ {r}) − IL(c);

else diff = IL({c ∪{r}) − IL(c) + classPenalty;

In essence, the algorithm is now forced to choose records
with the same class label for a cluster, and the magnitude
of enforcement is controlled by the weight of penalty. With
this minor modification, our algorithm can effectively reduce
the cost of classification metric without increasing much in-
formation loss. We show the result in Section 6.

6. EXPERIMENTAL RESULTS
The main goal of the experiments is to investigate the

performance of our approach in terms of data quality, effi-
ciency, and scalability. To accurately evaluate our approach,
we also compare our implementation with two other algo-
rithms, namely the median partitioning algorithm as de-
scribed in the Mondrian approach [19] and the k-nearest
neighbor algorithm used in the Condensation approach [2].
We note that the Condensation approach is different from
most k -anonymity work in that it does not use data gen-
eralization. Instead, each equivalence class (referred to as
k -indistinguishable group in [2]) is represented by compre-
hensive statistics. However, for our experiment, we devise
their approach (which finds k -indistinguishable groups by
repeatedly (randomly) selecting a record and making it a
group with k − 1 nearest neighbors) as a clustering algo-
rithm and compare it with our approach.

8



 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50  100  150  200  250  300  350  400  450  500

T
o
ta

l 
In

fo
rm

a
ti

o
n

 L
o
ss

 (
u

n
it

 =
 1

K
)

K-Values

Total Information Loss - Adult Dataset

Median Partitioning
K-Nearest Neighbor
Greedy K-Member

Greedy K-Member-CM

Figure 9: Information Loss Metric

 0

 5

 10

 15

 20

 25

 0  50  100  150  200  250  300  350  400  450  500

D
is

ce
rn

a
b

il
it

y
 P

en
a
lt

y
 (

u
n

it
 =

 1
M

)

K-Values

Discernability Penalty - Adult Dataset

Median Partitioning
K-Nearest Neighbor
Greedy K-Member

Greedy K-Member-CM
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6.1 Experimental setup
The experiments were performed on a 2.66 GHz Intel IV

processor machine with 1 GB of RAM. The operating sys-
tem on the machine was Microsoft Windows XP Professional
Edition, and the implementation was built and run in Java
2 Platform, Standard Edition 5.0.

For our experiments, we used the Adult dataset from the
UC Irvine Machine Learning Repository [25], which is con-
sidered a de facto benchmark for evaluating the performance
of k-anonymity algorithms. Before the experiments, the
Adult data set was prepared as described in [5, 15, 19]. We
removed records with missing values and retained only nine
of the original attributes. For k-anonymization, we consid-
ered (age, work class, education, marital status, occupation,
race, gender, and native country) as the quasi-identifier.
Among these, age and education were treated as numeric
attributes while the other six attributes were treated as cat-
egorical attributes. In addition to that, we also retained
the salary class attribute to evaluate the classification and
diversity metrics.

6.2 Data quality and efficiency
In this section, we report experimental results on the

greedy k -members algorithm for data quality and execution
efficiency.

Figure 9 reports the Total-IL costs of the four algorithms
(median partitioning, k-nearest neighbor, greedy k-member,
and greedy k-member modified to reduce classification er-
ror) for increasing values of k. As the figure illustrates, the
greedy k-members algorithm results in the least cost of the
Total-IL for all k values. Note also that the Total-IL cost
of the modified greedy k-member is very close to the cost
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Figure 12: Execution Time

of the unmodified algorithm. The superiority of our algo-
rithms over the median partitioning algorithm results from
the fact that the median partitioning algorithm considers
the proximity among the data points only with respect to
a single dimension at each partitioning. Another interest-
ing result from the experiment is that the greedy k-member
algorithm results in much lower Total-IL costs than the k-
nearest neighbor approach. This difference can be explained
with the following reasons. First, the greedy k -member al-
gorithm selects each center point using the furthest-first tra-
versal approach [12] while the k -nearest neighbor algorithm
selects center points randomly. Secondly, while the k -nearest
neighbor algorithm selects k − 1 records that are nearest to
the center point, the greedy k -member algorithm selects k−1
records, one at a time, that are closest to the cluster.

Another metric used to measure the data quality is the
Discernibility metric (DM) [5]. This metric measures the
data quality based on the size of each equivalence class and
is defined as follows:

DM =
P

e∈E
|e|2 +

P
s∈S

|D||s|,

where E represents the set of equivalence classes, S the set
of suppressed records, and D the input dataset. Intuitively
data quality diminishes as more records become indistin-
guishable with respect to each other, and DM effectively
captures this effect of the k -anonymization process.

Figure 10 shows the DM costs of the four algorithms for
increasing k values. As shown, the two greedy k-member
algorithms and the k-nearest neighbor algorithm perform
better than the median partitioning algorithm. In fact, the
greedy k-member and the k-nearest neighbor algorithms al-
ways produce equivalence classes with sizes very close to the
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tion Loss

specified k, due to the way clusters are formed.
Figure 11 shows the experimental result with respect to

the CM metric. As expected, the greedy k-member al-
gorithm modified to minimize classification errors (as de-
scribed in Section 5.2) outperforms all the other algorithms.
Observe that even without the modification, the greedy k-
members algorithm still produces less classification errors
than the median partitioning for every k value.

We also measured the execution time of the algorithms
for different k values. The results are shown in Figure 12.
Even though the execution time for the greedy k-member
algorithm is higher than the other two algorithms, we believe
that it is still acceptable in practice2.

6.3 Diversity

2The k-anonymity model assumes static data, which means
that k-anonymization is an off-line procedure.
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In this section, we present experimental results for the
greedy k-member algorithm modified to enhance the diver-
sity of sensitive attribute values as described in Section 5.1.
Recall that in the ED metric, if every record in an equiva-
lence class has the same sensitive attribute value, then all
records in that class equally contribute to the cost of the
metric. The SD metric is more lenient in that if every record
in an equivalence class has the same sensitive attribute value
and the value is truly-sensitive, then all these records con-
tribute to the cost of the metric. We considered class label
“>50” as the truly-sensitive value in our experiment.

Figure 13 illustrates the performance of the algorithms
with respect to the ED metric. The result is rather surpris-
ing. For small k values (under 10), the sensitive attribute
values of nearly a half of anonymized records can be easily
inferred for the median partitioning, the k-nearest neighbor,
and the greedy k-member algorithms. Moreover, a signifi-
cant number of records still remain vulnerable for higher k
values. On the other hand, the greedy k-member algorithm
modified for the ED metric reduces this vulnerability signif-
icantly even for small k values. Our experimental result for
the SD metric is shown in Figure 14, which reports similar
trends. As shown in Figure 15, the Total-IL cost is still low
even when the algorithm is modified for either type of di-
versity metrics. Although we do not provide a figure, the
modifications for diversity do not introduce any considerable
overheads to the execution-time behavior.

6.4 Scalability
Figures 16 and 17 show the Total-IL costs and execution-

time behaviors of the algorithms for various table cardinal-
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ities3 (for a fixed k value of 5). As shown, the Total-IL
costs increase almost linearly with the size of the dataset
for all the three algorithms. However, the greedy k-member
algorithm introduces the least Total-IL cost for any size of
dataset.

As discussed in Section 4, the time complexity of the
greedy k-member algorithm is quadratic with respect to the
number of records in the dataset, which is clearly shown in
Figure 17. We have also analyzed the theoretical time com-
plexities of the other two algorithms. A brief report of our
analysis is provided below.

Algorithm Time Complexity

Median partitioning O(nlog(n))
k-nearest neighbor O(n2)
Greedy k-members O(n2)

Although the greedy k-members is slower than the other
two algorithms, the overhead is still acceptable in most cases
considering its better performance with respect to the Total-
IL metric. In addition to that, we are encouraged by the
fact that the current version of our algorithm is not fully
optimized. This promises that the runtime behavior of our
algorithm can be improved after optimization.

7. RELATED WORK
In this section, we briefly survey existing literature that

addresses data privacy. Instead of providing a comprehen-
sive survey, we discuss various aspects of data privacy. Note
that we do not include the k-anonymity work here as de-
tailed discussion can be found in Section 2.

Ensuring privacy in published data has been a difficult
problem for a long time, and this problem has been studied
in various aspects. In [17], Lambert provides informative
discussion on the risk and harm of undesirable disclosures
and discusses how to evaluate a dataset in terms of these
risk and harm. In [6], Dalenius poses the problem of re-
identification in (supposedly) anonymous census records and
firstly introduces the notion of “quasi-identifier”. He also
suggests some ideas such as suppression or encryption of
data as possible solutions.

Data privacy has been extensively addressed in statistical
databases, which primarily aim at preventing various infer-
ence channels. One of the common techniques is data per-
turbation [20, 24, 31], which mostly involves swapping data
values or introducing noise to the dataset. While the per-
turbation is applied in a manner which preserves statistical
characteristics of the original data, the transformed dataset
is useful only for statistical research. Another important
technique is query restriction [7, 9], which restricts queries
that may result in inference. In this approach, queries are
restricted by various criteria such as query-set-size, query-
history, and partitions. Although this approach can be effec-
tive, it requires the protected data to remain in a dedicated
database at all time.

Today’s powerful data mining techniques [8, 10, 27] are
often considered great threats to data privacy. However,
we have recently seen many privacy-preserving data mining
techniques being developed. For instance, Evfimievski et

3For this experiment, we used the subsets of the Adult
dataset with different sizes.

al. in [3] propose an algorithm which randomizes data to
prevent association rule mining [28]. There has also been
much work done addressing privacy-preserving information
sharing [32, 3], where the main concern is the privacy of
databases rather than data subjects.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an efficient k -anonymization

algorithm by transforming the k -anonymity problem to the
k -member clustering problem. We also proposed two impor-
tant elements of clustering, that is, distance and cost func-
tions, which are specifically tailored for the k -anonymization
problem. We emphasize that our cost metric, IL metric, nat-
urally captures the data distortion introduced by the gen-
eralization process and is general enough to be used as a
data quality metric for any k -anonymized dataset. We also
proposed two diversity metrics, ED and SD metrics, which
measure the level of security a k -anonymized dataset pro-
vides. Although the issue of diversity has been overlooked in
most k-anonymity work, we believe that this issue deserves
more careful consideration.

Our future work includes the following. Although our ex-
periments show that our greedy algorithm produces “good”
results, the algorithm does not guarantee any approximation
factor. It is important to investigate this issue in order to
improve the current algorithm. We are also working on the
dynamic aspect of k -anonymity. So far, the k -anonymity
problem has assumed that the data is static. While this
may have been acceptable before, today we see the data-
bases continuously growing everyday and every hour, and
there is a strong demand for up-to-date data. Thus, we be-
lieve that mechanisms that guarantee the privacy in dynamic
databases is a critical issue.
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