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Abstract

Hierarchies arise in the context of access control whenever the user population can be modeled
as a set of partially ordered classes (represented as a directed graph). A user with access
privileges for a class obtains access to objects stored at that class and all descendant classes in
the hierarchy. The problem of key management for such hierarchies then consists in assigning
a key to each class in the hierarchy so that keys for descendant classes can be obtained via an
efficient key derivation process.

We propose a solution to this problem with the following properties: (i) the space complexity
of the public information is the same as that of storing the hierarchy; (ii) the private information
at a class consists of a single key associated with that class; (iii) updates (i.e., revocations
and additions) are handled locally in the hierarchy; (iv) the scheme is provably secure against
collusion; and (v) each node can derive the key of any of its descendant with a number of
symmetric-key operations bounded by the length of the path between the nodes. Whereas many
previous schemes had some of these properties, ours is the first that satisfies all of them. The
security of our scheme is based on pseudo-random functions, without reliance on the Random
Oracle Model.

Another substantial contribution of this work is that for trees, we achieve a worst- and
average-case key-derivation time that is exponentially better than the depth of a balanced hier-
archy (double-exponentially better if the hierarchy is unbalanced, i.e., “tall and skinny”). This
is obtained at the cost of only a constant factor in the space to store the hierarchy. We also
show how to extend our techniques to more general hierarchies.

Finally, by making simple modifications to our scheme, we show how to handle extensions
proposed by Crampton [2003] of the standard hierarchies to “limited depth” and reverse inher-
itance.

1 Introduction

1.1 Background

In this work, we address the problem of access control and, more specifically, the key management
problem in an access hierarchy. Informally, the general model is that there is a set of access classes

∗Portions of this work were supported by Grants IIS-0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, Contract N00014-02-1-0364 from the Office of Naval Research, by sponsors of
the Center for Education and Research in Information Assurance and Security, and by Purdue Discovery Park’s
e-enterprise Center. A preliminary version of this work appeared in the Proceedings of the ACM Conference on
Computer and Communications Security (CCS) 2005.
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ordered using partial order. We use a directed graph G, where nodes correspond to classes and
edges indicate their ordering, to represent such a hierarchy. Then a user who is entitled to have
access to a certain class obtains access to that class and its descendants in the hierarchy. A key
management scheme assigns keys to the access classes and distributes a subset of the keys to a
user, which permit her to obtain access to objects at her class(es) and all of the descendant classes.
Such key management schemes are usually evaluated by the number of total keys the system must
maintain, the number of keys each user receives, the size of public information, the time required
to derive keys for access classes, and work needed to perform when the hierarchy or the set of users
change.

Hierarchies of access classes are used in many domains, and in many cases they are more general
than trees. The most traditional example of such hierarchies is Role-Based Access Control (RBAC)
models ([21]; [43]) that can be used for many different types of organizations. Other areas where
hierarchies are useful are content distribution (where the users receive content of different quality
or resolution), cable TV (where certain programs are included in subscription packages), project
development (different views of information flow and components at managerial, developers, etc.
positions), defense in depth (at each stage of intrusion defense there is a specific set of resources that
can be accessed), and others. Even more broadly, hierarchical access control is used in operating
systems (e.g., [23]), databases (e.g., [18]), and networking (e.g., [38]; [35]).

A vital aspect of access control schemes is computational and storage space requirements for key
management and processing. It is clear that low requirements allow a scheme to be used in a much
wider spectrum of devices and applications (e.g., inexpensive smartcards, small battery-operated
sensors, embedded processors, etc.) than costly schemes. Thus to make our scheme acceptable
for use with weak clients, we do not use public-key cryptography but instead utilize only efficient
techniques.

Security of access control models comes from their ability to deny access to unauthorized data.
Also, if a scheme is collusion-resilient, then even if a number of users with access to different nodes
conspire trying to derive additional keys, they cannot get access to more objects than what they can
already legally access. Even though we intend to use the scheme with tamper-resistant smartcards,
a number of prior publications (e.g., Anderson and Kuhn [2, 3]) suggest that compromising cards is
easier than is commonly believed. In addition, the collusion-resilience allows us to use the scheme
with other devices that do not have tamper-resistance.

One of the key efficiency measures for hierarchical access control schemes is the number of
operations needed to compute the key for an access class lower in the hierarchy, because this
operation must be performed in real-time by possibly very weak clients. The best schemes (including
ours) require the number of operations linear in the depth of the graph in the worst case (see
Section 2 for more information about complexity of key derivation), which for some graphs is O(n)
where n is the number of nodes in the access graph. While the number of operations for key
derivation is going to be small on average and an organization’s role hierarchy tends to be shallow
rather than deep, deep hierarchies do arise in many situations such as:

• Hierarchically organized hardware, where the hierarchy is based on functional and control
issues but also on how trusted the hardware components are;

• Hierarchically organized distributed control structures such as physical plants or power grids
(involving thousands of possibly tiny networked devices such as sensors, actuators, etc.);

• Hierarchical design structures (e.g., aircraft, VLSI circuits, etc.);
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• Task graphs where only an ancestor task should know about descendant tasks.

Also, deep access hierarchies can arise even in very simple databases where the hierarchical com-
plexity can come from super-imposed classifications on the database that are based on functional,
structural, etc. features of that database. See also [37]; [41] for other examples of deep hierarchies.
This is why a rather substantial part of this work is dedicated to improving key derivation time,
which, as we describe below, can be decreased to a small number of operations (O(log log n) or
even only 3 operations) with modest increase in public storage space.

1.2 Our Results

Our approach can support arbitrary access graphs, but in this work we consider only acyclic graphs.1

In this work we describe two schemes: a base scheme and an extended scheme. The base scheme
is simple and extremely efficient – it can be implemented using only hash functions. We show
its provable security against key recovery. The second, extended, scheme provides higher security
guarantees: we prove that user keys are now pseudo-random (i.e., indistinguishable from random).
The scheme, however, relies on additional use of symmetric-key encryption. Other properties shared
by both of the schemes are:

• The space complexity of the public information is the same as that of storing G and is
asymptotically optimal.

• The private information at a node consists of a single key.

• The derivation by a node of a descendant node’s access key requires the number of operations
linear in the distance between the nodes.

• Updates are handled locally in the hierarchy and do not “propagate” to descendants or
ancestors of the affected part of the graph, while many other schemes require re-keying of
other nodes following a deletion.

• Our scheme is resistant to collusion in that no subset of nodes can conspire to gain access to
any node that is not already legally accessible.

We address key management at the levels of both access classes and individual users, while other
schemes manage keys only at one of these levels.

In the schemes, we rely on the following assumptions: there is a trusted central authority that
can generate and distribute keys (e.g., an administrator within the organization). The security of
our schemes relies on the use of pseudo-random functions.

We also show that our solution can be easily extended to cover access models that go beyond
the traditional inheritance of privilege. More precisely, we give extensions that enable normal as
well as reverse inheritance in the graph (i.e., access to objects down or up in the hierarchy) and
also allow for fixed-depth inheritance. Such extensions are useful not only in the context of other
standard models such as Bell-LaPadula [5], but can also apply, for instance, to RBAC (e.g., reverse
limited-depth inheritance permits an employee to have access to documents stored at the level of

1Even though the scheme can be applied to graphs that contain cycles, we do not foresee a setting in which such
access graphs are useful. That is, since all nodes comprising a cycle have identical privileges, they can be merged
into a single node. Thus, in this work we restrict our attention to directed acyclic graphs.
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the department of that employee); this model can cover a much richer set of access control policies
than that of other schemes. We model these extensions after Crampton’s work [16], and they do
not increase the space or computational complexity of our schemes.

A substantial part of this work is dedicated to improving efficiency of key derivation time for
deep hierarchies. Our technique is to insert additional (so called “shortcut”) edges in the graph,
that allow us to achieve somewhat surprising results: for n-node trees our techniques enable us
to improve efficiency of key derivation to O(log log n) operations in the worst case with constant
increase in public information, and to only 3 operations with public space usage of O(n log log n).
We also describe how to use our techniques with more general hierarchies. These techniques allow
us to achieve the fastest key derivation known to date.

1.3 Organization

We give an overview the literature on key management for access control in Section 2, while Section 3
contains a formal description of the problem. Section 4 presents our base scheme along with its
security proof against key recovery. In Section 5 we present an extension of the base scheme, which
is proven secure w.r.t. the stronger security notion of key indistinguishability. In Section 6, we
describe how to deal with dynamic changes to the access graph, while Section 7 suggests extensions
that permit the scheme’s usage with other access models given in [16]. Section 8 presents our
techniques to improve efficiency of key derivation for trees and more general hierarchies. Finally,
Section 9 concludes the paper.

2 Related Work

The first work that addressed the problem of key management in hierarchical access control was by
Akl and Taylor [1]. Since then a large number of publications ([7, 8, 9, 11, 12, 13, 14, 17, 22, 25, 26,
29, 28, 30, 32, 33, 34, 36, 39, 40, 42, 44, 45, 47, 48, 53, 54, 55, 56] and others) have improved existing
key assignment schemes, especially in the recent years. All of these approaches assume existences
of a central authority (CA) that maintains the keys and related information. Most of them (and
our scheme as well) are also based on the idea that a node in the hierarchy can derive keys for its
descendants. Due to the large number of previous publications, we only briefly comment on their
basic ideas and efficiency in comparison to our scheme.

A relatively large number of schemes on this topic have been shown to be either insecure
with respect to the security statements made in these works [52, 51, 46, 49, 27] or incorrect [10].
Therefore, we do not take these schemes into consideration in our further discussion.

A significant number of schemes, e.g., [1, 36, 25, 8, 28, 26, 12, 39, 30, 40, 34, 45], operate
large numbers computed as a product of up to O(n) coprime numbers or, alternatively, up to
O(n) large numbers, where n is the number of nodes in the graph. Such numbers can grow to
n bits long and are prohibitively large for most hierarchies. While in many of these approaches
key derivation might seem consisting of one division and one modular exponentiation operation, in
practice, division of two numbers even O(n) bits long involves O(n2) operations, in addition to the
use of expensive public-key crypto operations. Our key derivation, on the other hand, even without
efficiency improvements is bounded by the depth of the access hierarchy and can be implemented
using O(n) hash operations in the worst case (i.e., then the depth of the hierarchy is O(n)).

Work of [32, 42, 44] is limited to trees and thus is of limited use. Work of [7, 47, 53] is
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concerned with a slightly different model having a hierarchy of users and a hierarchy of resources.
The scheme of [7], however, is not dynamic; and in [47, 53] there are high rekeying overheads for
additions/deletions (particularly because of slightly different requirements of the scheme) and the
number of keys for a class is large for large hierarchies.

The work of [22] gives an information-theoretic approach, in which each user might have to store
a large number of keys (up to O(n)), and insertions/deletions result in many changes. The scheme
of [50] uses modular exponentiation, and additions/deletions require rekeying of all descendants. A
number of schemes [17, 48, 9] are based on interpolating polynomials and give reasonable perfor-
mance. In [48, 17], however, private storage at a node is up to O(n) and additions/deletions require
rekeying of ancestors. As was already mentioned above, we avoid rekeying on additions/deletions
and store only one key per node. In [9], key derivation is less efficient than in our scheme, also
public storage space is larger. Even though the authors speculate that schemes that perform the
key derivation process iteratively are inefficient (which is the case in our scheme), their key deriva-
tion is less efficient due to usage of expensive modular exponentiation operations and interpolating
polynomial evaluation.

Schemes that utilize sibling intractable function families (SIFF) [54, 55] are the only efficient
approaches among early schemes. In these schemes, there is only one secret key per class, key
derivation is a chain of SIFF function applications which can be implemented using polynomi-
als. However, additions and deletions in [54] require rekeying of all descendants and in [55] all
descendants should be rekeyed when a node is deleted.

A number of recent schemes [11, 13, 14, 33, 56] use overall structure similar to ours and have
performance comparable to our base scheme. [14], however, does not address dynamic changes, and
the scheme is less efficient than ours because of additional usage of modular multiplication. [11]
requires larger public storage, key derivation is slower because of additional usage of encryption,
and the ex-member problem is not addressed that will require to rekey all descendants on deletions.
Compared to the schemes [33] and [56], our approach is simpler than both of them. It is also more
efficient than the first scheme (by a constant factor), and uses less space than both of them (by a
constant factor). In addition, in both of these schemes, all descendants have to be rekeyed when a
class is being deleted to combat the ex-member problem. [13] uses only hash functions and achieves
performance closest to our base scheme; deletions, however, require rekeying of all descendants. In
our scheme, on the other hand, dynamic changes to the graph are handled locally (i.e., private
information at other nodes is not affected and no other nodes need to be re-keyed, only public
information associated with the graph changes). Another very important distinction between the
present work and these publications is that our scheme is provably secure. In addition, our extended
scheme provides even stronger security guarantees (i.e., key indistinguishability) that have not been
shown before. Techniques for improving efficiency are also an important contribution of this work.

Table 1 gives a comparison of our base scheme and other schemes. Private storage is measured
per access class. Public storage is measured for the entire access graph (overhead introduced by
the scheme, without information needed to represent the graph itself), and only the dominant term
is given. The key derivation time shown reflects maximum computation needed to derive the key
of node w given the key of node v, assuming there is a path of length ` between v and w.

In the table, k is a security parameter that corresponds to the size of the secret key (and in
most cases is the size of the output produced by a cryptographic hash function H); k1 is another
security parameter (of comparable value); cH denotes computation required by a single invocation
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Private Public Changes Proof of
Scheme

storage storage
Key derivation

I/D/R security

[33] k 2k|E| (3cH + 4cXOR)` L/NL/L No
[56] k (k + k1)|E| (cH + 2cXOR)` L/NL/L No
[13] k k|E| (cH + cXOR)` L/NL/L No
[11] k k|E| (cD + cH + cXOR)` L/NL/L No
Ours k k|E| (cH + cXOR)` L/L/L Yes

Table 1: Comparison with previous work.

of H2; cXOR corresponds to computation needed to perform bitwise XOR of two strings; and cD is
computation needed for symmetric key decryption. In the table, changes to the hierarchy include
insertion (I), deletion (D), and re-keying (R); L stands for “local” and NL for “non-local.” In all of
the schemes that list “non-local” for deletions, such operations require re-keying of all descendant
classes in the hierarchy.

Note that in different schemes, the authors might make assumptions on what information is
public and what is stored with the client, which differs from what we present here. For the sake
of comparison, however, we unify the schemes and list their capabilities, which may or may not be
different from the results reported by the authors. In addition, results of [33, 13] rely on tamper-
resistance of the clients.

3 Problem Definition

There is a directed access graph G = (V, E, O) s.t. V is a set of vertices V = {v1, . . ., vn} of
cardinality |V | = n, E is a set of edges E = {e1, . . ., em} of cardinality |E| = m, and O is a set
of objects O = {o1, . . ., ok} of cardinality |O| = k. Each vertex vi represents a class in the access
hierarchy and has a set of objects associated with it. Function O : V → 2O maps a node to a
unique set of objects such that |O(vi)| ≥ 0 and ∀i∀j, O(vi) ∩ O(vj) = ∅ iff i 6= j. (For brevity, we
use notation Oi to mean O(vi).) When the set of edges E or the set of objects O is not essential
to our current discussion, we may omit it from the definition of the graph and instead use notation
G = (V, O) or G = (V, E), respectively.

In a directed graph G = (V,E), we define an ancestry function Anc(vi, G) which is a set such
that vj ∈ Anc(vi, G) if there is a path from vj to vi in G. We also define the set of descendants of
node vi as Desc(vi, G), where vj ∈ Desc(vi, G) if there is a path from vi to vj in G. For a directed
graph G = (V,E), we use a function Pred(vi, G) to denote the set of immediate predecessors of vi

in G, i.e., if vj ∈ Pred(vi, G) then there is a directed edge from vj to vi in G. Similarly, we define
Succ(vi, G) to be the set of immediate successors of vi in G. When it is clear what graph we are
discussing, we omit G from the notation and instead use the shorthand notation Anc(vi), Desc(vi),
Succ(vi), and Pred(vi). We consider a node to be its own ancestor and descendant, but we do not
consider it to be a predecessor or successor of itself.

In the access hierarchy, a path from node vi to node vj means that any subject that can assume
access rights at class vi is also permitted to access any object o ∈ Oj at class vj . The function

2Our solution uses pseudo-random function F instead of using H directly. F , however, can be implemented using
solely a hash function, and for the sake of uniformity we list cH for our scheme as well.
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O∗ : V → 2O maps a node vi ∈ V to a set of objects accessible to a subject at class vi (we use O∗i
as a shorthand for O∗(vi)); the function is defined as O∗i =

⋃

vj∈Desc(vi)
Oj .

Intuitively, a key allocation mechanism aims at implementing such form of access control by
assigning a cryptographic key ki to each class vi. Such key ki is then used to guard access to objects
of class vi (for example, by encrypting object o ∈ Oi under key ki), and is made available to every
users at class vi (and at any of its ancestor classes).

It follows that each user ought to store (or at least be able to derive) the cryptographic key ki

associated with the class vi to which he belongs, as well as the keys kj ’s of all classes vj descendants
of vi. For the sake of generality, we do not impose any specific structure on the secret information
actually stored by users at class vi; we denote such information by Si.

In summary, Si denotes the secret information that each user at class vi actually stores, while
ki (which is derivable from Si) is the cryptographic key necessary to gain access to objects at class
vi.

We formalize the above intuition with the following definition.

Definition 3.1 A Key Allocation (KA) scheme is a pair of polynomial-time algorithms (Set,Derive),
defined as follows:

• Set(1ρ, G) is a randomized algorithm that on input a security parameter 1ρ and an access graph
G, outputs two mappings: (i) a public mapping Pub : V ∪ E → {0, 1}∗, associating a public
label `i to each node vi and a public label yij to each edge (vi, vj) in the graph; (ii) a secret
mapping Sec : V → {0, 1}ρ × {0, 1}ρ, associating a secret information Si and a cryptographic
key ki to each node vi in G. (No secret information is associated to edges in G.)

• Derive(G,Pub, vi, vj , Si) is a deterministic algorithm taking as input the access graph G, the
public information Pub output by Set, a source node vi, a target node vj and the secret
information Si of node vi. It outputs the cryptographic key kj associated to node vj if vj ∈
Desc(vi), or a special rejection symbol ⊥ otherwise.

For correctness, the Set and Derive algorithms of a Key Allocation scheme should also satisfy the
following constraint: ∀vi ∈ V , ∀vj ∈ Desc(vi),
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kj = Derive(G,Pub, vi, vj , Si)

∣

∣

∣

∣

∣

∣

(Pub,Sec)← Set(1ρ, G),
(Si, ki)← Sec(vi),
(Sj, kj)← Sec(vj)



 = 1

where the probability is over the random choices of the Set algorithm.

We now formalize two levels of security: Key Recovery and Key Indistinguishability.

Definition 3.2 (Key Recovery) A Key Allocation scheme is secure w.r.t. key recovery if no
polynomial time adversary A has a non-negligible advantage (in the security parameter ρ) against
the challenger in the following game:

• Setup: The challenger runs Set(1ρ, G), and gives the resulting public information Pub to the
adversary A.

• Attack: The adversary issues, in any adaptively chosen order, a polynomial number of
Corrupt(vi) queries, which the challenger answers by retrieving (Si, ki) = Sec(vi) and giv-
ing Si to A.
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• Break: The adversary outputs a node v∗, subject to v∗ 6∈ Desc(vi) for any vi asked in Phase
1, along with her best guess k′v∗ to the cryptographic key kv∗ associated with node v∗.

We define the adversary’s advantage in attacking the scheme to be Pr[k ′v∗ = kv∗ ].

Definition 3.3 (Key Indistinguishability) A Key Allocation scheme is key indistinguishable
if no polynomial time adversary A has a non-negligible advantage (in the security parameter ρ)
against the challenger in the following game:

• Setup: The challenger runs Set(1ρ, G), and gives the resulting public information Pub to the
adversary A.

• Phase 1: The adversary issues, in any adaptively chosen order, a polynomial number of
Corrupt(vi) queries, which the challenger answers by retrieving (Si, ki) = Sec(vi) and giving
Si to A.

• Challenge: Once the adversary decides that Phase 1 is over, it specifies a node v∗, subject
to v∗ 6∈ Desc(vi) for any vi asked in Phase 1. The challenger picks a random bit b∗ ∈ {0, 1}:
if b∗ = 0, it returns to A the cryptographic key kv∗ associated with node v∗; otherwise, it
returns to A a random key k̄v∗ of the same length ρ.

• Phase 2: The adversary can issue more Corrupt(vi) queries, obtaining back the corresponding
key Si. Note that A cannot ask Corrupt(vi) queries for vi ∈ Anc(v∗).

• Guess: The adversary outputs a bit b ∈ {0, 1} as her best guess to whether she was given the
actual key kv∗ or a random key. A wins the game if b = b∗.

We define the adversary’s advantage in attacking the scheme to be |Pr[b = b∗]− 1
2 |.

Remark. In formalizing the security of a key allocation scheme, Corrupt queries are answered with
respect to the secret info Si, whereas the Break/Challenge phases relate to the cryptographic
key kv∗ . This is because access to an object at class v∗ is granted by the cryptographic key kv∗ ;
thus, to ‘test’ the ability of the adversary to break the access control mechanism, we challenge her
to either recover the real cryptographic key (for Key Recovery) or to tell the real cryptographic key
apart from some random string (for Key Indistinguishability).

4 Base Scheme

This section describes our scheme in which every node has one key associated with it, the public
information is linear in the size of the access graph G, and computation by node v of a key that is `
levels below it can be done in ` evaluations of a pseudo-random function, which can be implemented
as, e.g., HMAC [6] built using only a cryptographic hash function. Here we focus on key allocations
for a static access hierarchy. An extension of this scheme is given in Section 5, and its support for
dynamic access hierarchies is discussed in Section 6.

Our construction is based on the use of pseudo-random functions:
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Definition 4.1 (Pseudo-Random Function (PRF) Family ) Let {F ρ}ρ∈N be a family of func-
tions where F ρ : Kρ × Dρ → Rρ. For k ∈ Kρ, denote by F ρ

k : Dρ → Rρ the function de-
fined by F ρ

k (x)
.
= F ρ(k, x). Let Randρ denote the family of all functions from Dρ to Rρ, i.e.,

Randρ .
= {g | g : Dρ → Rρ}.

Let A(1ρ) be an algorithm that takes as oracle a function g : Dρ → Rρ, and returns a bit.
Function g is either drawn at random from Randρ ( i.e., g

r← Randρ), or set to be F ρ
k , for a

random k
r← Kρ. Consider the two experiments:

Experiment ExpPRF−1
F,A (ρ) Experiment ExpPRF−0

F,A (ρ)

k
r← Kρ g

r← Randρ

d← AF
ρ

k (1ρ) d← Ag(1ρ)
Return d Return d

The PRF-advantage of A is then defined as:

AdvPRF
F,A (ρ) =| Pr[ExpPRF−1

F,A (ρ) = 1]− Pr[ExpPRF−0
F,A (ρ) = 1] | .

{F ρ}ρ∈N is a PRF family if for every ρ ∈ N, the function F ρ is computable in time polynomial
in ρ, and if the function AdvPRF

F,A (ρ) is negligible (in ρ) for every polynomial-time distinguisher
A(1ρ) that halts in time poly(ρ).

Assume that we are given a PRF family {F ρ}ρ∈N where F ρ : {0, 1}ρ × {0, 1}ρ → {0, 1}ρ.3
Given an access graph G = (V,E) and a security parameter ρ, the Set(1ρ, G) algorithm proceeds
as follows:

• For each vertex vi ∈ V , pick a random label `i ∈ {0, 1}ρ and a random value Si ∈ {0, 1}ρ, and
set ki

.
= Si. An entity that is assigned access levels V ′ ⊆ V is given all keys for their access

levels vj ∈ V ′.

• For each edge (vi, vj) ∈ E, compute yij
.
= kj ⊕ F (ki, `j).

The output of Set(1ρ, G) consists of the two mappings Pub : V ∪ E → {0, 1}∗ and Sec : V →
{0, 1}ρ × {0, 1}ρ, defined as:

Pub : vi 7→ `i Pub : (vi, vj) 7→ yij

Sec : vi 7→ (Si, ki)

We now describe the Derive algorithm. To obtain the cryptographic key kj of a descendant vj ,
a node vi sequentially processes every edge (vı̄, v̄) on the path between vi and vj . Given an edge
(vı̄, v̄) for which both vı̄’s private key kı̄ and the stored public information `̄ and yı̄̄ are known, vı̄

can generate v̄’s private information k̄ thanks to the fact that yı̄̄, is defined as yı̄̄
.
= k̄⊕F (kı̄, `̄).

Due to the sequential nature of key generation on the path between vi and vj, vi will be able
to derive keys of all necessary nodes and produce key kj .

Example. Figure 1 shows key allocation for a graph more complicated than a tree, for which we
give two examples. First, it is possible for the node with k1 to generate key k2, because that node
can compute F (k1, `2) and use it, along with the public edge information, to obtain k2. The node
with k3, on the other hand, cannot generate k2, since this would require inversion of the F function.

3To simplify the notation, we will omit the superscript ρ from F ρ wherever the security parameter is clear by the
context.
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k2 ⊕ F (k1, `2) k3 ⊕ F (k1, `3)

k4 ⊕ F (k2, `4) k4 ⊕ F (k3, `4)

Figure 1: Key allocation for example access graph.

Theorem 4.2 The above scheme is secure against key-recovery ( c.f. Definition 3.2) for any di-
rected acyclic graph (DAG) G, assuming the security of the pseudo-random function family {F ρ}ρ∈N

( c.f. Definition 4.1).

Proof: In the security proof, we will follow the same structural approach used in [19], first
advocated in [15]. Starting from the actual attack scenario, we consider a sequence of hypothetical
games, all defined over the same probability space. In each game, the adversary’s view is obtained
in different ways, but its distribution is still indistinguishable among the games.

Roughly speaking, proving the theorem amounts to showing that the only way to break the key
recovery security of the base scheme of Section 4 is by breaking the pseudo-random function F . To
this aim, we need to show how to turn an adversary A attacking the scheme into an adversary BF

attacking F .
One difficulty with this approach is that whereas A can choose which part of the public info to

attack (via the challenge query), the adversaries BF does not have such flexibility. The standard
way to solve this technical problem is to “guess” the node v∗ for which adversary A will ask the
challenge query and construct adversaries BF based on the assumption that this guess is correct.

In the rest of the proof, we will assume that we correctly guessed the challenge node v∗. Since
such a priori guess is correct with 1/n chance, this affects the exact security of the reduction proof
by a factor of n.

Let G′ = (V ′, E′) be the subgraph of G induced by restricting the set of vertices V to the set
V ′ of the ancestors of v∗, including v∗ itself. Let v1, . . . , vh ≡ v∗ be any topological ordering of the
vertices in G′.

To prove the theorem, we define a sequence of “indistinguishable” games G0, G1, . . ., Gh, all
operating over the same underlying probability space. Starting from the actual adversarial game
G0 (as defined in Definition 3.2), we incrementally make slight modifications to the behavior of
the challenger, thus changing the way the adversary’s view is computed, while maintaining the
views’ distributions indistinguishable among the games. In the last game, it will be clear that the
adversary has (at most) a negligible advantage; by the indistinguishability of any two consecutive
games, it will follow that also in the original game the adversary’s advantage is negligible. Recall
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that in each game Gj , the goal of adversary A is to guess the cryptographic key kv∗ associated
with node v∗. Let Tj be the event that k′v∗ = kv∗ in game Gj.

Game G0. Define G0 to be the original game as described in Definition 3.2.

Game G1. This game is identical to game Game G0, except that in G1 the Set(1ρ, G) algorithm
is modified in such a way that the secret key kv1

of node v1 is never used in the creation of the
public information. Instead, for each edge (v1, vj) in the graph G coming out of node v1, the
public information y1j associated with the edge (v1, vj) is selected at random from {0, 1}ρ, i.e.,

y1j
r← {0, 1}ρ.
Note that such modification essentially amounts to substituting any occurrences of the pseudo-

random function F (kv1
, ·) in G0 with a truly random function. Since kv1

does not occur anywhere
else in the attack game, such modification is warranted by the security of the PRF family {F ρ}ρ∈N.
In other words, using a standard reduction argument, any non-negligible difference in behavior
between game G0 and G1 can be used to construct a PPT algorithm BF that is able to break the
pseudo-random function F with non-negligible advantage. Hence,

∣

∣Pr[T1]− Pr[T0]
∣

∣ ≤ εPRF (1)

where εPRF is the (negligible) advantage AdvPRF
F,BF

(ρ) of any PPT adversary BF against the security
of the pseudo-random function F .

We now generalize the description of game G1 to any game in the sequence G1, . . ., Gh.

Game Gi (1 ≤ i ≤ h). This game is identical to game Gi−1, except that the Set(1ρ, G) algorithm
is modified in such a way that the secret key kvi

of node vi is never used in the creation of the
public information. Observe that the cryptographic key kvi

occurs in game Gi−1 only as the key to
the pseudo-random function F (·, ·). In particular, no information about kvi

is present in the public
information associated with the edges going into node vi thanks to the modifications carried out
in games G0, . . ., Gi−1, and to the fact that we are working through the ancestors of v∗ in the
topological ordering.

Thus, to change game Gi−1 into game Gi, for each edge (vi, vj) coming out of node vi, we draw
the public information yij at random from {0, 1}ρ (rather than computing it as yij

.
= F (kvi

, `j)).
Such modification amounts to substituting all occurrences of F (kvi

, ·) in Gi−1 with a truly random
function. Since kvi

does not occur anywhere else in Gi−1, we can conclude (as above) that such
modification is warranted by the security of the PRF family {F ρ}ρ∈N, i.e.:

∣

∣Pr[Ti]− Pr[Ti−1]
∣

∣ ≤ εPRF (2)

To conclude the proof, observe that no information about the secret key kv∗(= kvh
) is present

in the adversary’s view for game Gh. It follows that the probability of a correct guess for kv∗ by
the adversary in game Gh is just 1/2ρ, i.e.:

Pr[Th] =
1

2ρ
(3)

Combining Equation 3 with the intermediate results in Equations 2, we can conclude that

Pr[T0] ≤
1

2ρ
+ h · εPRF .
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5 The Extended Scheme

We now present an extension of the scheme described in Section 4 and prove it secure w.r.t. Key
Indistinguishability (see Definition 3.3), without random oracles.

The scheme maintains essentially the same parameters as the one in Section 4: Every node stores
only one random ρ-bit number; the public information is linear in the size of the access graph G;
to derive the key of a descendant node located ` levels below, each node performs ` evaluations of
a pseudo-random function F : {0, 1}ρ × {0, 1}∗ → {0, 1}ρ (cf. Definition 4.1). Additionally, the
extended scheme makes use of a secure4 encryption scheme E : we denote with Enc and Dec the
corresponding encryption and decryption algorithms.

In details, given an access graph G = (V,E) and a security parameter ρ, the Set(1ρ, G) algorithm
proceeds as follows:

• For each vertex vi ∈ V , first pick a random label `i ∈ {0, 1}ρ and a random value Si ∈ {0, 1}ρ;
then compute ti

.
= FSi

(0||`i) and ki
.
= FSi

(1||`i).

• For each edge (vi, vj) ∈ E, compute rij
.
= Fti(`j) and yij

.
= Encrij

(tj||kj).

The output of Set(1ρ, G) consists of the two mappings Pub : V ∪ E → {0, 1}∗ and Sec : V →
{0, 1}ρ × {0, 1}ρ, defined as:

Pub : vi 7→ `i Pub : (vi, vj) 7→ yij

Sec : vi 7→ (Si, ki)

We now describe the Derive algorithm. Given G, the public information Pub, a source node vi, a
target node vj and the secret information Si of node vi, it derives the cryptographic key kj of node
vj by considering each edge on the path5 from vi down to vj in turn, and repeatedly decrypting the
public info associated to such edge. More precisely, Derive(G,Pub, vi, vj , Si) proceeds as follows:

• If there is no path from vi to vj in G, return ⊥;

• If i = j, retrieve `i from Pub and return kj ← FSi
(1||`i);

• Else, compute ti ← FSi
(0||`i) and let ı̄

.
= i and tı̄

.
= ti; then

repeat

let ̄ be the successor of ı̄ in the path from vi to vj ;

retrieve `̄ and yı̄̄ from Pub;

rı̄̄ ← Ftı̄(`̄);

t̄||k̄ ← Decrı̄̄(yı̄̄);

ı̄← ̄; tı̄ = t̄;

until ̄ = j;

return kj.

Figure 2 shows how the key derivation mechanism works for the same toy example given in
Figure 1.

4We require the encryption scheme to be chosen ciphertext secure; see the definition in [20]
5If there is more than one path, pick one arbitrarily, e.g., the shortest path from vi to vj .
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Figure 2: Key allocation for extended example access graph.

We now prove that the extended scheme described in this section is key indistinguishable (cf.
Definition 3.3), following the same approach as in the proof of Theorem 4.2.

Theorem 5.1 The above extended scheme is key indistinguishable for any directed acyclic graph
G, assuming the security of the pseudo-random function family {F ρ}ρ∈N and the security of the
encryption scheme E.

Proof: Roughly speaking, proving the theorem amounts to showing that the only way to break
the key indistinguishability of the extended scheme of Section 5 is by either breaking the pseudo-
random function F or the encryption scheme E . To this aim, we need to show how to turn an
adversary A attacking the scheme into either an adversary BF attacking F or an adversary BE
attacking E .

One difficulty with this approach is that whereas A can choose which part of the public info to
attack (via the challenge query), the adversaries BF and BE do not have such flexibility. As noted
in Theorem 4.2, the standard way to solve this technical problem is to “guess” the node v∗ for
which adversary A will ask the challenge query and construct adversaries BF (or BE) based on the
assumption that this guess is correct.

In the rest of the proof, we will assume that we correctly guessed the challenge node v∗. Since
such a priori guess is correct with 1/n chance, this affects the exact security of the reduction proof
by a factor of n.

To prove the theorem, we again define a sequence of “indistinguishable” games G0,G1, . . .,
where G0 is the actual adversarial game (as defined in Definition 3.3), and where the adversary’s
advantage in the last game will only be negligible. Recall that in each game Gj , the goal of
adversary A is to output b ∈ {0, 1} which is her best guess to the bit b∗ chosen by the challenger
in the attack game described in Definition 3.3. Let Tj be the event that b = b∗ in game Gj.
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For clarity of exposition, we first discuss two special cases, which exemplify the most technical
aspects of the proof. Afterwards, we describe how to tackle the general case.

First special case. v∗ is one of the roots6 in G.

Game G0. Define G0 to be the original game as described in Definition 3.3.

Game G1. This game is identical to game G0, except that in G1 the Set(1ρ, G) algorithm is
modified in such a way that the cryptographic key kv∗ is information theoretically hidden from the
view of adversary A. To this aim, we compute

tv∗ ← R1(0||`v∗), kv∗ ← R1(1||`v∗)

where R1 : {0, 1}∗ → {0, 1}∗ is a truly random function.
Note that such modification essentially amounts to substituting any occurrences of the pseudo-

random function FSv∗
(·) with a truly random function R1(·). Since Sv∗ does not occur anywhere else

in the attack game, such modification is warranted by the security of a pseudo-random function.
In other words, using a standard reduction argument, any non-negligible difference in behavior
between game G0 and G1 can be used to construct a PPT algorithm BF that is able to break the
pseudo-random function F with non-negligible advantage. Hence,

∣

∣Pr[T1]− Pr[T0]
∣

∣ ≤ εPRF (4)

where εPRF is the (negligible) advantage AdvPRF
F,BF

of any PPT adversary BF against the security
of the pseudo-random function F .

It remains to notice that in game G1, the challenge no longer contains any information about
b∗. This is because kv∗ is now a random value, exactly as k̄v∗ . Moreover, since v∗ is a root of G, it
has no incoming edges and thus the public info Pub does not contain any label yiv∗ (which would
be an encryption of tv∗ ||kv∗). Therefore, kv∗ is independent of any other info in the adversary view,
and thus it is indistinguishable from k̄v∗ . It follows that the adversary’s view is exactly the same
regardless of the value of b∗, and thus:

Pr[T1] = 1/2 (5)

Combining Equations 4 and 5, the thesis follows.

Second special case. v∗ has a single predecessor p which is one of G’s roots.

Game G0, Game G1. The first two games are defined as in the first special case.

Game G
(a)
2 . This game is identical to game G1, except that in Game G

(a)
2 we further modify the

Set(1ρ, G) algorithm so that the secret information tp is information theoretically hidden from the
view of adversary A. To this aim, we compute

tp ← R1(0||`p), kp ← R1(1||`p)

where R1 : {0, 1}∗ → {0, 1}∗ is a truly random function.
Note that such modification essentially amounts to substituting any occurrences of the pseudo-

random function FSp(·) with a truly random function R1(·). Since Sp does not occur anywhere else

6By root in a DAG we mean any minimal node in the topological order of G.

14



in the attack game, such modification is warranted by the security of a pseudo-random function;
hence,

∣

∣Pr[T
(a)
2 ]− Pr[T1]

∣

∣ ≤ εPRF (6)

.

Game G
(b)
2 . To turn game G

(a)
2 into game G

(b)
2 , for any child s of p, we compute

rps ← R2(`s)

where R2 : {0, 1}∗ → {0, 1}∗ is a truly random function.
Note that such modification essentially amounts to substituting any occurrences of the pseudo-

random function Ftp(·) with a truly random function R2(·), which is safe since p is a root of G, and
thus tp does not occur anywhere else in the adversarial view (in particular, it is not encrypted within
any label in Pub). Therefore, using a standard reduction argument, any non-negligible difference

in behavior between game G1 and G
(b)
2 can be used to construct a PPT algorithm BF that is able

to break the pseudo-random function F with non-negligible advantage. Hence,

∣

∣Pr[T
(b)
2 ]− Pr[T

(a)
2 ]

∣

∣ ≤ εPRF (7)

Game G
(c)
2 . This game is exactly as G

(b)
2 except that the label ypv∗ associated with edge (p, v∗) ∈ E

is now computed as
ypv∗ ← Encrpv∗

($||$)
where $ denotes a random value.

Note that this modification amounts to changing the plaintext within a ciphertext, which was
encrypted under a key that is independent from the adversary view (thanks to the changes in game

G
(b)
2 ). Therefore, using a standard reduction argument, any non-negligible difference in behavior

between games G
(b)
2 and G

(c)
2 can be used to construct a PPT algorithm BE that is able to break

the security of the encryption scheme E with non-negligible advantage. Hence,

∣

∣Pr[T
(c)
2 ]− Pr[T

(b)
2 ]

∣

∣ ≤ εEnc (8)

where εEnc is the (negligible) advantage of any PPT adversary against the security of the encryption
scheme E .

It remains to notice that in game G
(c)
2 , the challenge no longer contains any information about

b∗. This is because, thanks to the changes in this game, the label ypv∗ of the only incoming edge
(p, v∗) ∈ E no longer contains any info about kv∗ , which is therefore independent from the adversary
view. Thus,

Pr[T
(c)
2 ] = 1/2 (9)

Combining Equations 4, 6, 7, 8 and 9, the thesis follows.

The general case.
The second special case demonstrated how to “purge” the adversary view from the information on
kv∗ (which could be leaked by the label ypv∗ in Pub associated with the single edge (p, v∗) going
into v∗). In the general case, there could be several edges going into v∗, and in particular it is
necessary to consider each path going from one of the roots of G into v∗.
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To this aim, we start the sequence of games with games Game G0 and Game G1, defined as
in the first special case; then for each of the ancestor of v∗ (considered in turn according to any

topological sorting), we introduce three games mimicking the structure of games G
(a)
2 , G

(b)
2 and

G
(c)
2 as defined in the second special case.
At a high level, this can be thought of as a “pebbling argument”, by which we successively

pebble all the ancestors of v∗, until we reach v∗ itself, according to the following rules:

1. A node can be pebbled only after all its ancestors have already been pebbled.

2. To pebble a node u, we introduce the games G
(a)
u , G

(b)
u and G

(c)
u in the sequence, following

the same approach employed in the second special case. In particular, first we define a game

G
(a)
u in which the secret information tu is computed as:

tu ← R(a)
u (0||`u), ku ← R(a)

u (1||`u)

where R
(a)
u : {0, 1}∗ → {0, 1}∗ is a truly random function.

Second, we define a game G
(b)
u in which, for every child s of u, we compute

rus ← R(b)
u (`s)

where R
(b)
u : {0, 1}∗ → {0, 1}∗ is a truly random function.

Third, we define a game G
(c)
u in which we set

yus∗ ← Encrus∗
($||$)

where s∗ is the successor of u in the path from u to v∗ and $ denotes a random value.

Reasoning along the lines of the argument for the second special case, we can argue that each

tuple of games G
(a)
u , G

(b)
u and G

(c)
u negligibly alter the adversary view (by a term 2εPRF + εEnc).

Overall, once all the ancestors of v∗ have been pebbled, we can argue that no info about kv∗ is present
in Pub, and hence kv∗ is independent from the adversary view, and it is thus indistinguishable from

k̄v∗ . From this we can derive that in the last game G
(c)
v∗ ,

Pr[T
(c)
v∗ ] = 1/2 (10)

Combining all the intermediate equations, we can conclude that

Pr[T0] ≤ 1/2 + εPRF + nv∗(2εPRF + εEnc)

where nv∗ is the number of ancestors of v∗. This concludes the proof.

6 Supporting Changes to the Access Hierarchy

In this section we show how dynamic changes to the access hierarchy, such as addition and deletion
of edges and nodes, as well as replacing a node’s key, are handled in the scheme of Section 5.

Insertion of an edge. Suppose the edge (vi, vj) is to be inserted into G. First, compute rij
.
=

Fti(`j) and yij = Encrij
(tj ||kj). Then, augment Pub to contain the mapping (vi, vj) 7→ yij.

Deletion of an edge. In deleting an edge, the difficulty is in preventing access by ex-members.
Suppose the edge (vi, vj) is to be deleted from G. Then the following updates are done: for each
node vh ∈ Desc(vj , G), perform:

16



1. Change the label of vh, call it `′h. Note that Sh remains unchanged, but the keys th and kh

need to be recomputed as t′h
.
= FSh

(0||`′h) and k′h
.
= FSh

(1||`′h).

2. For each edge (vp, vh) where vp ∈ Pred(vh), update the value of yph to be an encryption of
the newly compute keys, i.e., y′ph

.
= Encrph

(t′h||k′h), where r′ph

.
= Ftp(`

′
h).

Insertion of a new node. If a new node vi is inserted, together with new edges into and out of
it, then we do the following:

1. Create the node vi without any incoming or outgoing edges; this requires just generating a
random public label `i ∈ {0, 1}ρ and a random secret value Si ∈ {0, 1}ρ, computing ki

.
=

FSi
(1||`i) and augmenting Pub with the mapping vi 7→ `i and Sec with the mapping vi 7→

(Si, ki).

2. Add the edges one by one, using each time the above procedure for edge-insertions.

Deletion of a node. Deletion of a node amounts to the following two steps:

1. Deletion of all the edges coming into and out of vi, using the above procedure for edge-
deletions.

2. Removal of the public and secret information associated with vi from the maps Pub and Sec.

Key replacement. Key replacement for a node vi is performed as follows:

1. Update the secret information Si with a new random value S ′i
r← {0, 1}ρ.

2. Update the vertex’s keys to t′i
.
= FS′

i
(0||`i) and k′i

.
= FS′

i
(1||`i).

3. Update Sec to map vi 7→ (S′i, k
′
i).

4. For each edge (vj , vi) (i.e., where vj ∈ Pred(vi)), compute y′ji according to the new keys t′i
and k′i and updates Pub to map (vj , vi) 7→ y′ji.

5. For each edges (vi, vl) (i.e., where vl ∈ Succ(vi)), compute y′il according to the new key t′i and
update Pub to map (vi, vl) 7→ y′il.

No node other than vi is affected.

User revocation. To the best of our knowledge, no prior work on hierarchical access control
considered key management at the level of access classes and at the same time at the level of
individual users. For instance, among the schemes closest to ours, [56] considers only a hierarchy of
security classes without mentioning individual users, and [33] considers a hierarchy of users without
grouping them into classes. However, it is important to group users with the same privileges
together and on the other hand permit revocation of individual users. In our scheme, revoking a
single user can be done with two approaches:

1. Recard every user at that user’s access class(es), and for all descendants of this access class(es)
perform the operation described for edge deletion (i.e., change all keys by changing the labels
and then update the public information). Note that the descendants do not have to be
rekeyed.
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2. Make the access graph such that each user is represented by a single node in the graph with
edges from this node to each of that user’s access classes. By creating such a graph, removing
a user is as easy as removing his node, and thus does not require rekeying.

7 Other Access Models

Traditionally, the standard notion of permission inheritance in access control is that permissions
are transfered “up” the access graph G. In other words, any vertex in Anc(vi, G) has a superset of
the permissions held by vi. Crampton [16] suggested other access models, including:

1. Permissions that are transfered down the access graph. For these permissions, any node in
Desc(vi, G) has a superset of the permissions held by vi.

2. Permissions that are transfered either up or down the graph but only to a limited depth.

In this section, we discuss how to extend our scheme to allow such permissions. We can achieve
upward and downward inheritance with only two keys per node. Also, we can achieve all of these
permissions with four keys at each node for a special class of access graphs that are “layered” DAGs
(defined later) when there is no collusion.

7.1 Downward Inheritance

To support such inheritance, we construct the reverse of the graph G = (V,E,O), which is a graph
GR = (V,E′, O) where for each edge (vi, vj) ∈ E there is an edge (vj , vi) ∈ E′. Then we use our
base scheme for both G and GR, which results in each node having two keys, but the scheme now
supports permissions that are inherited upwards or downwards.

7.2 Limited Depth Permission Inheritance

We say that an access graph is layered if the nodes can be partitioned into sets, denoted by
S1, S2, . . . , Sr, where for all edges (vi, vj) in the access graph it holds that if vi ∈ Sm then vj ∈ Sm+1.
We claim that many interesting access graphs are already layered, but in general any DAG can be
made layered by adding enough virtual nodes.

Given such a layering, we can then support limited depth permissions. This is done by creating
another graph which is a linear list that has a node for each layer, and there is an edge from each
layer to the next layer. The reverse of this graph is also constructed, and these graphs are assigned
keys according to our scheme. A node is given the keys corresponding to its layers. Clearly, with
such a technique we can support permission requirements that permit access to all nodes higher
than some level and to all nodes lower than some level.

We now show how to utilize these four key assignments to support permission sets of the form
“all ancestors of some node vi that are lower than a specific layer L” (an analogous technique can
be used for permission sets of the form “all descendants of vi above some specific layer”). Suppose
the key for the permission requirement to access “all ancestors of node vi” is ki and the key for
permission requirement to access “all nodes lower than layer L” is kL. Then we establish a key
for both permission requirements by setting the key to F (ki, kL). Clearly, only nodes that are an
ancestor of vi can generate ki and only nodes lower than level L can generate kL, so the only nodes
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that could generate both keys would be an ancestor of ki AND below level L, assuming that there
is no collusion.

8 Improving Efficiency

As the scheme described in the previous sections supports any access graphs, it is possible to add
edges to an access structure in order to reduce the path length between two nodes. In this section
we consider how to add edges to trees (and then more general hierarchies) so that the distance
between any two nodes is small. This is essential for deep hierarchies since the key derivation time
in our base scheme is the depth of the access graph in the worst case. Throughout this section we
assume that the access structure is a tree with n nodes, unless mentioned otherwise. Sections 8.1–
8.3 describe our first approach that reduces the path between any two nodes to O(log log n) with
O(n) public space, and Section 8.4 describes an alternative approach that results in any two nodes
being at most 3 edges away with O(n log log n) public storage space. Then Section 8.5 addresses
dynamic behavior, and Section 8.6 extends the techniques to more general hierarchies.

We also would like to mention that a recent paper [4] provides an alternative way of reducing the
distance between any two access classes in the hierarchy. Neither approach, however, is superior to
the other. That is, the techniques of [4] for trees result in the distance of at most five edges for nodes
with O(n log n) public space, while solutions presented in this work provide better performance.
The approach of [4], on the other hand, has the advantage that it can easily applied to any graph
of dimension d, for which a d-tuple representation can be constructed.

8.1 A Preliminary Scheme

First we review some background material that is needed for our scheme. A centroid of an n-node
tree T is a node whose removal from T leaves no connected component of size greater than n/2
[31]. The tree T does not need to be binary or even have constant-degree nodes. It is easy to prove
that there are at most two centroids, and if there are two centroids, then they must be adjacent.
However, if the tree is rooted and has two centroids, we can break the tie by arbitrarily selecting
the parent among the two centroids. Thus we shall refer to “the” centroid of a rooted tree. Now
we are ready to describe the preliminary scheme for computing the edges that we add to the tree
and to which we refer as shortcut edges.

Input: The tree T .

Output: A set of O(n log n) shortcut edges such that there is a path of length less than log n
between any ancestor-descendant pair.

Algorithm Steps: For every node v of T , do the following:

1. Let Tv be the subtree of T rooted at v. Compute the centroid of Tv (call it cv).

2. Add a shortcut edge from v to cv (unless such a tree edge already exists or v = cv).

3. Remove from Tv its subtree rooted at cv. Note that the new Tv is now at most half its
previous size (and could in fact be empty if v = cv).

4. Repeat the above process for the new Tv until the final Tv is empty.
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The number of shortcut edges leaving each v in the above description is no more than log n because
each addition of a shortcut edge results in at least halving the size of Tv. Therefore the total
number of shortcut edges is no more than n log n.

Now we show that the shortcut edges make it possible for every ancestor v to reach any of
its descendants w in a path of no more than log n edges. When we trace the path from v to w,
we distinguish two cases, depending on whether w is in the subtree of the centroid cv of Tv. The
tracing algorithm is as follows:

Case 1: w is in the subtree of the centroid cv of Tv. Then if v 6= cv , we follow the edge from v to
cv , and we continue recursively down from cv. If, on the other hand, v = cv, then we follow
the tree edge from v to that child of v whose subtree contains w and we continue recursively
down from there.

Case 2: w is not in the subtree of cv in Tv. Then we recursively continue down with a Tv that is
“truncated” by the (implicit) removal of Tcv from it (so it is now half its previous size).

The fact that the path traced by the above approach consists of no more than log n edges follows
from the observation that every time we follow an edge (whether it is a tree edge or a shortcut
edge), we end up at a node whose subtree is at most half the size of the subtree we were at.

8.2 Improving the Time Complexity

Before describing the improved scheme, we need to review the concept of centroid decomposition
of a tree: If we compute the centroid of a tree, then remove it, and recursively repeat this process
with the remaining trees (of size no more than n/2 each), we obtain a decomposition of the tree
into what is called a “centroid decomposition”. Such a decomposition can be easily computed in
linear time (see, for example, [24]).

Our improved scheme is based on doing a pre-processing step of T that consists of carrying
out what might be called a “prematurely terminated centroid decomposition”. This is similar to
the above-described centroid decomposition, except that we stop the recursion not when the tree
becomes a single node, but when the tree size becomes ≤ √n. This means that there are at most

√
n

successive centroids that are affected by the “prematurely terminated” decomposition (as opposed
to n of them for the standard decomposition). We call these centroids, as well as the root of T ,
the special nodes. Note that, by construction, removing the special nodes from T leaves connected
components of size at most

√
n each; we call these connected components (which are trees) the

“residual” trees and denote them by T1, . . . , Tk.
We also use the notion of a “reduced tree” T̂ . The tree T̂ consists of the O(

√
n) special nodes

and of edges that satisfy the following condition: There is an edge from node x to node y in T̂ iff
(i) x is an ancestor of y in T , and (ii) there is no other node of T̂ on the x-to-y path in T .

Now we are ready to describe the overall recursive procedure for adding shortcuts. In what
follows, |T | denotes the number of vertices in T .

AddShortcuts(T ):

1. If |T | ≤ 4 then return an empty set of shortcuts. Otherwise continue with the next step.

2. Compute the special nodes of T in linear time. Initialize the set of shortcuts S to be empty.

20



3. Create, from T , the reduced tree T̂ and add to S a shortcut edge between every ancestor-
descendant pair in T̂ (unless the ancestor is a parent of the descendant, in which case there
is already such an edge in T ). Because T̂ has O(

√

|T |) vertices, the size of S is O(|T |).

4. For every residual tree Ti in turn (i = 1, . . . , k), add to S a shortcut edge from the root of Ti

to every node in Ti that is not a child of that root. This increases the size of S by no more
than

∑k
i=1 |Ti|, which is ≤ |T |.

5. For every residual tree Ti in turn (i = 1, . . . , k), recursively call AddShortcuts(Ti) and, if
we let Si be the set of shortcuts returned by that recursive call, then we update S by doing
S = S ∪ Si.

6. Return S.

The number f(|T |) of shortcut edges added by the above recursive procedure obeys the recurrence

f(|T |) =







0 if |T | ≤ 4

f(|T |) ≤ c1|T |+
k
∑

i=1
f(|Ti|) if |T | > 4

where every |Ti| is ≤ √n, and c1 is a constant. A straightforward induction proves that this
recurrence implies that f(|T |) = O(|T | log log |T |). Therefore the space for the public data is
O(n log log n), due to the creation of the f(n) shortcut edges.

We now turn our attention to showing that, for every ancestor-descendant pair x and y in T ,
there is now, due to the shortcuts, an x-to-y path of length O(log log |T |). The recursive procedure
for finding such a path is given next, and mimics the recursion of AddShortcuts (uses same T̂ ,
same Ti’s, etc.). In it, we use Length(n) to denote the worst-case length of a shortest ancestor-to-
descendant path that can avail itself of the shortcuts generated in the above AddShortcuts(T ).

FindPath(x, y, T ):

1. If T | ≤ 4 then trace a path from x to y along T and return that path. If |T | > 4 continue
with the next step.

2. If x and y are both special in T (i.e., both are nodes of T̂ ) then return the edge (x, y). (Note
that such an edge exists because of Step 3 in AddShortcuts(T ).) If x and/or y is not
special, then proceed to the next step.

3. Let Ti be the residual tree containing x, and let Tj be the residual tree containing y. If
i = j then we recursively call FindPath(x, y, Ti), which returns a path in Ti that is of length
≤ Length(|Ti|), which is ≤ Length(

√

|T |). We return that path. If i 6= j (i.e., x and y are in
different residual trees) then we proceed as follows:

(a) We recursively call FindPath(x, z, Ti) where z is the node of Ti that is nearest to y in T
(hence z is a leaf of Ti, and one of its children z ′ in T is a special node that is ancestor of
y in T ). The length of this x-to-z path is ≤ Length(|Ti|), which is at most Length(

√

|T |).
This path is the initial portion of the path P that will be returned by the recursive call
(P will be further built in the steps that follow).

(b) Follow the edge in T from z to the special node z ′ that is ancestor of y in T , and append
that edge (z, z′) to P.

21



(c) Follow (and append to P) the edge in T̂ from special node z′ to the special node (call it
u) that is the special ancestor of y that is nearest to y (hence u is parent of the root of
the residual tree Tj that contains y). Note that such an edge exists because of Step 3 in
AddShortcuts(T ). If u = y then return P, otherwise continue with the next step.

(d) Follow (and append to P) the edge in T from u to the root of Tj .

(e) Follow (and append to P) the edge from the root of Tj to y; such an edge exists because
of Step 4 in AddShortcuts(T ).

(f) Return P.

The recurrence for Length implied by the above recursive procedure is:

Length(|T |) =

{

Length(|T |) ≤ c2 if |T | ≤ 4

Length(|T |) ≤ c3 + Length(
√

|T |) if |T | > 4

where every |Ti| is ≤ √n, and the ci’s are constants. A straightforward induction proves that
this recurrence implies that Length(|T |) = O(log log |T |). Therefore the worst-case time for key
derivation is O(log log n).

The next section deals with decreasing the space complexity of the public information to O(n).

8.3 Improving the Space Complexity

We begin with a pre-processing step of T that consists of carrying out “prematurely terminated
centroid decomposition” similar to the one used in the previous section, except that we stop the
recursion not when the tree becomes of size ≤ √n, but when the tree size becomes ≤ log log n.
This means that there are at most O(n/ log log n) successive centroids that are affected by this new
form of “prematurely terminated” decomposition. We call these O(n/ log log n) nodes, as well as
the root of T , the distinguished nodes (these will be treated differently from the “special” nodes
defined in the previous section). Note that, by construction, removing the distinguished nodes from
T leaves connected components of size at most log log n each; we call these connected components
(which are trees) the “tiny trees”.

The next thing that we use is the notion of a “reduced tree” T ′ that is conceptually similar to
the T̂ of the previous section: The nodes of T ′ are the distinguished nodes plus the root – hence
there are O(n/ log log n) nodes in T ′ (whereas there were O(

√
n) nodes in T̂ ). The edges of T ′

satisfy the following condition: There is an edge from node x to node y in T ′ if and only if (i) x is
an ancestor of y in T , and (ii) there is no other node of T ′ on the x-to-y path in T .

Now we are ready to put the pieces together:

1. Compute the distinguished nodes of T in linear time.

2. Create the tree T ′.

3. Use the method of Section 8.2 on the tree T ′. Any edge of T ′ that was not in T must be
considered a new (i.e., a shortcut) edge. Note that the public space this takes is O(n) because
|T ′| = O(n/ log log n). It allows computing an ancestor-to-descendant path of length at most
log log n− log log log n between any ancestor-descendant pair of distinguished nodes in T ′.

4. To find an ancestor-to-descendant path from x to y when x and/or y is not distinguished, do
the following:

22



(a) First trace a path in T from x to the nearest distinguished node (call it z) that is
ancestor of y. The length of this path is at most log log n because the “prematurely
terminated centroid decomposition” that we described above stops at tiny trees of size
≤ log log n. If there does not exist such a distinguished node z that is both a descendant
of x and ancestor of y, then x and y are in the same O(log log n) sized tiny tree of
non-distinguished nodes. In this case we can directly go along edges of T from x to y
and stop.

(b) Next, trace a path in T ′ from z to the distinguished node (call it u) that is the nearest
distinguished ancestor of y. As stated above, the length of this path is at most log log n−
log log log n. If u = y then stop, otherwise continue with the next step.

(c) Trace a path in T from u to y. Because that path does not go through any distinguished
node (other than u), it stays in one of the tiny trees and thus has length at most log log n.

The above implies that the concatenation of the paths from x to z, z to u, u to y, has length
O(log log n). The space is clearly linear.

Although the above method uses a different partitioning scheme from Section 8.2 (and in fact uses
the scheme of that section as a subroutine), its spirit is the same: The use of a T ′ as a “beltway”
that connects the subtrees in which x and y reside.

8.4 A Time/Space Tradeoff

In this section we introduce schemes with constant time complexity. Our first scheme has space
complexity O(n log log n) and requires at most 3 hops to reach any node. Like the scheme outlined
in Section 8.2, we start with prematurely terminated centroid decomposition that stops when the
tree size is ≤ √n. We also use the reduced tree T̂ . The approach is as follows.

AddShortcuts(T ):

1–4. The same as in the AddShortcuts(T ) algorithm of Section 8.2.

5. For every residual tree Ti in turn (i = 1, . . . , k), add to S a shortcut edge from each node
N in Ti (other than the root) to all nodes in T̂ that are both: (i) descendants of N and (ii)
children of the root of Ti in T̂ . This adds at most O(|T |) edges to the shortcut set: For each
node SN in T̂ , all of the new edges that point to SN come from at most one tree (as SN has
at most one parent in T̂ ). Furthermore, since each tree has at most O(

√

|T |) nodes, there
are at most O(

√

|T |) edges pointing to SN that are added during this step. Finally, there

are only O(
√

|T |) nodes in T̂ , and so there are at most O(|T |) edges added during this step.

6. For every residual tree Ti in turn (i = 1, . . . , k), recursively call AddShortcuts(Ti) and, if
we let Si be the set of shortcuts returned by that call, then we update S by doing S = S∪Si.

7. Return S.

The number of edges added to the shortcut set in the above scheme follows a recurrence similar
to the scheme in Section 8.2; thus this scheme adds only O(n log log n) edges. Furthermore, the
Algorithm FindPath(x, y, T ) is very similar to the Section 8.2 algorithm. To avoid unnecessarily
repeating the above mentioned techniques, we describe only the case of the FindPath algorithm
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that differs from its previous version. It corresponds to the situations where x and y are not in the
same residual tree and neither of them are “special nodes”. In this case, it takes at most one hop
to get to a “special node” (call it s1) that is an ancestor of y (by Step 5 of AddShortcuts(T )).
Once we are at a special node, we can get to the special node of the residual tree containing y in
a single hop (call this node s2) by Step 3. From there we can reach y with a single hop by Step 4.
The path from x to y is thus x, s1, s2, y which is 3 hops.

The above scheme requires only three hops to reach a specific node. It is trivial to show that
a one-hop solution must add O(n2) edges, but a two-hop solution exists with only O(n1.5) public
space, which we briefly sketch here. First, we compute the special nodes of T as in the above
scheme and add two kinds of edges to this tree. The first kind of edge that we add to S connects
every ancestor-descendant pair in Ti for each Ti (unless the ancestor is a parent of the descendant,
in which case there is already such an edge in T ). Since each Ti has O(

√
n) nodes, this step adds

at most O(n) edges to each Ti. There are O(
√

n) such trees, and so the space required by this
step is O(n1.5). After this step all nodes in the same subtree can reach each other with a single
hop. The second type of edge is from each node N in T to all special nodes that are descendants
of N . As there are O(

√
n) special nodes and each node adds at most O(

√
n) such edges, there are

at most O(n1.5) such edges in total. If x and y are in different trees, then x can get to the root of
y’s subtree in one hop (by the second type of edge) and then to y with one hop (by the first type
of edge), thus any two nodes are no more than 2 hops away from each other.

8.5 Dynamic Behavior

This section examines the cost of maintaining the shortcut edges as the tree changes dynamically
as a result of edge and node insertions and deletions. In the uniform-distribution random model for
such dynamic updates, nothing else needs to be done: The structure retains its claimed properties
(to within a constant factor) essentially for the same reason that an initially balanced tree data
structure tends to remain balanced (to within a constant factor) as random insertions and deletions
are carried out. If, on the other hand, the updates are not uniformly distributed, then the initial set
of shortcuts may, over time, deviate from the properties we claimed. We can, however, show that
the extra cost introduced by the need to maintain our shortcuts in the face of insertion and deletion
operations, is O(1) per operation in an amortized sense: After a sequence of σ such operations, if
tσ is the additional time (compared to without shortcuts) taken to maintain shortcut edges, then
tσ/σ = O(1). The rest of this section proves this.

One possible strategy is the following: When the non-uniform updates have caused deviations
from the desired performance bounds by more than a constant multiplicative factor d (e.g., instead
of the shortcuts providing an upper bound of b log log n, they now provide an upper bound of worse
than db log log n), we discard all the shortcuts and replace them with new ones that reflect the new
situation. Note that this does not affect the tree itself, only the shortcuts, so there is no need for
re-keying any node. Note also that (i) this takes no more than linear time in the size of the new tree
(because it is a re-computation of the shortcuts), and (ii) it suffices to know the current n and the
above-mentioned “flexibility factor” d in order to determine when to initiate such a re-computation.
The latter does not require us to detect and report every case when the path exceeds db log log n,
but instead the shortcuts can be recomputed periodically every αn insertions/deletions. The cost is
small and is only O(1) per operation because the O(n) time it takes for one shortcut re-computation
is amortized over the αn operations that occurred before the restructuring took place.

To complete the proof of O(1) amortized shortcuts maintenance time, we must now show that
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a linear number of operations must have taken place before we were forced into a linear-time
shortcuts-recomputation. To do this, we can think of the effect of insertions/deletions as implicitly
re-defining the notion of centroid to be more flexible than that of “no subtree of size more than n/2
when the centroid is removed”. That is, hypothetically suppose that in our construction we replaced
the notion of centroid by that of c-approximate-centroid: A node whose removal leaves subtrees with
respective sizes of no more than cn for a constant c ≥ 0.5 (e.g., c = 3/4). If we did that, our claim of
O(log log n) performance would obviously still hold (only the constant factor hiding behind the “O”
notation would change). Now note that, before any insertions and deletions, we have shortcuts that
are consistent with the “rigid” (i.e., n/2) notion of a centroid. When we initiate a recomputation
of shortcuts, the shortcut edges violate every c-approximate-centroid notion (because otherwise, as
just stated, all ancestor-to-descendant paths would have double-logarithmic length). In order for
shortcuts in a specific subtree with n nodes to go from being initially consistent with a rigid n/2
notion of a centroid, to not being consistent with an (e.g.) (3n/4)-approximate-centroid notion, a
linear number of insertions/deletions must have occurred in that subtree. This completes the proof.

8.6 More General Hierarchies

In this section, we extend the shortcut techniques beyond tree hierarchies and introduce an algo-
rithm for adding shortcut edges to general access graphs. This algorithm can be applied to any
hierarchy and addition of shortcuts results in key derivation being at most O(log log n) steps. The
algorithm, however, guarantees efficient storage only for certain hierarchies; specifically, if the num-
ber of nodes with multiple parents is relatively small, for instance,

√
n. We believe that this limited

notion of an access graph captures most real life access hierarchies.
Suppose we are given a transitively-reduced access graph G = (V,E). Let T denote the set of

nodes in G with more than one parent (these nodes are viewed as “troublesome” because of more
than one parent). Define the set of edges ET to be the set of edges in E that are incident on one
or more nodes in T . Now we create two sets of “shortcut” edges.

1. Invoke the previous technique of Section 8.3 on the graph (V − T,E − ET ). Note that this
graph is a forest of trees (since all “troublesome” nodes have been removed). Let E1 denote
the set of edges E −ET . By the correctness of the previous scheme, any ancestry relation in
this graph is captured by a path of length O(log log n) and |E1| = O(n).

2. Add a set of edges, call it E2, that form the transitive closure of T . That is, if given two
nodes t1, t2 ∈ T , where t1 6= t2, t1 ∈ Anc(t2, G), and (t1, t2) 6∈ E, then add edge (t1, t2) to E2.

The shortcut edges added to G are E1 ∪E2, i.e., the new graph is G′ = (V,E ∪E1 ∪E2). We now
show that this construction satisfies the necessary properties.

Lemma 8.1 If there is path from node x to node y in G′, then there is a path from x to y in G.

Proof: We must show that every added edge is part of the transitive closure of G. By the
correctness of the previous scheme, this is true for every edge in E1. Furthermore, it is clearly
true for edges in E2, since the edges are added to E2 only when the source is an ancestor of the
destination.

Lemma 8.2 If there is a path from x to y in G, then there is a path from x to y in G′ of length
O(log log n).
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Proof: There are 3 cases to consider:

Case 1: There is a path from x to y with no troublesome nodes on the path (including x and y).
In this case, there will be a path from x to y in (V − T,E − ET ), and thus the shortcuts in
E1 will create a path with length O(log log n).

Case 2: All paths from x to y contain at least one troublesome node, but there is a path from
x to y with a single troublesome node on it. Let us for now assume that neither x nor y
is troublesome. Then there will be a path x, . . . , a, t, b, . . . , y such that t is a troublesome
node. In this case, x can reach a with O(log log n) hops, a can reach t with a single hop, t
can reach b with a single hop, and b can reach y with O(log log n) hops. The case when x
or y is troublesome easily follows from the above, so the overall complexity of this case is
O(log log n) hops.

Case 3: All paths from x to y contain at least two troublesome nodes. Similar to Case 2, here
we describe the case when neither x nor y is troublesome. Cases when x, y, or both are
troublesome directly follow from this description. Let x, . . . , a, t1, . . . , t2, b, . . . , y be such a
path where t1 and t2 are troublesome and no node between (x and a) and (y and b) is
troublesome. Note that x can reach a in O(log log n) hops, a can reach t1 in a single hop, t1
can reach t2 in a single hop (because of the edges in E2), t2 can reach b in a single hop, and
b can reach y in O(log log n) hops. Thus the total path length from x to y is O(log log n).

All that is left to analyze is the space complexity. Now according to our earlier discussion,
|E1| = O(n) and obviously |E2| = O(|T |2). Thus, there will be at most O(n + |T |2) new edges
introduced. And if |T | is relatively small, e.g., O(

√
n), then the space complexity is O(n).

9 Conclusions

In summary, we give the first solution to the problem of access control in an arbitrary hierarchy G
with the following properties:

1. Only hash functions are used for a node to derive a descendant’s key from its own key;

2. The space complexity of the public information is the same as that of storing graph G;

3. The derivation by a node of a descendant’s access key requires O(`) operations, where ` is the
length of the path between the nodes, for arbitrary hierarchies and log log n or less for trees;

4. Updates are handled locally and do not “propagate” to descendants or ancestors of the affected
part of G;

5. A formal security analysis (based on standard cryptographic assumptions) guarantees that
the scheme is strongly resistant to collusions in that no subset of nodes can conspire to gain
access to the key of any node to which they do not have legitimate access;

6. The private information at a node consists of a single key.

We also provided simple modifications to our scheme that allow to handle Crampton’s extensions of
the standard hierarchies to “limited depth” and reverse inheritance [16], and gave shortcut schemes
that permit to significantly reduce key derivation time for trees and more general hierarchies.
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