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ABSTRACT

Early, James P. Ph.D., Purdue University, August, 2005. Behavioral Feature Ex-
traction for Network Anomaly Detection. Major Professors: Carla E. Brodley and
Eugene H. Spafford.

This dissertation presents an analysis of the features of network traffic commonly

used in network-based anomaly detection systems. It is an examination designed to

identify how the selection of a particular protocol attribute affects performance. It

presents a guide for making judicious selections of features for building network-based

anomaly detection models.

We introduce a protocol analysis methodology called Inter-flow versus Intra-flow

Analysis (IVIA) for partitioning protocol attributes based on operational behavior.

The method aids in the construction of flow models and identifies the protocol at-

tributes that contribute to model accuracy, and those that are likely to generate false

positive alerts, when used as features for network anomaly detection models.

We introduce a set of data preprocessing operations that transform these pre-

viously identified “noisy” attributes into useful features for anomaly detection. We

refer to these as behavioral features. The derivation of this new class of features from

observed measurements is both possible and feasible without undue computational

effort, and can therefore keep pace with network traffic.

Empirical results using unsupervised learning show that models based on behav-

ioral features can achieve higher classification accuracies with markedly lower false

positive rates than their traditional packet header feature counterparts. Behavioral

features are also used in the context of supervised learning to build classifiers of

server application flow behavior.
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1 INTRODUCTION

1.1 Problem Statement

Computer systems in highly connected networks, such as the Internet, exist in a

hostile landscape. The number of annually reported system and application vulner-

abilities has grown exponentially since the first year of collection in 1995 [1]. The

number of reported vulnerabilities in 2005 is on pace to reach nearly 5,000, repre-

senting a 29% increase over 2004 and a nearly 30-fold increase over 1995. Computer

crime survey statistics [2] indicate that the leading sources of financial loss (by par-

ties both external and internal to an organization) are computer viruses, denial of

service attacks, and theft of proprietary information. This increased vulnerability is

accompanied by explosive growth in the number of Internet hosts [3] and users [4].

The combination of increasing numbers of highly connected systems with increas-

ingly more vulnerabilities amplifies the number and impact of individual attacks.

The challenge for users is to keep pace with this constantly growing number of

new attacks. Researchers have tried to meet this challenge by developing a variety

of techniques, tools, and products to understand attacks and mitigate their effect.

However, the majority of these solutions require some a priori knowledge of the

attack to be effective [5]. This means that the attack must first appear “in the wild”

before it can be dealt with on a wide scale. Such attacks have traditionally been

referred to as intrusions, and systems designed to monitor for their presence are

called intrusion detection systems [6].

The use of anomaly detection techniques in the context of network intrusion

detection has been touted as a promising method of identifying and understanding

novel attack behaviors. However, despite many years of research and many proposals,

there is no consensus on how anomaly detection should be performed on network
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traffic. Further, concerns about the quality of training data [7] and the high false

positive rates exhibited by many deployed systems [8] has led some to conclude that

network based anomaly detection is impractical.

In many published articles, the focus has been the analysis of values carried in

packet headers [9–15]. It has been reasoned that anomalous combinations of these

values with respect to a training set can be considered malicious, or at least suspect.

However, as will be seen in Section 3.2, this claim cannot be supported because

of the vast space of normal values associated with even the simplest of protocols.

When anomalous combinations of packet header values occur, it is far more likely

to be a normal case excluded from the training data than a malicious event. This

observation indicates a need for a more comprehensive understanding of the features

used to build anomaly detection models for network intrusion detection.

This dissertation presents an analysis of features that have been used in previous

work focusing on network intrusion detection. We discuss the characteristics of useful

features, and equally important, those of undesirable features. We then show how

these undesirable features can be processed to produce features that yield practical

anomaly detection models.

1.2 Basic Concepts

We now introduce some basic concepts that will be referenced throughout the

remainder of this dissertation.

1.2.1 Intrusion Detection

Attacks launched against a host or network have traditionally been referred to

as intrusions. The definition provided in [16] is as follows:

Intrusion – Any set of actions that attempt to compromise the integrity, confi-

dentiality, or availability of a computer resource
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Individuals deemed intruders include both those without appropriate authorization

to use the resource and individuals abusing their authorization (i.e., “insiders”) [17].

We will use the terms intrusion and attack interchangeably throughout this disser-

tation.

The definitions we will use for intrusion detection and an intrusion detection

system are presented in [18]:

Intrusion Detection – The problem of identifying an attempt to compromise the

integrity, confidentiality, or availability of a computer resource

Intrusion Detection System – A computer system (possibly a combination of

software and hardware) that attempts to perform intrusion detection

It should be noted that intrusion detection is generally decoupled from intrusion

response. Typically, an intrusion detection system merely alerts an operator of the

presence of an attack condition. The operator then determines the appropriate

response.

1.2.2 Desirable Characteristics of an Intrusion Detection System

The following characteristics of an ideal intrusion detection system are presented

by Zamboni [18] and represent refinements of an earlier list provided by Crosbie and

Spafford [19]:

1. It must run continually with minimal human supervision.

2. It must be fault tolerant:

(a) The intrusion detection system must be able to recover from system

crashes, either accidental or caused by malicious activity.

(b) After a crash, the intrusion detection system must be able to recover its

previous state and resume its operation unaffected.
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3. It must resist subversion:

(a) There must be a significant difficulty for an attacker to disable or modify

the intrusion detection system.

(b) The intrusion detection system must be able to monitor itself and detect

if it has been modified by an attacker.

4. It must impose a minimal overhead on the systems where it runs to avoid

interfering with their normal operation.

5. It must be configurable to accurately implement the security policies of the

systems that are being monitored.

6. It must be easy to deploy. This can be achieved through portability to different

architectures and operating systems, through simple installation mechanisms,

and by being easy to use and understand by the operator.

7. It must be adaptable to changes in system and user behavior over time. For

example, new applications being installed, users changing from one activity

to another, or new resources being available can cause changes in system use

patterns.

8. It must be able to detect attacks:

(a) The intrusion detection system must not flag any legitimate activity as

an attack (false positives).

(b) The intrusion detection system must not fail to flag any real attacks as

such (false negatives). It must be difficult for an attacker to mask his

actions to avoid detection.

(c) The intrusion detection system must report intrusions as soon as possible

after they occur.

(d) The intrusion detection system must be general enough to detect different

types of attacks.



5

These characteristics will be used throughout this dissertation as a basis for

comparison among various approaches to intrusion detection.

1.2.3 Intrusion Detection Methodologies

Intrusion detection systems are often classified based on the source of data used

for analysis and the techniques used in building behavior models [20, 21].

Data Sources

A common distinction is made between systems that employ host data (e.g.

log files, process metrics, and file system activity) and data obtained by observing

network traffic (e.g., packet characteristics and bandwidth allocation) [17]. The

selection of a particular method is guided by the needs of the operator. Host-based

systems have the advantage of being able to interpret information relevant to the

attack directly on the intended victim [22]. Additionally, host-based systems permit

monitoring for local attacks. Network-based systems have the advantage of visibility

of potentially many hosts and events. The distinction can be blurred by systems

that employ agents or detectors that collect and analyze both types of data. Indeed,

a number of systems have been developed employing both techniques [23, 24].

Model Types

Another common distinction is made between systems that employ misuse de-

tection versus anomaly detection analysis components. This distinction stems from

the approaches used to build each component and the resulting alerts they generate.

Misuse detection systems are built on knowledge of known attack behaviors. Alerts

are generated when these attack behaviors (i.e., signatures) are identified within cur-

rent behavior. A misuse detection system must be periodically updated with new

signatures to identify new attack types. In contrast, anomaly detection systems are
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built on knowledge of normal behavior, and alerts are generated when deviations

from normal behavior occur [25]. The principle use of anomaly detection methods

in intrusion detection is to identify novel attacks with no existing attack signature.

This dissertation is focused on network-based anomaly detection techniques for

intrusion detection.

1.2.4 Network-Based Anomaly Detection Design Challenges

Anomaly detection systems are initially trained with a collection of examples

of normal data. This data is referred to as the training set. Once trained, the

system examines current behavior to identify instances that deviate from its model

of normal behavior. An important design criteria is the choice of features used to

model normal behavior. Features provide semantics for the values in the data. For

example, a feature can be the number of host connections or a value in a packet

header. Feature extraction is important because it directly effects the accuracy and

utility of the anomaly detection system. Good features provide strong correlation

between anomalous behavior and malicious activity, whereas poorly selected features

can result in irrelevant anomalies and high false positive rates.

In addition to good feature selection, a designer of a network-based anomaly

detection system must also be concerned with the amount and quality of training

data. Data used in training should be representative of the target being modeled.

In addition, compiling training data is both a time consuming and human intensive

(and therefore costly) task. Thus, a design tradeoff must be made between adequate

training data and available resources.

1.2.5 Problems with Network-based Anomaly Detection

Network-based anomaly detection methods have held particular promise since

the initial idea was proposed in the 1980s [6]. If reasonably good models of normal

network behavior could be constructed, a single anomaly detection system could



7

monitor many computer systems for new attacks. The search for these models has

been the focus of anomaly detection research for nearly two decades. Methods have

been proposed using statistical models [23], graph-based models [26], neural networks

[27, 28], decision trees [29], Markov models [30], and principle component analysis

[31]. These methods use attributes of network traffic (packet headers, payload, etc.)

as features. The definitions of what is normal and anomalous are based on these

features.

Although many have shown promise, no modeling method is acknowledged to

be singularly effective for network intrusion detection. Some might require off-line

analysis, meaning that the detection of intrusions in real time is not possible. This

represents a failure to meet desirable characteristic #8c. Others might require train-

ing times or data set sizes that are deemed prohibitive in terms of human effort – a

failure of characteristics #5 and #6. Still others suffer from what are perceived as low

detection accuracies (failure of #8b). However, what has most frequently emerged

as a severe limiting factor in the usefulness of these techniques is the number of false

positive alerts generated, namely the incorrect labeling of benign network events

as attacks [8]. This is of particular concern because such errors negatively impact

the time an administrator might otherwise spend investigating actual attacks. In-

deed, investigation into techniques to reduce the false positive rate for network-based

anomaly detection is a major area of research [25, 32–34].

McHugh [35] reported that problems continue with the use of systems developed

in lab environments when applied to real world environments. These problems range

from high false positive rates to what McHugh calls “serendipitous” detections –

fortunate coincidences of certain network attribute values that result in a detection,

but are not true indications of malicious behavior.

Bellovin proposes a solution to the problem of discriminating anomalous events

from malicious events in a humorous RFC [36] issued on April Fool’s Day, 2003. He

writes:
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Firewalls, packet filters, intrusion detection systems, and the like often

have difficulty distinguishing between packets that have malicious intent

and those that are merely unusual. We define a security flag in the IPv4

header as a means of distinguishing the two cases.

The proposal details the use of a single binary attribute indicating the “evil intent”

of the packet (e.g., 0=not evil, 1=evil). Such an attribute would greatly simplify the

work of network security administration, but, of course, no such assistance can be ex-

pected in the real world. Anomaly detection in the real world requires understanding

protocol behavior to design an effective, practical system.

We do not conclude that all of the previous modeling methods are inadequate

for network intrusion detection. On the contrary, some of these techniques have

proven to be effective in other domains. What is common to these methods is the

use of basic packet header values as features. When examining a particular feature

in isolation, one might ask if there is a notion of a normal or anomalous value for

the feature. Further, one might ask if an anomalous value is linked with attack

behavior. Such distinctions can be made for some packet header values, but no clear

distinction can be made for many others. If a given value for a feature is ambiguous,

that ambiguity is transferred into the behavior model. The resulting model will be

limited in its ability to distinguish normal network events from attack events.

1.3 Thesis Statement

This dissertation presents evidence to show the validity of of the following hy-

potheses:

1. It is possible to identify a priori attributes of network protocols that will

contribute to high false positive rates in anomaly detection models when used

as features.

2. It is possible and feasible to process the values associated with these previously

identified (i.e., noisy) attributes to extract useful features. Models built using
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these features exhibit reduced false positive rates and higher true detection

rates than models that directly employ packet header values.

3. The newly extracted features enable behavioral modeling of application traffic

that is not possible when using packet header values.

1.4 Document Organization

In this dissertation, we examine the issues involved in selecting a feature set

for network-based anomaly detection. Related work will be presented in Chapter

2. Chapter 3 presents a novel method of feature extraction that first uses protocol

analysis to identify basic packet features that introduce ambiguity, then transforms

them into useful features for anomaly detection. Chapter 4 presents empirical results

using this feature extraction method in the context of unsupervised learning. In

Chapter 5, we present empirical results of the use of supervised learning and our

feature extraction method to perform server application profiling. Finally, Chapter

6 presents conclusions, a summary of the contributions of this dissertation, and an

outline of future work.
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2 RELATED WORK

In this chapter, we discuss the application and evolution of anomaly detection tech-

niques to computer security. We outline the techniques used to build anomaly detec-

tion models and present issues that have arisen from several notable implementations.

Finally, we include a discussion of the general success of these techniques and their

applicability in real world contexts.

2.1 Feature Extraction

2.1.1 Attributes and Features

In this section, we introduce terms used throughout the remainder of this disser-

tation. We will use the term attribute to refer to a particular characteristic of an

entity (e.g., computer system, process, network packet) being measured. Examples of

attributes include available disk space, CPU utilization, and network packet header

fields. We will use the term feature to mean a logical construction of attributes

for the purpose of building models of behavior. A feature may relate directly to a

single attribute, such as the Protocol field in an IP packet header. A feature may

also be composed of multiple attributes, or constitute the observation of a particular

attribute over time.

Features establish the analytical context for anomaly detection. The purpose of

an anomaly detection system is, quite simply, to identify “unusual” patterns in the

data. However, it can only do so within the context of the given feature set. Anomaly

detection systems do not have the ability to ask for more information beyond the

context that is given. Therefore, the careful creation and selection of features is

critical to the accuracy and utility of an anomaly detection system.
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A feature is said to be relevant if it contributes to the detection of the target con-

cept [37]. In our case, the target concept is the identification of computer intrusions.

Features that are not relevant are considered irrelevant. It is desirable to avoid the

use of irrelevant features because they can introduce inaccuracy and a propensity for

false positives into anomaly detection models.

2.1.2 Early Models and Feature Sets

Early work in the use of anomaly detection for the purposes of detecting intrusions

could be classified as host-based anomaly detection, because the measured attributes

were taken from within the running system. In [38], Anderson introduced the concept

of using anomaly detection to identify incidents of unauthorized usage on a particular

type of IBM system. He reasoned that patterns of “normal” behavior could be

defined by measuring various system attributes. He describes a user surveillance

system that records information about issued jobs, parameters, resources used, and

other attributes of requested operations. Statistical analysis is then performed to

determine the range of normal behavior for a class of jobs (represented by the mean

and standard deviation). The surveillance system then issues alerts when attributes

of a given job fall outside this range. Such methods have been used throughout the

evolution of later anomaly detection methods.

In [6], Denning formalized the concept and presented general guidelines for audit

records (attributes), behavior profiles, and anomaly records. The author defines

three classes of features 1 to be used in behavior profiles:

• Event Counter: the number of audit records satisfying some property occurring

during a time period. An example would be the number of login attempts

during an hour.

• Interval Timer: the length of time between two related audit records. An

example is the length of time between successive logins into an account.

1The author uses the term Metrics.
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• Resource Measure: the quantity of resources consumed by some action within a

the context of particular audit record. Units of this feature might be expressed

in CPU cycles, I/O records, or pages printed. This feature may be viewed as

the cost of performing a particular action.

Using these definitions, the author then presents sixteen manually-generated fea-

tures designed to indicate particular session, program, and file system activity. These

features included login frequency, execution frequency, and file records read/written.

In addition, Denning introduced a collection of statistical models utilizing the

above features intended for building user profiles. We will refer to these models in

discussing the analysis methods of other related work.

• Operational Model: based on a fixed empirical upper and/or lower operational

threshold. An observation is considered anomalous if it falls outside of this

threshold.

• Mean and Standard Deviation Model: based on the historical mean and stan-

dard deviation of an attribute. An observation is considered anomalous if it

falls outside a predefined confidence interval.

• Multivariate Model: similar to the mean standard deviation model except that

it is based on correlations among two or more features.

• Markov Process Model: represents each audit record as a state variable and

uses a state transition matrix to characterize the relative transition frequencies

between states. An new observation (state) is considered anomalous if the

probability of the transition from the previous state falls below some predefined

threshold.

• Time Series Model: uses historical order and inter-arrival times of audit records

to estimate the probability of occurrence for the next audit record. Similar to

the Markov model, an observation is considered anomalous if the probability

of this new event falls below some predefined threshold.
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These features and models have been widely used in a variety of anomaly de-

tection systems [15, 23, 39, 40]. However, two open questions raised in Denning’s

conclusion are fundamental to whether anomaly detection is applicable for identify-

ing intrusions:

Soundness of Approach - Does the approach actually detect intrusions?

Is it possible to distinguish anomalies related to intrusions from those

related to other factors?

Choice of Metrics, Statistical Models, and Profiles - What metrics, mod-

els, and profiles provide the best discriminating power? Which is cost-

effective? What are the relationships between certain types of anomalies

and different methods of intrusion?

Both of these questions relate to the types of system attributes, and ultimately,

the features used for anomaly detection. These questions can be rephrased as: What

should be measured to identify intrusions with high accuracy? Given that the cre-

ation of features in this context is a manual one, how do we know that we have an

adequate feature set? Choosing a feature with good predictive power for inclusion in

a behavior model is as important as avoiding the choice of a likely irrelevant feature.

Indeed, it will be shown in future sections that the choice of features is critical to

the accuracy and utility of anomaly detection techniques in intrusion detection.

The computing landscape has changed greatly since the pioneering works of An-

derson and Denning were presented. At that time, mainframe computing was the

norm. User activity was centralized, and thus wide-scale monitoring of system at-

tributes was feasible. Features were created based on easily observable system at-

tributes and human experience. Since then, computing has become much more

distributed – both logically and physically. The tremendous growth in the use of

a wide range of Internet protocols has greatly increased the potential for intrusive

activity.



14

The feature sets proposed by Anderson and Denning were manually crafted and

consisted of system attributes available through computer auditing mechanisms of

the day. However, wide scale network connectivity (and its associated challenges)

would soon mean that anomaly detection models and their underlying feature sets

would have to evolve to meet the challenges of this new environment.

2.2 Host-Based Anomaly Detection

2.2.1 Manual Feature Extraction

Before the era of wide-spread network connectivity, the focus for intrusion de-

tection was single multi-user systems. Denning [6] outlined how the monitoring of

various program execution attributes could be used to detect unusual activity. An

early implementation of these concepts was found in IDES, the Intrusion Detec-

tion Expert System [41, 42]. This work was subsequently followed by NIDES, the

Next-generation Intrusion Detection Expert System [43].

These systems used the profiles concept described in Denning’s work [6] to create

profiles for each user on the system. A variety of attributes is recorded including the

CPU utilization for a particular command and the name of the file accessed by the

command. Additional attributes reflect the level of user activity over one, five, and

ten minute windows. The profiles also adapt over time to accommodate changes in

behavior.

IDES and NIDES were developed on different platforms, and thus they use dif-

ferent data sources for collecting attribute values. IDES was developed for DEC

systems and used data from TOPS20 logs [44]. NIDES was developed for SunOS

systems and gets its information from the Basic Security Module (BSM) and other

accounting generally available in UNIX systems [45].

USTAT [39], the Unix State Transition Analysis Tool, employed the state tran-

sition model to classify user behavior. Like NIDES, USTAT was also built on the

SunOS platform and used a C2 auditing mechanism (BSM) as its data source. This
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data is then processed to form an audit record in the form of a [ Subject, Action,

Object ] triplet. A knowledge base of objects with various classification levels is

maintained to identify access outside the normal scope of the operation. For exam-

ple, there is a class of “restricted” file objects, meaning that they should only be

read by a program – not a user. The state transition analysis is performed in an

inference engine. The transitions used in analysis are the actions taken by the user.

Such an action might be writing to a particular file. If an action results in the user

entering a state outside of the set of appropriate or expected states, such as when a

user modifies a file marked as executable, the system triggers an alarm.

Other host-based systems appearing in early 1990s were Wisdom and Sense [46]

and SECURENET [27]. Wisdom and Sense employed a rule-based system of classi-

fying user behavior. SECURENET employed artificial neural networks for classifi-

cation. Both development efforts had ceased by the mid 1990s.

File system state has been used as a basis for building models of intrusion detec-

tion, and a number of tools have been developed to monitor a collection of files for

changes in file contents [47–49]. Among the most popular file integrity checkers is

Tripwire r©. Tripwire2 is used to create a database of cryptographic hashes (message

digests) called file signatures [50]. With this database in a secure location (usu-

ally a write protected medium), Tripwire interrogates files listed in its database and

compares a file’s current signature to its associated “normal” database entry. The

signature properties make it highly unlikely that a malicious user could alter a file to

produce a given signature value. Further, the space of available signature values is

large (2128 possible values for MD5 message digests [51]), making it highly unlikely

that two different files would share the same signature. Therefore, Tripwire is able

to confidently report a file modification (an anomaly) when signatures do not match.

The Seurat [52] system uses patterns of file system updates across hosts to develop

normal usage patterns and detect deviations. Typically, a file system monitor is an

application run on a periodic basis - perhaps once per day. This means that if a

2Tripwire is a registered trademark of Tripwire, Inc.
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file was modified during the interval between runs, then again modified back to the

original, the modification would go unnoticed. Also, the detection scope of such a

system is limited to attacks with file system artifacts.

The manual process of feature creation was continued through each of these

projects, each time driven by the content of available data sources, operating plat-

form, and operator experience.

2.2.2 Machine Learning Methods

Teng, et al. [53] applied time-based inductive learning to sequences of events in

security audit logs with the goal of identifying intruders. A Time-based Inductive

Machine (TIM) [54] was used to generate sequence rules of the form:

E1 − E2 − E3 =⇒ (E4 = 0.95; E5 = 0.05)

This rule states that if event E1 is followed by event E2, and E2 is followed by

E3, the probabilities of the next event being either E4 or E5 are 0.95 and 0.05,

respectively. The system relies on a human expert to determine the set of rules

that define user profiles. New sequences that do not match previous patterns are

considered “unrecognized activities” and must either be investigated by the operator,

or possibly used to generate additional rules. Preliminary results were presented for

a mainframe system with approximately sixty users. The authors concluded from the

results that useful patterns describing use behavior were obtained. However, there

were no reported results of false positives or evidence that intruders were identified.

It is not clear that a system reliant on a user to manually build appropriate rule sets

could scale to an environment where there are many more users, programs, or alert

types.

In [55] and [56], Maloof and Michalski describe the use the AQ15c incremental

rule learner to perform classification of user profiles and feature selection. The

initial feature set was chosen from data available from the UNIX acctcom utility.

This set contained average, maximum, and minimum values of seven system process
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attributes – real time, CPU time, user time, characters transferred, blocks read

and written, the CPU factor, and the hog factor. The entropy measure [57] and

PROMISE score [58] were then applied to each feature, and those falling below a

predefined threshold were discarded. Thirteen features remained and were used for

classification. The best performing rule set predicted a user with an accuracy of

96%. The authors discussed the completeness of their feature set in the context of

a practical intrusion detection system and indicated that more features describing

terminal names and time-of-day usage might be useful. However, their method does

show the utility of using machine learning to eliminate irrelevant features.

Platform-dependent properties form the feature set of [59]. The authors used

current and historical measurements of over 200 system properties of a host running

the Windows 2000 operating system (made available through the perfmon perfor-

mance monitor) to build profiles of user behavior. The resulting feature set consisted

of approximately 1500 measurements. A weighted voting algorithm was then used to

identify the features that most accurately contributed to user classification. Among

the most heavily weighted features were the numbers of print jobs and login attempts.

A number of systems have been based on models built using sequences of exe-

cutable operations. The seminal work by Forrest, et al. [60] examining sequences of

UNIX system calls has spawned a number of projects presenting various refinements

of this technique. These include the use of pattern discovery techniques [61], system

call policies [62], system call arguments [63], and the augmentation of system call

information with information from the program execution stack, such as program

counters [64] and return addresses [65]. The work by Lane and Brodley [66, 67] and

Oka, et al. [68] present a logical extension of this idea by examining sequences of

UNIX commands to build user behavior profiles. All of these techniques incorpo-

rate tuning parameters, such as sequence length and smoothing factors, that must be

manually adjusted. Discussions of the challenges involved in setting these parameters

in practice are presented in [69] and [70].
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Feature extraction in the host-based anomaly detection domain has been an evo-

lutionary process. Early systems were entirely dependent on expert knowledge be-

cause of their exclusive use of manually extracted features. The introduction of ma-

chine learning techniques into the process helped in building models and identifying

relevant versus irrelevant features, but the techniques still required a human expert

to craft an initial feature set. Systems built on sequences of executable events require

the least domain knowledge because they are based on abstract event sequences and

can therefore be applied to different platforms. It is this development that provides

clues about how feature extraction in the network anomaly detection domain might

be applied.

2.3 Network-Based Anomaly Detection

The proliferation of internetworking technologies in the mid-1990s brought about

the ramping up of research into network-based anomaly detection. Network-based

anomaly detection systems differ from their host-based counterparts in the source of

data used for analysis. Whereas host-based systems use audit data supplied by the

system being monitored, network-based systems monitor attributes of network traffic

among many hosts. Network-based systems give up the visibility of certain details

of user behavior only available to the host, but they gain the ability to examine

aggregate patterns of system and user behavior.

2.3.1 Manual Feature Extraction

One of the early implementations of a network-based anomaly detection system

was NSM, the Network Security Monitor [40]. NSM is actually a set of different

tools to collect network data, analyze it, and provide alerts. The features used by

NSM are the number of packets and the total amount of data contained in these

packets within a set of connections. Connections are modeled as the source and

destination IDs, the type of service, and a connection ID. The analysis component
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uses a statistical model to build an historical profile that is then used to classify

anomalous activity.

Begun in 1993, the NADIR [71] project focused on the design of a system that op-

erates in a classified environment. This system was used at the Los Alamos National

Laboratory to detect unauthorized access to sensitive information, both from within

the network and externally, on their Integrated Computing Network. It uses an

expert system based anomaly detection engine to compile access profiles for approx-

imately 9000 users. In addition, the system also creates access models for individual

host workstations (roughly 10,000), and five Cray supercomputers. There is an active

component of the system that probes areas of the network looking for vulnerabilities.

In a subsequent progress report [72] on the use of the system, several operational

assessments were given. First, the system is said to have “increased the perceived

odds of being caught.” It is also reported that the system generates a sufficiently

low number of false positives as to be manageable by one half-time staff person. The

technical details supporting these claims were not provided, presumably because of

the classified nature of the environment. However, it was disclosed that the expert

system does not utilize self-learning because of concerns about the “potential weak-

ness of the method.” The process of initially classifying the users and subsequent

re-classification is done manually.

Heady, et al. [16] describes a prototype system specifically designed to identify

worm propagation behaviors. Its implementation was described in [73]. The system

is instrumented to examine the Ethernet source and destination addresses, packet

sizes, and time of connections. The anomaly detection component is based on a set

of rules describing a statistical profile of network activity. Features used by these

rules include the the number of packets per minute and first order statistics of packet

sizes.

The Graph-Based Intrusion Detection System [26], or GrIDS, used graphs of

connection activity as features. Nodes in the graph represent hosts, whereas edges

are weighted with the number of TCP connections between hosts. The system was
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designed to identify sweep and worm attacks that show distinct patterns of propa-

gation through a network. A new observation (graph) is considered to be anomalous

if it matches propagation patterns of known attacks.

The NetSTAT [74] system can be thought of as the network compliment to US-

TAT [39]. Both employ state transition analysis to determine the presence of anoma-

lous events, but, of course, NetSTAT observes network traffic. The NetSTAT archi-

tecture consists of a network fact base, state transition database, and a collection

of supporting tools. The network fact base contains information about the physical

topology of the network being monitored. This aids the human operator in tailoring

the analysis to the needs of a given network. The state transition database contains

the representations of attacks that the system is trying to detect. This architecture

also uses probes to distribute the task of monitoring for different attack transitions

throughout the network.

A recent addition to the collection of network-based systems is Spade [15]. Spade

is an anomaly detection plug-in for Snort – a popular open-source signature based

IDS. Spade utilizes the operational model outlined by Denning [6], namely the oper-

ator specifies absolute limits on the ranges of normal behavior for a given attribute.

The traffic features used by Spade are the source and destination IP address, trans-

port protocol, and port numbers. In essence, these thresholds define what percentage

of previously unseen connections will generate an alarm. Because these thresholds

must be manually set, the operator must use a “tuning” period to find a threshold

that is an acceptable compromise between attack events and false alarms. However,

such a method could result in the operator setting the thresholds sufficiently high as

to mask true attacks.

As with initial host-based systems, initial feature extraction used in these projects

continued to be a manual process. The availability of easily measurable attributes of

network traffic formed the basis of these features. However, the fact that an attribute

can be easily measured does not mean that it should form the basis of a relevant

feature for intrusion detection. In addition, the increase in available attributes has



21

brought about the inclusion of likely irrelevant features. In Spade, for example, the

inclusion of the source IP is dubious – it is unlikely that any meaningful correlation

can be drawn between an attack and the address where it originates. If there were

such a correlation, anomaly detection would be unnecessary – all traffic from the

offending source could be blocked.

In the next section, we examine some attempts to systematically generate features

and models of network behavior using machine learning techniques.

2.3.2 Applications of Machine Learning

A number of network-based anomaly detection systems have been based on artifi-

cial neural networks [75]. Some systems were designed to identify particular attacks

(e.g., UDP Flood [28], SYN Flood and SATAN [76]), while others attempt more

general attack classifications. It is not surprising that systems designed to recog-

nize particular attacks performed well (high detection rates with low false positives).

However, results for the general systems were mixed. A keyword selection system

described by Lippmann and Cunningham [77] was shown to identify novel attacks

embedded in Telnet streams, while a system examining host connection activity [78]

had a 76% false positive rate when using a model built with many attack types

(performance improved for individual attack models). Despite some success, there

are a number of practical disadvantages of building models with neural networks.

These include the requirement of large amounts of training data (on the order of

thousands of attack instances), long training times (often many times longer than

other supervised learning methods), and the relative inability of humans to compre-

hend neural network models (i.e., their “black box” nature) as compared to other

types of supervised learning [76].

Lee and Stolfo created a data mining framework for feature selection [79–81].

They applied a rule learner (with the rules effectively forming a decision tree) to

identify patterns of both normal and attack behaviors in system call traces and net-
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work traffic. The RIPPER [82] algorithm was used to build a set of rules describing

associations of attribute values and frequent episodes [83] of events. The features

contained in these rules, it was reasoned, represented the relevant features to identify

intrusions.

The algorithm chosen by the authors performs supervised learning, namely that

the learner must be trained using examples of both normal and abnormal (in this

case, attack) behaviors. Training data must contain a sufficiently representative

sample of both normal and attack behaviors for supervised learning to be effective.

A criticism of the use of supervised learning for intrusion detection is that it is

generally not feasible to expect that examples of all known attack behaviors can be

collected.

However, even if we assume that an adequate training set was used, this process

did not eliminate the need for manual intervention. The method operated in the ab-

sence of domain knowledge about protocol attributes and thus frequently generated

irrelevant rules that required manual pruning. A first attempt to counter this was the

designation of essential attributes (called “axis attributes” by the authors) that were

required to be present in all rules. While reducing the number of irrelevant rules,

the process also removed some attributes that may have proven useful in identifying

intrusions. To solve this problem, the authors manually augmented the feature set.

One such example can be found in [80] where a “land” feature is added to indicate

the presence of a potential Land attack [84]. The authors considered “correlations

among non-axis attributes as not interesting” [5]. However, we present rules in Sec-

tion 4.6 that indicate strong correlations between so called non-axis attributes and

attack behaviors. Their analysis focused on TCP traffic (utilizing many of the TCP

state flags as features), and it is unclear how effective this method would be in the

context of stateless protocols (e.g., UDP and ICMP).

The most serious criticism of this work deals with the required amount and

content of the training data. Features are ultimately decided by the frequency of

related attributes in the training data. Thus, unless we can be assured that our
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training set contains adequate normal/abnormal examples, we cannot be assured

that the resulting feature set can be used to identify intrusions. Discussing the

applicability of this approach in [79], the authors note:

There are also much needed improvements to our current approach. First,

deciding upon the right set of features is difficult and time consuming.

For example, many trials were attempted before we came up with the

current set of features and time intervals.

Thus, rather than eliminating the manual creation of features, human effort has

merely been shifted to the pruning of irrelevant rules, feature set augmentation, and

preparation of an adequate training set. The latter likely represents significantly

more effort on the part of a human operator. However, it is not clear that the

additional effort produces features that predict intrusions with higher accuracy [14].

Luo and Bridges presented a refinement to this method in [85]. It describes the

use of “fuzzy” association rules and frequent episodes in an attempt to produce

rule sets that are more general than those described in [79]. However, the authors

only applied their analysis to TCP data and selected only four features3 to describe

stream behavior. The results indicated that two simulated attacks – one involving

IP spoofing and the other a TCP port scan – deviated significantly enough from

a baseline rule set as to be considered anomalous. It is also unclear in this case

whether the technique is applicable to stateless protocols.

The Packet Header Anomaly Detector, or PHAD [10], is another example of the

use of machine learning techniques to identify intrusions, this time using attributes of

network packets. An anomalous packet was indicated by its “rarity” in the training

data. The implicit assumption is that packets that occur rarely are likely to be

intrusions.

Training and testing of this system were performed using the 1998 MIT Lincoln

Laboratory Intrusion Detection Evaluation Data Sets [86] – a collection of synthetic

3the number of TCP SYN, FIN, RST flags and different destination TCP ports in a 2 second
window
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data used in the 1998 DARPA IDS Evaluation exercise. A notable outcome of testing

was the realization that the inclusion of the IP TTL (Time to Live) field in the

feature set increased intrusion detection rates by more than 30%. The implication

is that there is a correlation between certain values of the TTL and the presence of

an attack. Assuming we could identify a anomalous TTL value, we might simply

decide to filter all traffic containing this value. However, there are two problems

with this idea. First, an attacker can simply modify the TTL field such that the

traffic carries a value other than the anomalous value and thus would evade filtering.

Second, the TTL field is decremented according to the number of “hops” the packet

traverses in the network. An innocuous packet might incidentally carry this value

when it arrives and would be dropped by our filter. Thus, we see that the use of a

likely irrelevant feature has serious repercussions on the accuracy and usefulness of

an anomaly detection system.

In subsequent work called LERAD [12], Mahoney and Chan try to further remove

all domain knowledge by eliminating all notions of protocol attributes and treating

network data as a simple sequence of bytes. This method required an aggressive rule

pruning strategy during a validation phase to identify and remove irrelevant rules.

However, as will be shown in Section 4.4, significant numbers of irrelevant rules can

remain following this process.

Specification-based anomaly detection [87,88] uses extended finite state automata

based on protocol specifications as features. Models then learn the frequencies of cer-

tain transitions and the values associated with certain attributes when said transi-

tions occur. These state specifications are manually developed and, as such, protocol

complexity can cause the process to be time consuming. Thus, the user must make a

trade off between development effort and an increased possibility that some attacks

may be missed [87].

Features have been extracted from packet payload data streams. Kruegel and

Vigna [89] use tokens contained in HTTP GET requests to identify potential attacks

against web services. Wang and Stolfo [90] use frequency distributions of byte-length



25

characters to model the content of normal requests. Such techniques are reminis-

cent of work done in the host-based context examining system call and command

sequences.

A classifier based on a distributed genetic algorithm, REGAL [91,92], is presented

in [93]. The chosen feature set consisted of IP and TCP packet header values. To

address the fact that these features often have a large range of values, the authors

manually divided ranges into bins and assigned a bin number according to the packet

value. This created a “compressed” representation used in classification experiments.

The reported results claim better performance than those by Lee and Stolfo [94] using

fewer features and less domain knowledge. However, the idiosyncrasies of their data

set [86] that could explain this improvement had not yet been identified by Mahoney

and Chan [10]. Further, they did not discuss the applicability of their approach to

other protocols.

Bauer, et al. [95] describes the construction and use of a model based on an Evo-

lution Strategy [96] to detect TCP SYN Flood attacks [97]. The initial feature set,

also know as “object parameters,” was created using IP and TCP header values. Ob-

ject parameter weights were then manually assigned based on their perceived ability

to detect this attack. The final feature set consisted of seven features with non-

zero weights. A “fitness value” was computed for each destination IP address/TCP

port number pair. The hypothesis was that the pair with the highest fitness value

(i.e., the most SYN packets) represented an instance of the SYN Flood. Preliminary

results indicated that the model was able to detect an attack in a test set of 49

connections. False positive results were not presented. Further, it is unclear if this

method is able to detect other types of DoS attacks against TCP. Finally, because

the object parameter weights are manually assigned, it is possible that a feature

useful in detecting a particular attack may be overlooked.
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2.4 Expressing Anomaly Detection Policy

System security is framed in the context of a usage policy. Assessing security of

the system can be difficult when this policy is non-existent or ill-defined. However,

expressing policy in some contexts, such as a dynamic enterprise network, can be

impractical [23]. In addition, different types of modeling techniques present different

challenges to expressing policy.

The designer of a misuse detection system makes explicit policy statements when

defining signatures. Each signature indicates a prohibited condition (e.g., the ap-

pearance of a buffer overflow character sequence) and expresses a policy violation.

The expression of an anomaly detection policy is more challenging, because the goal

is to express all normal data characteristics and a metric to define anomalies. The

first challenge faced by the designer of an anomaly detection system is completeness

of the feature extraction process. Does the derived feature set adequately represent

characteristics of both normal and abnormal data? The next challenge is the creation

of a training data sample. Do the selected data adequately represent the population

of events? The final challenge is determining a metric to measure deviations from the

normal model. The designer of an anomaly detection system makes implicit policy

statements when addressing each of these challenges.

It is this added difficulty in defining an anomaly detection policy that can lead

to ambiguous anomalies. An anomaly could be a normal condition excluded from

the training data. It could also be an instance of erroneous operation or misconfigu-

ration, rather than malicious intent. However, developing a comprehensive anomaly

detection policy is important, because identifying significant anomalies can help in

the creation of explicit policy statements (i.e., signatures). In particular, the feature

extraction process aids policy creation when derived features reveal distinct differ-

ences between permissible and prohibited conditions. We present such a method for

network protocol attributes in Chapter 3.
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2.5 Summary

Many algorithms and techniques have been proposed to perform anomaly detec-

tion in computer security. However, one fundamental question, posed by Denning

in 1987 and reiterated by McHugh in 2003, still exists, namely; to what extent do

anomalies represent intrusions? The focus of intrusion detection research has largely

been the quest for an algorithm that can identify a strong link between anomalous

behavior and intrusions. However, no algorithm can find such a link if the underlying

features cannot adequately capture the notions of normal and intrusive behaviors.

Although the machine learning solutions outlined here claim to perform feature

extraction, a more appropriate term to describe the process is feature selection. In

all cases, the initial set of features is created by a human expert. This creates two

problems. The first is completeness; an expert may leave out an important feature.

The second is residual irrelevant features; as will be shown in Sections 3.2 and 4.4,

irrelevant features can remain after feature selection attempts.

Throughout the history of anomaly detection in computer security, we have seen

the following issues related to feature extraction and selection:

• Features were initially created solely by domain experts.

• Features generated through data mining require large amounts of training data

and generate many irrelevant features that must be manually pruned. Thus,

the manual process of feature creation has been shifted to a manual process

of rule pruning, fine tuning of algorithmic parameters, and additional focus on

creating representative training data.

• An important feature selection criteria is to avoid the use of irrelevant features.

Can likely irrelevant features be identified a priori?

• Often, systems and techniques developed in controlled lab environments do not

find comparable success when used in real world environments. Detections are
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often “serendipitous” [35]. Could this be mitigated by devising a method to

define better features and evaluate their performance?

The next chapter of this dissertation will focus on techniques of identifying likely

relevant and irrelevant features in network traffic.
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3 PROTOCOL ATTRIBUTE ANALYSIS AND

BEHAVIORAL FEATURE EXTRACTION

In this chapter, we present a method of extracting features for network anomaly

detection based on protocol specification. The process identifies protocol attributes

that are both desirable and undesirable from an anomaly detection perspective. In

addition, we present an attribute preprocessing method that can be used to transform

these undesirable features into useful ones.

3.1 Inter-Flow versus Intra-Flow Analysis

In this section, we present our protocol analysis method for identifying the relative

applicability of attributes as features for anomaly detection. We call this method

Inter-flow versus Intra-flow Analysis or IVIA. The first step is to identify the protocol

attributes that will be used to partition network traffic data into different flows and

permit grouping of similar types of flows. For example, in TCP and UDP, a logical

flow is indicated by the source and destination port values carried in the packet

header [98, 99]. By partitioning the data on these attributes, we can examine all

flows with a TCP source port value of 80 (an HTTP server flow) or a UDP source

port value of 53 (a DNS Server), for example. The next step involves examining the

remaining attributes to determine whether changes occur in the attribute’s value

between flows (inter-flow) and/or within a flow (intra-flow). Note that if attribute

value changes are observed within a flow, the attribute value also exhibits changes

among flows.

Table 3.1 shows a matrix of how different classes of attributes are organized

using our analysis method. Attributes whose values do not change are assigned to

Quadrant IV. Example attributes for this class include those that specify the name of
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Table 3.1

Classification of protocol attributes based on observed changes in at-
tribute values between flows (Inter-flow) and/or within flows (Intra-
flow).

Intra-flow Changes

Inter-flow

Changes

Y N

Y
I

Operationally Variable

II

Flow Descriptors

N
III IV

Operationally Invariant
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the protocol, and those labeled as “reserved” by the protocol. We call the attributes

in Quadrant IV operationally invariant attributes. Attributes in Quadrant II are

designated to partition flows – for a given flow, all values for an attribute will be

identical. Conversely, the values will likely be different when comparing different

flows. Thus, we expect inter-flow changes in attribute values, but not intra-flow

changes. We call these logical flow attributes. Examples include TCP and UDP port

numbers, and IP source and destination addresses. Quadrant III will necessarily

be empty because any changes observed intra-flow must also be visible inter-flow.

Finally, Quadrant I contains attributes whose values change within flows. We refer

to these as operationally variable attributes.

An example of the application of our analysis to the IP Version 4 protocol can

be seen in Table 3.2. Figure 3.1 shows how the various protocol attributes are

arranged in the packet header. The Source and Destination addresses, and Protocol

are the logical flow descriptors that partition flows. These attributes are placed in

Quadrant II. The protocol specifies that the Version and Flags Reserved attributes

have the same value for all flows, thus they are classified as an operationally invariant

attributes and placed in Quadrant IV. The remaining attributes are classified as

operationally variable attributes and placed in Quadrant I, because changes in their

values can be expected both within and among flows.1 For example, the Time to Live

attribute indicates the number of network “hops” the packet can traverse before it is

discarded. Given that packets associated with a particular flow can traverse different

network paths, the value may change within a flow from one packet to the next. A

detailed description of the remaining attributes in this class can be found in [100].

Inter-flow versus Intra-flow analysis requires an analysis perspective. The place-

ment of an attribute in an IVIA quadrant can depend on where the attribute values

are observed. For example, consider a set of IP attributes observed at a web (HTTP)

server. The values for both the Destination and Protocol attributes should be iden-

1Despite the fact that IP Checksum attribute changes within flows, it was not included in Quadrant
I because its value is derived from other values in the packet header.
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Table 3.2
IVIA method for the attributes of the IP Version 4 protocol.

Intra-flow Changes

Inter-flow

Changes

Y N

Y

I

Header Length

Service type

Total Length

Identification

Flags DF

Flags MF

Fragment Offset

Time to Live

Options

II

Source

Destination

Protocol

N

III IV

Version

Flags Reserved
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.1. IP Version 4 packet header.
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tical across all flows. Thus, these attributes could be reclassified as operationally

invariant. Such could also be the case when examining attribute values at different

protocol layers. For example, ATM cells have uniform length [101], and therefore

length could be considered operationally invariant. In this dissertation, we assume

that observations are taken at the IP layer of a network with visibility to multiple

hosts and network services.

In Section 2.4, we discussed the challenges associated with defining a policy based

on anomaly detection. Here we show how the use of IVIA can aid in this process. The

quadrant assignment of an attribute gives an indication of how particular attribute

values might be enforced through policy. Firewalls are routinely used to filter packets

based on attributes in Quadrants II and IV. In the case of IP Version 4, we selectively

filter based on the source/destination/protocol of a particular flow. Similarly, we can

also use a firewall to drop packets carrying a value other than 4 for the IP Version.

Quadrant assignment also identifies attributes where such filtering would disrupt the

protocol: in particular, those attributes in Quadrant I. Again using IP Version 4 as

an example, we cannot arbitrarily enforce certain values for the Total Length and

Identification attributes without limiting the functionality of the protocol.

Quadrant assignment also provides some insight into the applicability of a given

feature for anomaly detection. Attributes classified as operationally invariant (Quad-

rant IV) are useful features because they have only one acceptable value. Any other

value should be viewed as suspect. Logical flow attributes (Quadrant II) may be

useful for anomaly detection depending on whether policy statements can be made

about normal and abnormal flows. A single home user may be able to identify a

small set of acceptable hosts and protocols, but a network administrator for a large

university may not. Attributes classified as operationally variable (Quadrant I) are

of particular interest, because their values can vary significantly and still be consid-

ered normal in the context of protocol operation. In the next section, we examine

the implications of using these attributes as features for anomaly detection.
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3.2 Operationally Variable Attributes

In this section, we examine some practical issues arising from the use of oper-

ationally variable attributes as features for anomaly detection. The issues concern

the size of the normal value space (and its implications for training data), and the

use of these attributes in the context of data mining.

3.2.1 Size of Normal Value Space

Operationally variable attributes can be considered normal over their entire

range. Therefore, there is little utility in focusing on discrete values of these at-

tributes as indicators of normal or hostile behavior. If these attributes were used

directly to construct an anomaly detection system, any combinations of values iden-

tified as anomalous in test data would themselves be normal with respect to the

protocol specification. This means that the potential of this system for generating

false positive alarms is quite large [11, 80].

To see why, let us assume IVIA on a given protocol has identified n operationally

variable attributes labeled O1 through On. The cardinality of a single attribute,

C(Oi), is the range of possible normal values for that attribute. Thus, the size of

the space of normal values for an instance of the protocol is:

n∏

i=1

C(Oi) (3.1)

By definition, every combination of values in this space is normal with respect to

the protocol specification. If we were to build an anomaly detection system for these

attributes, we would need an example for every value combination to completely

cover the value space. Any combination excluded from training would likely result

in a false positive if later encountered by the anomaly detection system.

To understand the scope of this requirement, let us return to the example of IVIA

on the IP version 4 protocol. We identified eight operationally variable attributes
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– Header Length, Service Type, Total Length, Identification, DF Flag, MF Flag,

Fragment Offset, Time to Live, and Options. The cardinality for each of these

attributes ranges from 2 to over 65 thousand.2 The size of the normal value space

for these attributes is 267, or approximately 1.5e1020. If we assume it takes a human

operator an average of one second to collect and verify a training instance for every

combination (a very fast operator!), it would take over 4.7e1012 person-years to

complete the training set.

Some combinations of operationally variable attribute values can be logical vio-

lations of the protocol. In IP Version 4, a datagram whose Total Length is less than

the Header Length is invalid. Additional examples include contradictory values in

state flags, such as a TCP packet with both the SYN and RST bits set. Other com-

binations may reveal implementation errors for a particular system. For example,

the Land denial of service (DoS) attack [102] caused some network stacks to fail by

using a packet with the same value for both the source and destination IP address.

Although some of these combinations may be useful for anomaly detection, the num-

ber of such combinations is likely to be small in comparison to the size of the overall

value space. Using anomaly detection to identify these combinations creates the

potential for unacceptably high false positive rates. It is more reasonable to expect

that such combinations can be identified by studying the protocol specification.

3.2.2 Data Mining on Operationally Variable Attributes

As was seen in the previous section, the collection of training data using oper-

ationally variable attributes presents significant practical problems. We conducted

the following experiment to illustrate the drawbacks of approaches that learn a model

based on operationally variable attributes. In this experiment, our goal was to build

a model of normal IP fragments. This can be seen as a subset of a larger data

2Options is a variable length attribute. The Options field is not used in our calculation. If Options
is used, the size of the value space is 299 or roughly 6.3e1029.
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mining exercise wherein models for multiple protocol behaviors are simultaneously

constructed.

We collected approximately 5400 examples of normal fragments from the 1999

DARPA IDS Evaluation Data Sets [103]. The operationally variable attributes for

the IP Version 4 protocol (as shown in Quadrant I of Table 3.2) were then extracted

from each packet and used as features. With the training data set constructed, we

used the Magnum Opus [104] association rule mining algorithm to create a collection

of association rules. Association rules are used to identify frequent relationships

among attribute values in the data [105,106]. They are often used to identify buying

patterns of shoppers (e.g., those shoppers who bought bread and milk who also

bought cereal). In the context of network traffic, the association rules relate to

values in the packet header frequently occurring together. This technique has been

used to develop a set of rules describing normal traffic [13, 14]. Anomaly alerts are

generated when a packet fails to match a sufficient number of these rules.

Table 3.3 shows the top eight ranking rules as generated by Magnum Opus. The

rules are sorted by two metrics – support (S) and confidence (C). The support metric

refers to the percentage of items in the training set whose attributes match the left

and right hand side of the rule. The confidence metric indicates the probability of

a match of the right hand side (RHS) of the rule given a match of the attributes on

the left hand side (LHS).3

Using the first rule as an example, we see that roughly 53% of the training

instances match the attribute/value combinations in the rule. This rule states that

fragments with the MF flag set (indicating it is not the last fragment) and a TTL

value of 63 are 98% likely to have a total length of 28 bytes. However, suppose

we encounter a fragment that has a TTL value of 62 or a total length of 29 bytes.

These values are perfectly valid in the context of the protocol specification, but they

would not match the above rule. Here we see the first problem associated with using

3Magnum Opus uses the term “strength” to refer to this probability, but we will use the more
common term “confidence” in the remainder of this dissertation.
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Table 3.3
Association rules generated for IP fragments in the 1999 DARPA
IDS Evaluation data sets using operationally variable attributes as
features.

ipFlagsMF = 1 & ipTTL = 63 =⇒ ipTLen = 28 S = 0.526; C = 0.981

ipID < 2817 & ipFlagsMF = 1 =⇒ ipTLen > 28 S = 0.309; C = 0.968

ipID < 2817 & ipTTL > 63 =⇒ ipTLen > 28 S = 0.299; C = 1.000

ipTLen > 28 =⇒ ipID < 2817 S = 0.309; C = 1.000

ipID < 2817 =⇒ ipTLen > 28 S = 0.309; C = 0.927

ipTTL > 63 =⇒ ipTLen > 28 S = 0.299; C = 0.988

ipTLen > 28 =⇒ ipTTL > 63 S = 0.299; C = 0.967

ipTLen > 28 & ipOffset > 118 =⇒ ipTTL > 63 S = 0.291; C = 1.000
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operationally variable attributes as features. Thresholds for distinctions between

normal and abnormal values are determined by the supplied training data, but can

be arbitrary with respect to the protocol specification.

Looking at the remaining rules in Table 3.3, we see a number of operationally

variable attributes appearing as relevant features for describing normal behavior.

Examples include ipID and ipTTL fields. The implication is that the values asso-

ciated with these attributes can be useful in distinguishing normal from abnormal

fragments. However, this is not the case. The ipID field is a label indicating own-

ership by a particular IP datagram. The ipTTL field can take any value between 1

and 256. Here we see another problem associated with using operationally variable

attributes as features for anomaly detection. Features found to be significant in the

training data are often not useful in discriminating malicious from non-malicious

events.

If an anomaly detection system were based on the above rules, an alert would be

generated if an incoming IP fragment did not match any of the rules. However, it is

likely that many normal IP fragments would fail to match these rules and thus result

in a false positive alert. Therefore, we conclude that the features used to model IP

fragments (the operationally variable attributes) are not able to adequately model

the distinction between normal and abnormal fragments.

In conclusion, we avoid the direct use of operationally variable attributes in our

models, because 1) they do not have an inherent notion of anomalous values, 2) the

collection of adequate training data is time consuming and human intensive, and 3)

in the absence of adequate training data, the resulting anomaly detection system has

the potential for high false positive rates. In the next section, we show how these

attributes can be transformed into useful features for anomaly detection.
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3.3 Deriving Behavioral Features

We presented some practical problems associated with using operationally vari-

able attributes as features for anomaly detection. In this section, we present a

method to transform operationally variable attributes into features that better cap-

ture the notion of anomalous behavior of a protocol. To accomplish this, we focus

on how the values of a given attribute change during operation. This allows us to

better distinguish between normal and abnormal protocol usage than by observing

the attribute values directly.

The value of an operationally variable attribute (OVA) at a given instant in time

is likely to be normal as defined by the protocol specification. Therefore, the behavior

of the attribute must be derived from the transitions in values from one observation

to the next. We refer to the description of these transitions as an application of a

behavioral operator. A behavioral operator is applied to a fixed length sliding window

of n packets and quantifies one or more aspects of change in attribute values. This

technique is similar to n-gram analysis used in data mining of text data [107, 108].

The process uses snapshots of fixed length character sequences to identify frequently

occurring words. In our case, we use snapshots of packet sequence values to identify

frequently occurring value transitions. The combination of a behavioral operator

used with a given OVA value sequence is referred to as a behavioral feature. In this

section, we present two classes of behavioral operators and show how each class can

be used to produce behavioral features.

3.3.1 Analysis of Steps

In [109], Davis describes an inductive learner for time series data. Data is rep-

resented by the maximum, minimum, and average values over an arbitrary time

window. We present an extension to this method that describes transitions between

observed values (i.e., time sequence data) that we refer to as steps metrics. Step
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metrics are applied over a sliding window of size n sequential observations for an

attribute. Metrics we evaluated include:

• Counters indicating the number of positive, negative, and null steps describing

directionality

• A range measurement indicating the difference between the global maximum

and minimum values

• The mean and variance of the step size

From a performance perspective, it is important to choose behavioral operators that

can be computed quickly to keep up with traffic flow. Using a sliding window, the

above quantities can be updated for a new observation in constant time – O(1).

Table 3.4 shows two examples of how these metrics describe different sets of

transitions with respect to the IP TTL and TCP ACKNUM attributes. A snapshot

of a packet window of length five (ti to ti−4) is applied to each attribute. The

values for the IP TTL are identical and can be represented as five null steps. The

behavior of the attribute is revealed, namely that values do not change following

the establishment of an initial value. The behavior in this example is indicative

of path stability; the number of hops between the source and destination remains

constant. The step metrics for TCP ACKNUM reveal a different behavior. The

metrics indicate five positive steps with a range of 46. The mean step size and

variance are 9.2 and 55.76, respectively. Hence, the values of the TCP ACKNUM

behave as a monotonically increasing sequence and indicate that the application is

making progress in acknowledgment of bytes in the data stream.

Step metrics provide a convenient way of comparing the behavior of OVA value

sequences. For example, we can compare the relative progression of values (step

counts) and the magnitude and variability in the steps.
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Table 3.4
Step metrics of the IP TTL and TCP ACKNUM attributes.

IP TTL TCP ACKNUM

Time Value Step Value Step

ti 63 0 847831157 7

ti−1 63 0 847831150 5

ti−2 63 0 847831145 6

ti−3 63 0 847831139 4

ti−4 63 0 847831135 24

ti−5 63 847831111
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3.3.2 Specification-Based Semantics

All step metrics can be applied to any OVA, but if we consider the protocol

specification, we can reduce the total number of potential features to those that we

anticipate will be highly useful. In examining the specifications of several protocols,

we observe that attributes often fall into one of the following semantic categories:

Length - the length of a message or sub-message

Option - a value indicating a specific handling method should be applied to the

message

Progress - the total amount of information exchanged over the course of several

messages

We can use the semantic category of an attribute to select the most meaningful

behavioral operator(s). For example, the variability of the attributes that represent

length can be captured by first-order statistics (mean and variance). Attributes that

represent an option are generally binary values and would necessarily exhibit low

entropy. Therefore, we use a percentage metric, i.e., the percentage of observations

in the window with a given option set. As with the behavioral operators used in

the step metrics, these quantities can be updated for a new observation in constant

time.

For attributes from the progress semantic category, we are interested in knowing

both the current “mile post” as well as the overall progress from the beginning of

the sequence. In this case, we apply all six step metric operators. Step metrics

are particularly useful in identifying “backtracking” behavior. Such behavior mani-

fests itself as a one or more negative steps and can be indicative of overlapping IP

fragmentation and TCP segment evasion techniques [110].

Note that there are some attributes that do not fall into one of defined classes

(e.g., IP Time To Live, TCP Urgent Pointer, etc.). We use the default step metrics
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for these attributes. In future work, we will expand the set of attribute classes and

develop new behavioral operators to fit them.

3.4 Higher Order Behavioral Features

The application of behavioral operators is not limited to operationally variable

attributes. Features can also be derived from meta-data such as packet time stamps

and logical flow attributes (LFAs). For example, a behavioral feature for time stamps

might be the average inter-arrival time across a packet window. Examples for LFAs

include the number flows of a particular protocol and the entropy associated with

TCP or UDP port values across flows within a time window [111].

In the following chapters of this dissertation, we will present empirical results

obtained by performing supervised and unsupervised learning on behavioral features

derived from network traffic. The features used are largely based on operationally

variable attributes. One higher order behavioral feature, mean inter-arrival time, is

used in the context of supervised learning.
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4 EMPIRICAL RESULTS USING UNSUPERVISED LEARNING

This chapter presents results of using unsupervised learning with behavioral fea-

tures [112,113] to construct network anomaly detection models. Direct comparisons

are made between models based on behavioral features and traditional packet header

values (operationally variable attributes). We show that models based on behavioral

features exhibit higher true detection rates and lower false positive rates than oper-

ationally variable attribute models.

The remainder of this chapter is organized as follows. 4.1 describes the general

feature creation process. In Section 4.2, we describe the construction of our anomaly

detection models. Empirical results comparing the use of behavioral features with

traditional methods are presented in Section 4.3. An examination of false positive

rates is presented in Section 4.4. Feature coverage of the various models is described

in Section 4.5. Section 4.6 presents a discussion of the rules used to identify specific

attacks. Related work is presented in Section 4.7. Finally, a summary of the results

is presented in Section 4.8.

4.1 Feature Extraction for Supervised and Unsupervised Learning

To build a model of normal behavior, one can apply either supervised or unsuper-

vised learning algorithms. The applicability of an algorithm depends on the nature

of the available data. If one has labeled examples of normal and anomalous data, one

can apply supervised learning methods to learn a discriminative model. But more

commonly, if one has only examples of normal data, one must apply unsupervised

learning techniques to learn a model of normal behavior coupled with a metric to

judge whether a new observation sufficiently deviates from this model such that it is

considered anomalous. A criticism of the use of supervised learning in the context
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of network security is the unrealistic expectation of availability of labeled data for

all types of attacks. Indeed, the use of anomaly detection is specifically intended to

identify novel attack behaviors – those with no known attack signature.

Both supervised and unsupervised methods for building a model of normal be-

havior require a set of features that represent the data and underlying behavior.

Extraneous features increase the noise in the data and reduce the ability of models

built on such features to describe the data [37]. The process of feature extraction in-

volves the generation of an initial set of features from attributes of the data. Feature

extraction is typically performed by a human who determines what measurements

to record of the objects of interest.

Feature Selection is the process of identifying relevant features in a set of initial

features [114]. Because selection can only be applied to the candidate pool of features,

it is particularly important that the extraction process produce a set of features that

collectively represent all the ways normal behavior can manifest itself in the data,

and further, that they permit the detection of anomalous behavior.

In the context of unsupervised learning, feature selection involves the systematic

examination of model accuracy based on different subsets of the proposed initial

feature set. As Dy and Brodley [115] point out, the key challenge is determining a

metric for measuring model accuracy. Unlike supervised learning where a reduction

in the number of false positives and false negatives in a set of validation data can be

used to select a relevant feature subset, in unsupervised learning, it is often unclear

what metric to apply. For example, one criterion is to find features that enable the

data to be clustered well. Another is to find features that lead to association rules

with high support and confidence. However, it is unclear whether either of these

metrics selects features relevant for detecting anomalous behavior. Thus we con-

clude that feature extraction for unsupervised learning methods applied to anomaly

detection should not take the approach of including all possible measures of the data,

but instead should be based on a careful analysis of the data to find features that

model the correct function of the protocol of interest.
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4.2 Construction of Models

In this section, we describe the process used to construct our experimental models

for anomaly detection. We used the 1999 MIT Lincoln Laboratory IDS Evaluation

Data Sets [103] as the basis for our experiments. Some aspects of these data sets

have been criticized (e.g., [7] and [116]) as unrealistic. However, we found these data

sets useful for our purposes for a number of reasons. The first is that a number

of the criticisms (e.g., attack data rates and lack of invalid IP checksums) do not

manifest themselves in our feature set. Also, the sets contain a diverse collection

of attack instances. Finally, the use of this data permitted direct comparison to

previous work utilizing the same sets. The models were built using known attack-

free data and subsequently tested on data containing normal and attack traffic. The

selection of protocols used in our models was based on the dominant protocols in

the data. We selected eighteen different protocols for model construction – eight for

TCP, seven for UDP, and three for ICMP.

For each of the eighteen selected protocols, we created three models. The first

was built using the traditional operationally variable attributes as features. We then

used the techniques described in Chapter 3 to build two behavioral feature models –

one utilizing only step metrics and the other using the specification-based features.

We refer to these as the OVA, Step, and Spec models, respectively. We selected a

window size of five when extracting behavioral features, because empirical results in

previous work [112] revealed that useful patterns of behavior can be derived using

small packet windows.

The extraction process was as follows. A single tcpdump trace file was first par-

titioned into individual flows based on the selected logical flow attributes. Features

were then extracted from each flow (for each of the three models), and these data

files were then assembled into training, validation, and test data sets. The next

phase involves the construction of rule sets.
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Each model was the result of an unsupervised learning process designed to gen-

erate a set of association rules that model the characteristics of the normal data.

An association rule is an implication of the form X =⇒ Y , where X ∪ Y = ∅ and

both X and Y are sets of conditions of the data [117, 118]. Algorithms for finding

such rules in a dataset look for rules with both high confidence (the percentage of

observations in the data that satisfy X and also satisfy Y ) and high support (the

percentage of the data that satisfy both X and Y ). When judging the performance

of rule sets, we looked at the following criteria:

Accuracy - the ability of the rule set to differentiate between normal and malicious

events

Coverage - the number (or percentage) of available attributes that are represented

in the rule set

Clearly, the accuracy of the rule set is paramount. Collectively, an ideal rule set

would exhibit high true positive and extremely low false positive rates. Coverage

indicates what percentage of the available feature set is utilized. High coverage

alone does not indicate a superior rule set. A rule set that utilizes all attributes but

whose rules are based on arbitrary relationships is not useful. However, coverage can

provide some clues about efficacy of a given rule set. A rule set can be hurt by low

coverage because the lack of feature utilization can impact accuracy. Furthermore,

a rule set with low coverage presents a potential attacker with a “softer” target,

because the attacker need only be concerned with the few attributes actually being

monitored.

We used a variant of the LERAD [12] association rule selection algorithm to

create each of the rule sets. LERAD uses an initial training set to generate a set

of candidate rules, followed by a validation phase to identify and discard rules that

generate false positive alerts on normal data. For our purposes, we used the data

from week one for initial training and the data from week three for validation. The

rules generated are of the form X =⇒ Y and are coupled with an “anomaly score.”
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This score is computed as the probability that the left hand side X matches the

observation, but the right hand side Y does not, namely P (¬Y |X). In our version

of this algorithm, we used the Magnum Opus [104] association rule mining tool to

generate the initial set of rules. Magnum Opus reports the confidence probability,

P (Y |X), for each rule. We then computed the anomaly score for each rule using

1− confidence. The rule validation phase aggressively eliminates any rule found to

cause a false positive on the validation data. To minimize the chance of a given rule

being discarded, we selected rules from the training phase with a confidence of one.

Thus, the rule’s anomaly score (i.e., the probability it would be discarded during

validation) should be zero. The initial unfiltered rule sets for all models were limited

to 100 rules. The 54 filtered rule sets produced by validation were then applied to

unseen network traffic to detect anomalies.

To compute the coverage of a rule set, we consider an attribute “covered” if an

extracted feature depends on it. A criticism of this method might be that there can

be as many as six behavior features (e.g. the step metrics) for each OVA feature

and, therefore, a given attribute is as much as six times more likely to be covered

by a behavioral feature. This would be true if the distribution of behavioral fea-

ture utilization were uniform across attributes. However, this is not the case. The

rule mining and selection processes routinely eliminate many individual behavioral

features leaving only the most relevant.

4.3 Attack Detection

The following experiments were designed to compare the relative merits of tra-

ditional versus behavioral feature based models. The ability of any anomaly-based

model to identify attack behaviors depends on the features selected for the model.

If a particular type of anomalous behavior does not manifest itself in the feature set,

such behavior is not detectable. Such is the case with our data sets. Certain types of

attacks often require examination of sequences of application level commands or sys-
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tem calls. These attacks fall into the R2L (remote to local) and U2R (user to root)

categories [119]. In these cases, the methods proposed by Lane and Brodley [120],

Hofmeyr, et al. [121] and Warrender, et al. [122] provide features for identifying such

attacks. Our experiments focused on attacks that manifested themselves in protocol

attributes.

We used the validated rule sets to classify a collection of flows from week two of

the data set containing both normal and attack traffic. A list of the attack instances

used in our evaluation can be seen in Table 4.1. Each instance is designated by its

identification number and name. Listed also are the number of flows and packets

associated with the attack. In the nomenclature of the MIT Lincoln Laboratory eval-

uation [119], these attacks fall into the Probe and DoS (Denial of Service) categories.

If one or more rules failed, an alert was generated and we checked the flow against

the list of known attacks. An alert that corresponded to one of these known attacks

was considered a true positive. Otherwise, it was considered a false positive. We do

not require that a model classify as anomalous every flow associated with an attack.

A given attack instance can contain a collection of both normal and attack flows

across different protocols. Thus, we require that the one of the eighteen protocol

models identify some artifact of the overarching attack to be considered a detection.

Detection results can be seen in Table 4.2. The Spec (specification-based) models

identified the most attacks – 11 out of 15, or 73.3%. The Step models detected 10

attacks (66.7%), while the OVA model identified the fewest attacks – 8 out of 15, or

53.3%. As a basis for comparison, the ADAM [14] system was the top performing

IDS in the 1999 Lincoln Laboratory evaluation utilizing only anomaly detection tech-

niques.1 That system reported detections of approximately 45% of Denial of Service

attacks and 30% of Probe attacks. The best performing models in our experiments,

Spec, detected 83.3% and 66.7% of the DoS and Probe attacks, respectively. Both

sets of behavioral feature models detected the Ping of Death [123] attacks (numbers

1The EMERALD and UCSB Stat systems performed better, but augmented anomaly detection
with misuse (i.e., signature) detection.
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Table 4.1

Attack types used for evaluation of unseen data as found in week two
of the 1999 MIT Lincoln Laboratory evaluation data sets.

ID Name Flows Packets

1 NTInfoscan 15 72

2 PoD 1 235

8 Port Sweep 8 22

13 Mail Bomb 411 4110

14 IP Sweep 7 49

17 SATAN 19 123

18 Mail Bomb 460 4604

20 IP Sweep 8 8

24 SATAN 17 101

25 Port Sweep 7 28

26 Neptune 70 130

30 IP Sweep 5 5

35 PoD 1 435

36 Neptune 70 121

42 Port Sweep 7 27
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Table 4.2

Attack detection results for the OVA, Step, and Specification-based
models. A bullet indicates detection.

ID Name OVA Step Spec

1 NTInfoscan • • •

2 PoD • •

8 Port Sweep • • •

13 Mail Bomb

14 IP Sweep

17 SATAN • • •

18 Mail Bomb •

20 IP Sweep

24 SATAN • • •

25 Port Sweep • • •

26 Neptune • • •

30 IP Sweep

35 PoD • •

36 Neptune • • •

42 Port Sweep • • •

2 and 35 ). This is notable because they represented only two out of over 2500

otherwise normal ICMP flows in the data. The OVA models did not detect any

ICMP-based attacks.

The majority of attacks were present in TCP traffic. At first glance, it might

appear that the OVA models performed comparably to the behavioral feature models

in this context. However, when we looked at the rules responsible for the detections,
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we saw a different picture. Consider the following example from the port 20 rule set

that was used to detect the SATAN attack:

32120 ≤ tcp winsize ≤ 32736 =⇒ 63 ≤ ip ttl ≤ 64

Familiarity with the TCP and IP protocols should reveal that this rule is er-

roneous. A TCP window size advertisement in the specified range can come from

anywhere in the network, and as such has no bearing on a particular IP TTL value.

The above rule generated what McHugh calls a “serendipitous” detection [35], be-

cause the TTL value for the offending packet happened to be 62. If an attacker

knew the desired TTL range, the value could easily modified to defeat the rule.

Such examples are found throughout the OVA models for TCP, revealing the “brit-

tle” nature of the OVA rule sets, i.e., the rules are easily broken. As will be seen

in Section 4.4, the nature of the OVA rule sets can also have a devastating impact

on false positive rates. A detailed discussion of the rules used by behavioral feature

models is presented in Section 4.6.

One instance of the Mail Bomb and all instances of the IP Sweep attack escaped

detection by all the models. The reason is that these attacks consisted of large num-

bers of essentially normal flows, as opposed to individual flows containing anomalous

value patterns. Although not a part of these experiments, the higher order behav-

ioral features described in Section 3.4 (i.e., models built using logical flow attributes)

could be used to construct models of normal patterns for such flows. For example,

a model based on the number of ICMP Echo Request flows within a give time win-

dow could be used to identify the large number of flows found in the sweep attack

instances.

4.4 False Positive Rates

In this section, we present an analysis of the false positive rates exhibited by

each of the models used in our experiments. The results show that models based on
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behavioral features exhibit markedly lower false positive rates than those based on

operationally variable attributes.

The results are grouped according to protocol and can be seen in Tables 4.3

through 4.5. For each rule set, we indicate the number of flows generating an alert

and the number of true positives (TPf) versus false positives (FPf). A value of

“N/A” in the TPf column means that there were no attacks present in the data,

thus no true positive alert can be generated. The ratio FPf/F lows indicates the

number of flows containing a false positive over the total number of normal flows.

The ratio FPp/Packets indicates the number of packets resulting in a false positive

over the total number of normal packets.

TCP traffic represented the majority of the packets present in the data, particu-

larly those using the SSH (port 22), Telnet (port 23), and SMTP (port 25) protocols.

A variety of TCP-based attacks were present including the NTInfoscan, port sweeps,

mail bombs, SATAN, and Neptune (SYN flood). Some of the attack instances (those

involving scanning) appeared simultaneously in several protocol models.

4.4.1 TCP Results

Results of using the TCP rule sets can be seen in Table 4.3. Turning our at-

tention first to the models for ports 20 and 21, we found that these OVA models

generated more true positive alerts than either of the behavioral feature models. In

combination, the OVA models had more false positive packets, but only slightly more

false positive flows than the other two models. On the surface, this might lead one

to conclude that the OVA rule sets were superior to those found in the behavioral

feature models. However, as was pointed out in Section 4.3, these rule sets largely

produced serendipitous detections.

If a rule set has the potential to be “lucky” sometimes, it can also be very unlucky

at other times. Such is the case with the OVA models for ports 22, 23, and 25. In

each case, one or more rules indicated an alert for every test flow. On average, one in
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Table 4.3
True positive and false positive alerts generated using TCP rule sets.

Rule Set Alerts TPf FPf FPf/F lows FPp/Packets

tcp 20 ova 32 23 9 9/5002 13/27977

tcp 20 step 9 3 6 6/5002 12/27977

tcp 20 spec 9 3 6 6/5002 18/27977

tcp 21 ova 36 30 6 6/742 102/32120

tcp 21 step 4 1 3 3/742 5/32120

tcp 21 spec 13 5 8 8/742 19/32120

tcp 22 ova All - - 523/523 327089/3597979

tcp 22 step 0 0 0 0/523 0/3597979

tcp 22 spec 22 1 21 21/523 3360/3597979

tcp 23 ova All - - 3784/3784 1896796/27348108

tcp 23 step 119 0 119 119/3784 224/27348108

tcp 23 spec 4 0 115 115/3784 252/27348108

tcp 25 ova All - - 17045/17045 206622/1977118

tcp 25 step 9 4 5 5/17045 5/1977118

tcp 25 spec 29 27 2 2/17045 2/1977118

tcp 37 ova 26 24 2 2/183 2/1284

tcp 37 step 24 24 0 0/183 0/1284

tcp 37 spec 25 25 0 0/183 0/1284

tcp 79 ova 12 12 0 0/936 0/5561

tcp 79 step 22 22 0 0/936 0/5561

tcp 79 spec 2 2 0 0/936 0/5561

tcp 80 ova 10 1 9 9/5829 11/33774

tcp 80 step 0 0 0 0/5829 0/33774

tcp 80 spec 4 1 3 3/5829 3/33774
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ten packets was found to be anomalous. These rule sets clearly have no practical use,

because such a tremendous output of false alarms would inundate a human operator.

The poor performance of the aforementioned OVA rule sets severely impacted

the overall false positive rates for the TCP OVA models. The false positive flow rate

was 64.75%, and the false positive packet rate was 7.36%. Both of the models based

on behavioral features exhibited dramatically lower false positive rates for both flows

and packets. The flow and packet rates for the Spec models were 0.47% and 0.011%.

The Step models achieved the lowest overall flow and packet false positive rates with

0.40% and 0.00075%, respectively. Given that all models detected the same TCP-

based attacks (albeit serendipitously in the case of the OVA models), the low false

positive rates of the behavioral features models make them more suitable in practice.

4.4.2 UDP Results

There were no detectable attacks present in the UDP flows of the week two data

used for our classification experiments.2 Therefore, we focused our evaluation on the

number of false positive alerts generated by each model. The results can be seen in

Table 4.4.3

In general, we notice that the OVA rule sets generate fewer false positives than

seen when viewing TCP flows. In the case of port 138, the OVA model had fewer

false alarms than both of the models based on behavioral features. However, this

development exposes another weakness in the OVA rule sets. Recall that in the rule

validation phase, rules found to generate a false positive on normal data are removed

from the set. The OVA rule set for port 138 contained only four rules involving only

two features (while competing models contain in excess of ninety rules using nearly

all the features). The low number of rules and associated low feature coverage greatly

diminished the utility of this model. No results could be obtained for ports 123 and

2There were two instances of the Land attack [102], but these were not launched against ports
monitored by one of our models.
3We eliminated the True Positives column for clarity because no true alarms were possible.



57

Table 4.4
False positive alerts generated using UDP rule sets.

Rule Set False Positives FPf/F lows FPp/Packets

udp 53 ova 0 0/34615 0/110270

udp 53 step 0 0/34615 0/110270

udp 53 spec 0 0/34615 0/110270

udp 123 ova N/A N/A N/A

udp 123 step 0 0/6544 0/54723

udp 123 spec 0 0/6544 0/54723

udp 137 ova 4 4/772 27/12674

udp 137 step 0 0/772 0/12674

udp 137 spec 1 1/772 173/12674

udp 138 ova 0 0/761 0/1427

udp 138 step 1 1/761 18/1427

udp 138 spec 1 1/761 17/1427

udp 161 ova 3 3/5 5/1950

udp 161 step 0 0/5 0/1950

udp 161 spec 0 0/5 0/1950

udp 514 ova 0 0/308 0/651

udp 514 step 0 0/308 0/651

udp 514 spec 0 0/308 0/651

udp 520 ova N/A N/A N/A

udp 520 step 0 0/17 0/39534

udp 520 spec 0 0/17 0/39534
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520, because no acceptable rule set could be created. We provide details of this in

Section 4.5 when discussing feature coverage.

The overall UDP false positive rates were lower than those for the TCP models.

The Step model again achieved the lowest flow and packet rates with 0.0023% and

0.008136%, respectively. The OVA models achieved lower packet rates than the

Spec model (taking into account the absence of two port models), but that was

attributable to a single flow that generated many packet false alarms (port 137).

The OVA models had the highest false positive flow rate with 0.0192%.

4.4.3 ICMP Results

The false positive rates for ICMP models are shown in Table 4.5. There were two

examples of the Ping of Death [123] attack in our test data visible when examining

the Echo Reply traffic. No attacks were present in the Destination Unreachable

or Echo Request data. As such, ideal anomaly detection models based on these

protocols should indicate the two attacks in the Echo Reply data, but no attacks in

the remaining sets.

Six of the nine rule sets generated zero false positive alerts including all of the

Echo Request models. The dest unreach ova had only one false positive alert on a

flow (constituting one false positive packet observation). This model had a lower

false positive rate than the dest unreach step model, but as we saw in one collection

of UDP models, the OVA model had significantly fewer rules. Despite this, however,

the OVA model still exhibited more false positives than the dest unreach spec model.

It is the Echo Reply rule sets where the largest disparity in accuracy can be seen

among the feature extraction methods. The echo reply ova rule set indicated four

anomalous flows – all were false positives. The following OVA rule was found to be

generating false alarms.

ip id > 40896 =⇒ ip flags df == 0
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Table 4.5
True positive and false positive alerts generated using ICMP rule sets.

Rule Set Alerts TPf FPf FPf/F lows FPp/Packets

echo reply ova 4 0 4 4/852 5011/8171

echo reply step 2 2 0 0/852 0/8171

echo reply spec 2 2 0 0/852 0/8171

dest unreach ova 1 N/A 1 1/1023 1/6702

dest unreach step 13 N/A 13 13/1023 249/6702

dest unreach spec 0 N/A 0 0/1023 0/6702

echo request ova 0 N/A 0 0/512 0/8214

echo request step 0 N/A 0 0/512 0/8214

echo request spec 0 N/A 0 0/512 0/8214



60

This rule states that when the Identification field is greater than 40896, we expect the

Don’t Fragment bit to be set. This rule exemplifies the problem of performing data

mining on OVAs. What seems normal in the context of the training data represents

only a small fraction of the total normal value space. Unfortunately, this rule set

was not able to identify the two Ping of Death attacks because the rules and their

associated features are inadequate for distinguishing between normal and abnormal

IP fragments. In contrast, both the echo reply step and echo reply spec rule sets

were able to identify both of the abnormal flows representing the Ping of Death

attacks. Further, they were able to do so without generating any false positives on

the remainder of the Echo Reply data.

4.4.4 False Positive Summary

The comparisons presented in this section demonstrate that models built with

operationally variable attributes as features exhibit high false positive rates compared

to models built using behavioral features. The combined results of the eighteen

protocol models4 are shown in Table 4.6. Approximately 30% of the flows and 7% of

the packets observed by the OVA models were found to be anomalous with respect

to the training set. This represents a false positive flow rate of over 148 times greater

than the Spec model, and over 156 times greater than the Step model. Differences

among false positive packet rates were more dramatic. The rates for OVA models

were approximately 632 and 4,766 times greater than the rates than the Spec and

Step models, respectively.

4.5 Feature Coverage

In this section, we examine the feature coverage for the rule sets to explain the

performance of a given model. In general, we find that behavioral feature rule sets

4Two UDP models were excluded from the OVA results because no adequate rule set could be
generated
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Table 4.6
Overall false positive flow and packet rates for all anomaly detection models.

OVA Step Spec

FPf 21390 137 157

FPf Rate 29.77% 0.19% 0.20%

FPp 2435587 513 3844

FPp Rate 7.34% 0.00154% 0.0116%
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achieved higher feature coverage and larger validated rule sets than those based on

operationally variable attributes. This higher coverage permits more aspects of the

traffic to be examined.

4.5.1 TCP Rules

Features were extracted from a collection of nineteen protocol attributes – eight

for IP and eleven for TCP. The logical flow attributes were chosen to be the IP

source and destination addresses and the TCP source and destination port numbers.

The eight TCP protocol models were distinguished by their destination port number

value.

Feature coverage for the validated rule sets can be seen in Table 4.7. On average,

the models based on step metrics exhibited the highest coverage percentage (12.75

of nineteen attributes or 67.1%). The Step rule sets also were the largest on average

with 80.88 rules per set.

A curious rule set was that produced for port 22 using the step metrics. The

validation phase left only four rules of the original one hundred. Upon further

investigation, it was discovered that two validation flows (out of slightly more than

two hundred) were responsible for this occurrence. Some of the observations in these

flows had significantly larger datagram lengths than those seen in the training data.

However, the other behavioral feature based model (Spec) did not experience as

marked a rule set reduction.

4.5.2 UDP Rules

The features used for these models were derived from nine attributes – eight

from IP and one from UDP. The flow attributes were chosen to be the IP source and

destination addresses and the UDP port numbers. The summary of rule statistics

for UDP models can be seen in Table 4.8. Whereas the OVA and behavioral feature

models were generally comparable in the amount of feature coverage when exam-
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Table 4.7

Feature coverage and final rule counts for TCP protocol models fol-
lowing validation (based on nineteen attributes – eight IP and eleven
TCP).

OVA Step Spec

Port Application Coverage Rules Coverage Rules Coverage Rules

20 FTP Data 10 77 15 88 10 92

21 FTP 13 96 17 93 15 86

22 SSH 11 59 4 4 10 40

23 Telnet 13 61 18 70 8 42

25 SMTP 12 96 13 100 10 78

37 Time 8 68 16 100 10 100

79 Finger 13 95 10 92 10 92

80 HTTP 12 86 9 100 12 100
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Table 4.8

Feature coverage and final rule counts for UDP protocol models fol-
lowing validation (based on nine attributes – eight IP and one UDP).

OVA Step Spec

Port Coverage Rules Coverage Rules Coverage Rules

53 5 16 7 100 6 93

123 N/A 0 (6) 9 100 4 100

137 4 18 9 80 5 79

138 2 4 3 92 6 96

161 2 8 9 100 6 100

514 2 6 9 100 6 100

520 N/A 0 9 100 4 53

ining TCP, UDP OVA models consistently exhibited problems with rule generation

and preservation through the validation phase. This can be seen readily as most

models generated less than twenty rules that met our minimum confidence crite-

ria. This requirement is important because it helps insure that rules pass through

validation. Our first attempt to mine rules for port 123 yielded no rules using the

setting for minimum confidence. When we removed the requirement, six rules re-

sulted. However, none of these rules survived the validation phase. Hence, no OVA

classification was possible for port 123 flows. The initial rule set for port 520 met

a similar fate; all rules were eliminated during validation and thus no classification

could take place. The low rule count (and associated low feature coverage) proved

to have a detrimental effect on the utility of nearly all of the OVA models.

Rules were generated for the behavioral feature models without difficulty with

most models seeing all rules pass through validation. The largest single reduction

was 47% (port 520 Spec).
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Table 4.9

Feature coverage and final rule counts for ICMP protocol models
following validation (based on eight IP attributes).

OVA Step Spec

Type Coverage Rules Coverage Rules Coverage Rules

Echo Reply 4 5 8 100 6 99

Destination Unreach. 4 24 7 100 4 93

Echo Request 3 4 8 100 6 100

4.5.3 ICMP Rules

Features were extracted from eight IP attributes with the ICMP Type and Code

and IP source and destination addresses designated as flow attributes. This produced

three models based on Echo Reply, Destination Unreachable, Echo Request flows.

Descriptions of the available ICMP attributes can be found in [124]

The feature coverage for the validated ICMP rule sets can be seen in Table 4.9.

We first observe that none of the models based on OVA features utilizes more than

50% of the available attributes. In contrast, the model based solely on step metrics

utilized all attributes for two models and seven out of eight for the third. The

coverage of specification-based models were roughly between the previous two.

The lower coverage of the OVA models was caused by a relatively small number

of rules surviving the validation phase, with some models losing as much as 96% of

the initial rule set. As can also be seen in Table 4.9, OVA models retained relatively

few rules compared to the behavioral feature models.

4.6 Survey of Detection Rules

In this section, we present examples of rules obtained from the Specification-

based (Spec) behavioral feature model that were instrumental in detecting attacks.
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The presentation of these rules is meant as a comparison to the problematic OVA

model rules previously discussed in this chapter. The detected attacks as shown in

Table 4.2 are listed along with a representative sample of rules. Comprehensive lists

of rules detecting each attack can be found in Appendix A.

4.6.1 Mail Bomb

The Mail Bomb attack was crafted for the MIT Lincoln Laboratory 1999 IDS

Evaluation [103, 119]. It is a collection many large delivery requests designed to

create a denial of service attack against an SMTP server. One of two Mail Bomb

attacks was identified by the Spec model for port 25 (SMTP) using the following

rules.

(tcp hlen variance == 0) ∧

(4 ≤ ip id pos ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ tcp acknum pos > 3

This rule expresses expected behavior in the progression of the TCP acknowledgment

number relative to the behavior of the TCP sequence number, IP ID, and TCP header

length. In this example, the suffixes of null and pos refer to the number of null

and positive steps taken by values of the attribute. The Mail Bomb attack was

detected because it displayed an unexpected number of positive steps in the TCP

acknowledgment number.

4.6.2 Neptune

The Neptune attack is an example of TCP SYN Flooding [125]. When a TCP

connection is initiated, the server allocates resources to handle the incoming connec-

tion. The objective of this attack is to cause a denial of service by creating many
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“half-open” connections and, in turn, exhausting server resources. The following

rules came from the port 37 model (although, this attack was detected by several

other models).

(1 ≤ ip ttl null ≤ 2) =⇒ (0.5 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip ttl null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.5)

These rules indicate behavioral relationships between the number of null steps exhib-

ited by the IP TTL attribute and the percentage of TCP SYN and ACK packets in

a packet window. The Neptune attack issues many connection that do not complete

the TCP three-way handshake, and as such the flows associated with this attack

display unexpected percentages of TCP SYN and ACK packets.

4.6.3 NTInfoscan

NTInfoscan is a probing attack designed to query the services running on a

Windows NT victim host [119]. It attempts to access a variety of services including

FTP, Telnet, HTTP, as well as account and file system information. The following

rules from the ports 80 and 21 models respectively detected the attack.

(0 ≤ tcp seqnum null ≤ 1) ∧

(1 ≤ tcp seqnum pos ≤ 2) =⇒ (1 ≤ ip tos null ≤ 3)

(ip ttl null == 5) ∧

(tcp acknum null < 1) =⇒ (tcp acknum pos > 4)

The attack exhibited usual patterns in the IP Type of Service and TCP acknowledg-

ment number. In particular, the second rule indicates a lack of progress in acknowl-

edgment of packets. The rule states that if five packets have been seen (represented

by five null steps in the IP TTL), five positive steps in the acknowledgment number

are also expected.
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4.6.4 Ping of Death

The Ping of Death (PoD) [123] is a denial of service attack that exploits a vul-

nerability in some ICMP implementations. The attack uses IP fragmentation to

produce a datagram that exceeds the maximum datagram size defined by the proto-

col (64KB). This attack was detected only by the behavioral feature models in our

experiments.

(ip id pos > 0) =⇒ (ip foffset null > 0)

(ip ttl null > 0) =⇒ (ip foffset null > 0)

These rules represent a sample of twenty-six rules describing relationships between

the behavior of the IP Fragment Offset and various other IP header attributes. The

PoD attack uses the offset as a means to deliver the fragment that exceeds the

IP datagram boundary. The attack was detected because of the unusual pattern

exhibited in the number of null steps taken by the offset value.

4.6.5 Port Sweep

Port Sweep is a probing attack designed to identify potentially vulnerable services

on a host [119]. Its operation is similar to the NTInfoscan, but can be directed at a

variety of different hosts. As with NTInfoscan, the attack was detected by a number

of models. The following example rules came from port 79.

(2 ≤ ip foffset null ≤ 4) =⇒ (0.2 ≤ tcp flags syn percent ≤ 0.33)

(tcp flags rst percent == 0.0) ∧

(2 ≤ ip ttl null ≤ 4) =⇒ (0.2 ≤ tcp flags syn percent ≤ 0.33)

(3 ≤ size ≤ 5) ∧

(0 ≤ tcp acknum null ≤ 2) ∧

(0 ≤ tcp acknum pos ≤ 1) =⇒ (0.2 ≤ tcp flags syn percent ≤ 0.33)
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This collection of rules shows the complex relationships that can be represented using

behavioral features. The rules indicate the expected percentage of TCP SYN packets

in a packet window relative to the behavior of several IP and TCP attributes, and

the number of packets in the window (e.g., size == 3). The Port Sweep attack uses

a variety of unusual packets to probe, and thus was detected because these patterns

do not match those of normal flows.

4.6.6 SATAN

The Security Administrator Tool for Analyzing Networks (SATAN) [126] is used

to assess vulnerabilities of a host or network. In the context of these experiments, an

attacker uses this tool to perform a probing attack. Similar to other probe attacks,

it employs a variety to malformed packets directed at various protocol services to

identify potential host vulnerabilities. This attack was detected by more models

than any other attack in our experiments. These example rules come from the port

21 model.

(ip id pos == 5) ∧

(3 ≤ tcp acknum pos ≤ 4) =⇒ (1 ≤ tcp acknum null ≤ 2)

(tcp winsize mean == 32120) ∧

(tcp acknum null < 1) =⇒ (tcp acknum pos > 4)

(ip tos range == 16) ∧

(tcp acknum null < 1) =⇒ (tcp acknum step mean > 28.4)

The first rule is indicative of progress. Given a window of five packets represent-

ing five positive steps in the IP ID with three or four positive steps in the TCP

acknowledgment number, we expect to see only one or two null steps in the TCP

acknowledgment number. The fact that this rule was violated means that some

TCP acknowledgments were duplicated, and could be an example of overlapping

evasion techniques [110]. The second rule also relates to TCP acknowledgment num-
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ber progress, this time to the mean value of the TCP Window Size. The final rule

describes the behavior of the mean of the acknowledgment number step size. The

large number of unusual packets generated by this attack often caused a violation of

as many as twenty rules for a given packet.

4.7 Related Work

The Packet Header Anomaly Detector (PHAD) [10] and its successor, LERAD

[12], are examples of the use of machine learning techniques to identify intrusions

using attributes of network packets. An anomalous packet is indicated by its “rarity”

in the training data. Training and testing of this system was performed using the

1998 MIT Lincoln Laboratory Intrusion Detection Evaluation Data Sets [86]. The

authors identified an artifact in this data set wherein the inclusion of the IP TTL

(Time to Live) attribute in the feature set increased intrusion detection rates by

more than 30%. This was caused by the use of a small set of TTL values for

injected attacks. The authors correctly reasoned that TTL values would be unlikely

to identify attacks in real network traffic. However, such is also the case for other

operationally variable attributes.

A number of systems have employed manually crafted features that attempt

to model aspects of connection behavior. These features include the number of

connections between hosts [15] and the number of bytes transferred between hosts

[40,127] in a given time frame. Models based on such features are focused on certain

types of attacks, such as worm propagation. As such, these features may not provide

the descriptive power needed for a broad collection of attack behaviors.

Works by Lee and Stolfo [79, 80] and Barbara, et al. [14] are examples of the

application of data mining to high level network events to select relevant features

from an initial feature set. In both cases, the initial feature set represents a collection

of packet header values (such as network addresses and port numbers), status flags

(indicating a the state of the connection), and other features manually created and
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assembled by a human operator. In both of these projects, analysis was confined to

the TCP protocol. However, the ability to use these techniques diminishes when one

moves away from connection-oriented protocols. In contrast, this dissertation has

demonstrated the utility of our method across several protocols (including stateless

protocols, UDP and ICMP) while noting that behavioral features can be derived

from the attributes of any structured protocol.

4.8 Results Summary

The results in this chapter demonstrate how, through the application of the

behavioral feature extraction process outlined in Chapter 3, we were able to create

models for anomaly detection using unsupervised learning with higher true positive

rates and lower false positive rates compared to models built on traditional packet

header values, namely operationally variable attributes.

The 1999 MIT Lincoln Laboratory IDS evaluation used a maximum threshold

of ten false positive alerts per day [119]. The test data used in our experiments

contained approximately 80,000 flows spread over a five day period, or 16,000 flows

per day. Both behavioral models would generate thirty-two false positive flow alerts

per day given their false positive flow rates as shown in Table 4.6, thereby exceeding

the threshold. However, nearly all of these false positive alerts were produced by the

Telnet protocol models (See Table 4.3). Excluding this protocol, both behavioral

feature models fall below the ten false positives per day threshold while maintaining

the same detection rates. We believe false positive rate reductions are possible using

rule set optimization, and we describe future work exploring the methods in Section

6.2. The OVA models significantly exceeded this threshold, generating approximately

4,800 false positive alerts per day. Worse yet, the nature of rules based on OVA values

leaves no room for improvement (See Section 3.2).

OVA rule sets were often so noisy that the majority of initial rules were discarded

during the validation phase. In two cases, no OVA model could be generated because
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all potential rules were eliminated. Despite this aggressive method of eliminating

potential sources of false positives, OVA rule sets consistently generated more false

positive alerts, with fewer detections, than a comparable behavioral feature model.

In three cases, OVA models generated alerts for every examined flow. Effectively,

this meant that five of the eighteen OVA models were completely unusable in prac-

tice. The poor performance of OVA models can be attributed to the inadequate

descriptive power and low feature coverage of the OVA rule sets. These undesirable

characteristics indicate that operationally variable attributes should not be used in

practice.

The two behavioral feature models exhibited roughly the same performance in

terms of accuracy and coverage. The specification-based models achieved slightly

higher detection accuracy, but this was coupled with higher false positive rates (al-

though still orders of magnitude less than OVA models). However, the Spec model

achieved this with fewer features than the Step models. Therefore, the selection of

one of these two models would represent a tradeoff between a tolerable rate of false

positives and the desire for higher accuracy.

Operationally variable attributes can be identified a priori using the IVIA pro-

tocol analysis method described in Chapter 3. Their transformation into behavioral

features eliminates the pitfalls identified experimentally in this chapter and provides

superior performance.
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5 BEHAVIORAL AUTHENTICATION OF SERVER FLOWS

In this chapter, we present an approach to classifying server traffic based on super-

vised learning of behavioral features. This classification method is independent of

port label and therefore provides a more accurate classification in the presence of

malicious activity. An empirical evaluation illustrates that models of both aggre-

gate protocol behavior and host-specific protocol behavior obtain high classification

accuracies.

5.1 The Need for Authentication of Server Flows

Administrators tasked with determining adherence to a usage policy require an

understanding of the nature of the information flowing into and out of a system

or network. Without this understanding, they cannot know if information is being

compromised, if their system resources are being used appropriately, or if an attacker

is using a service for unauthorized access to a host. In this chapter we address the

problem of server flow authentication – the on-going identification of server type for

a stream of network packets. Specifically, we address the question of whether we

can correctly identify the TCP application protocol of a flow based on features that

measure the behavior of the flow.

The traditional method of determining the client-server protocol is by inspecting

the source and destination port numbers in the TCP header. The mappings between

port numbers and their corresponding service are well known [128]. For example,

HTTP server traffic uses port 80, and SMTP server traffic uses port 25. In essence,

we rely on a correct labeling of the traffic to accurately determine its type. The

binding between the port label and the type of traffic is a binding by convention.

This label is also used as a basis for firewall filtering and intrusion detection [15,129].
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There are several different attack scenarios where the port number may not be

indicative of the true nature of the server traffic. The following are three examples

of why this may be so.

Proxies: These servers are used to consolidate access to a particular service for a

group of users. For example, web proxies are used to handle all HTTP client

requests to external servers. However, there are also proxies that exist for the

specific purpose of evading firewall filtering rules for a set of applications [130].

In this case the proxy takes traffic that would normally be dropped by the

firewall and re-maps the port numbers to make the traffic appear to be HTTP

traffic. Because HTTP traffic is routinely allowed to pass through firewalls,

the user of this proxy is able to circumvent the network policy.

Server Backdoors: When a server has been compromised, the attacker often places

a “backdoor” in one or more of the running services [131]. The purpose is to

provide the attacker with a portal that he/she can use to regain access at a

later time. Traffic from this portal will have the same port number label as

legitimate traffic for the compromised service. The attacker may replace the

binary of an authorized service X with a binary that can function as both X

and Telnet. When a packet is received from a particular source IP, the rogue

server knows to execute Telnet, otherwise it executes service X.

User-Installed Servers: This category includes the installation of unauthorized

Telnet, HTTP, or other servers for some illicit purpose. It also represents the

increasing numbers of peer-to-peer file sharing networks [132]. These servers

are initiated by the user and can be configured to use almost any port. This

category also includes the recent appearance of “super worms” – worms that

propagate via e-mail and carry their own mail server [133]. Once installed,

these worms utilize their rogue mail server to forward unsolicited e-mail mes-

sages i.e., Spam. Without prior knowledge of a port to service mapping, the

true nature of the traffic cannot be determined.
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Each of these scenarios represents an instance where the port number label fails to

accurately indicate the type of traffic. Worse yet, it is precisely these scenarios where

an accurate identification of the traffic would reveal a compromised service or policy

violation. Thus, there exists a need to classify traffic associated with a particular

service, what we will henceforth refer to as a server flow, using a method other than

a label that is easily modified, ambiguous, or conceals unauthorized activity.

Significant effort has been invested in the design of tools for detecting the presence

of unauthorized services on a host. These range from file system integrity tools that

detect modification to server application files (e.g., Tripwire [50]) to tools that look

for artifacts of successful intrusions (e.g., ChkRootKit [134]). Successful use of these

tools requires proper configuration and, in some cases, a suspicion that an attack has

occurred. But, the fact that a machine running these tools was compromised casts

doubt on the information these tools report. For example, if a Linux system has been

compromised using an unauthorized Loadable Kernel Module (LKM) [135], it may

be impossible to detect this from inside the compromised host [136]. This raises the

distinct possibility that an unauthorized service can go undetected indefinitely.

For situations where we cannot trust the results from a compromised system,

or the operator is unaware of a successful attack, it would be beneficial to have an

external auditor for the purpose of ensuring proper server operation and/or detecting

unauthorized services. The identification method used by this auditor should eschew

port number labels. Rather, the identification should be indicative of the proper

behavior of a given server flow.

In this chapter, we investigate how server flows can be classified based on their

behavior. The result is a system that monitors network traffic to check conformity

with expected network services and to detect service anomalies. The remainder of

this chapter is organized as follows. Section 5.2 investigates whether behavioral

characteristics of server flows can be measured. Section 5.3 discusses how features

measuring these characteristics can be used for server identification. Section 5.4

presents an empirical evaluation that illustrates that we can discriminate among
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servers based on characteristics of their flow behavior. Section 5.5 discusses how our

classification method can be integrated with network intrusion detection systems.

Methods an attacker might use to subvert our classification system are presented in

Section 5.6. Related work is presented in Section 5.7. Finally, conclusions and future

work are discussed in Section 5.8.

5.2 Understanding the Nature of Server Flows

The key issue in the behavioral authentication of server flows is the characteristics

or features of the traffic should be monitored. We cannot rely on the contents of the

payload as a source of features in environments where there are concerns about user

privacy, or where encryption is used to hide the data carried in network packets.

Rather, we examine the packet header and the operational characteristics of the

traffic itself to define our feature set.

For the purposes of our analysis and experiments, we focused on the HTTP, FTP,

Telnet, SMTP, and SSH application protocols. These protocols are well understood,

stable, widely implemented, and represent the vast majority of user traffic [137].

Based on our initial observations, we concluded that features based on the TCP

state flags (URG - Urgent, ACK - Acknowledgment, PSH - Push, RST - Reset,

SYN - Synchronize, and FIN - Finish) [98] can operationally differentiate server flow

behavior. For example, HTTP traffic generally contains far fewer packets with the

PSH flag than does Telnet traffic. Specifically, for each of the flags, we calculate the

percentage of packets in a window of size n packets with that flag set. In addition

to these six features we calculate the mean inter-arrival time and the mean packet

length for the window of n packets. During monitoring, these features are used by

the classification method to determine whether the previous n packets match the

learned behavior of the server flows.
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5.3 Classification of Server Flows

In this section we describe how we can view behavioral authentication of server

flows as a supervised machine learning problem. In supervised learning, the learner

is given a set of observations each labeled as one of k classes. The learner’s task is to

form a classifier from the training set that can be used to classify previously unseen

(and unlabeled) observations as one of the k classes. A criticism of many anomaly

detection systems based on data mining/machine learning is that they assume that

they are dealing with a supervised learning problem. That is, the learner will be

given examples of both normal and attack data [138]. It is unrealistic to think

that one will receive labeled attack data for a particular host because the act of

generating labeled data requires significant human effort. In such cases, one applies

unsupervised learning to form a model of expected behaviors. During monitoring

one looks for anomalies with respect to the learned model.

However, server authentication can be naturally cast as either a supervised learn-

ing task or an anomaly detection task. To cast the problem as a supervised learning

problem we must choose k possible server applications, collect training data for each,

and then apply a supervised learning algorithm to form a classifier. Given a new

server flow we can then classify it as one of these k types of servers. To cast the prob-

lem as an anomaly detection problem we look at each service individually. For each

of the k server applications of interest we form a model of normal behavior. Given a

new server flow, we compare the new flow to each of the models to determine whether

it conforms to any of these models. Casting the problem as an anomaly detection

problem uses the same framework as user behavioral authentication [67, 120, 139].

In user authentication the goal is to identify whether the user is behaving normally

with respect to a learned profile of behavior.

We chose to investigate server flow authentication based on the supervised learn-

ing framework, because we assume a policy exists specifying the services that are to

be run on a given host. A drawback of this assumption is that if an attacker replaces
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or alters an existing service it may not behave similarly to any of the permitted

services, and would therefore be difficult to classify. However, it is unlikely that it

will behave identically to any of the permitted services. We plan to examine this

conjecture in future work.

5.4 An Empirical Evaluation

Our experiments are designed to investigate whether we can classify server flows

based on features of behavior. We first describe the data used in the experiments and

the supervised learning algorithm we chose. We then present experimental results

with learning aggregate flows and by-host flows using both synthetic and real network

traffic.

5.4.1 Data Sources

The first data set chosen for our experiments is the 1999 MIT Lincoln Labs Intru-

sion Detection Evaluation Datasets [103]. Although created for a specific evaluation

exercise, these datasets have subsequently been widely used for research into other

later intrusion detection systems not part of the original evaluation [10, 13, 31].

The data represent five weeks of simulated network traffic from a fictional Air

Force base. Weeks one through three constitute the training data used by anomaly-

based intrusion detection systems to model behavior. The data in week one and week

three are attack-free. There are five network trace files for each week – one for each

business day representing network usage from approximately 8:00 AM to 5:00 PM.

Each file is in libpcap format (readable with tcpdump), then compressed using gzip.

On average, each week consists of roughly 1 GB of compressed data representing 22

million network packets. We used data from week one in our training sets and data

from week three in our test sets. Note that we do not use the attack data because

our purpose is to evaluate whether we can classify server behavior – not whether
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we can detect intrusions. Our assumption is that the intrusion has already occurred

and that an attacker has implemented one of the scenarios described in Section 5.1.

In addition to the MIT Lincoln Laboratory data, we include experiments using

data obtained from our own network. The purpose here is to test the applicability

of our method on “real world” network traffic. In particular, we are interested

in classifying traffic from some of the newer peer-to-peer file sharing protocols –

something that the Lincoln Laboratory data sets do not contain. Some concerns have

been raised about the artificial nature of the Lincoln Laboratory data [7], and thus

an additional objective was to identify any marked differences between experiments

with these two data sets.

5.4.2 Decision Tree Classifier

We chose to use decision trees because they provide a comprehensible representa-

tion of their classification decisions. Although techniques such as boosting [140,141]

or support vector machines [142] might obtain slightly higher classification accuracy,

they require more computation during classification and further they obscure the

decision making process.

A decision tree is a tree structure where each internal node denotes a test on a

feature, each branch indicates an outcome of the test, and the leaf nodes represent

class labels. An example decision tree is shown in Figure 5.1. To classify an obser-

vation, the root node tests the the value of feature A. If the outcome is greater than

some value x, the observation is given a label of Class 1. If not, we descend the right

subtree and test the value for feature B. Tests continue until a leaf node is reached.

The label at the leaf node provides the class label for that observation.

We chose to use the C5.0 decision tree algorithm [143] – a widely used and tested

implementation. For details regarding the specifics of C5.0 the reader is referred

to [143, 144]. Here we provide only the key aspects of the algorithm related to

decision tree estimation, particularly as it pertains to feature selection. The most
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Figure 5.1. Decision tree abstraction showing how the values associ-
ated with certain features determine the class label. In this example,
observations with feature A greater than the value x are assigned a
class label of Class 1. Other classifications are based on the values
of features B and C.
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important element of the decision tree estimation algorithm is the method used to

estimate splits at each internal node of the tree. To do this, C5.0 uses a metric

called the information gain ratio that measures the reduction in entropy in the data

produced by a split. In this framework, the test at each node within a tree is selected

based on splits of the training data that maximize the reduction in entropy of the

descendant nodes. Using this criteria, the training data is recursively split such that

the gain ratio is maximized at each node of the tree. This procedure continues until

each leaf node contains only examples of a single class or no gain in information is

given by further testing. The result is often a large, complex tree that overfits the

training data. If the training data contains errors, then overfitting the tree to the

data in this manner can lead to poor performance on unseen data. Therefore, the

tree must be pruned to reduce classification errors when data outside of the training

set are to be classified. To address this problem C5.0 uses confidence-based pruning,

and details can be found in [143].

When using the decision tree to classify unseen examples, C5.0 supplies both a

class label and a confidence value for its prediction. The confidence value is a decimal

number ranging from zero to one – one meaning the highest confidence – and it is

given for each instance.

5.4.3 Aggregate Server Flow Model

Our first experiment was designed to determine to what extent FTP, SSH, Telnet,

SMTP, and HTTP traffic can be differentiated using a decision tree classifier. We

used the data from week one of the Lincoln Laboratory data to build our training

dataset. The set was created by first randomly selecting fifty server flows for each

of the five protocols. Each server flow consists of the packets from a server to

a particular client host/port. The largest flow contained roughly 37,000 packets,

and the smallest flow contained 5 packets. The 250 flows represented a total of
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approximately 290,000 packets. We refer to this as an aggregate model because the

collection of flows came from many different servers.

The fact that this data is certified as attack-free meant that we could have con-

fidence in the port numbers as indicative of the type of traffic. We used the server

port to label each flow in the training set. Each server flow was then used to generate

data observations based on our feature set. The result is a data set consisting of

approximately 290,000 labeled observations. We repeated this process for each of

seven packet window sizes. The window size is an upper bound on the number of

packets used to compute the means and percentages. If an individual flow contains

fewer packets than the packet window size, the number of available packets is used

to calculate each observation.

Each of the seven training sets was then used to build a decision tree using C5.0.

We constructed test sets in the same manner – fifty server flows from each protocol

were randomly selected from week three of the Lincoln Laboratory data. These were

then passed to our feature extraction algorithm using the same seven window sizes.

Before describing how a tree is used to classify a flow, we give an example of

a portion of a decision tree generated by C5.0 in Figure 5.2. In this example, the

root node tests the percentage of packets in the packet window with the FIN flag

set (tcpPerFIN). If this percentage exceeds 1%, a test is made on the percentage

of packets with the PSH flag set (tcpPerPSH). If this value is less than or equal to

40%, the observation is classified as “www”, indicating HTTP traffic. The numbers

in parenthesis indicate the number of training observations classified with this leaf

node. Other tests can be seen involving the mean inter-arrival time (meanIAT) and

mean packet length (meanIPTLen).

During testing, the class label for a given flow was calculated by summing the

confidence values for each observation in the flow. The class with the highest total

confidence was assigned to that flow. The classification results are shown in Table

5.1. For each of seven window sizes, we report the percentage of correctly classified
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tcpPerFIN > 0.01:

:...tcpPerPSH <= 0.4: www (45)

: tcpPerPSH > 0.4:

: :...tcpPerPSH <= 0.797619: smtp (13)

: tcpPerPSH > 0.797619: ftp (38)

tcpPerFIN <= 0.01:

:...meanIAT > 546773.2:

:...tcpPerSYN <= 0.03225806: telnet (6090)

: tcpPerSYN > 0.03225806:

: :...meanipTLen > 73.33: ftp (21)

: meanipTLen <= 73.33:

: :...tcpPerPSH > 0.7945206: smtp (8)

Figure 5.2. Portion of a decision tree generated by C5.0.
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Table 5.1

Classification accuracy of the aggregate model decision trees on un-
seen individual server flows. Each value represents the percentage of
correctly classified flows out of the fifty flows for each protocol

Window Size FTP SSH Telnet SMTP WWW

1000 100% 88% 94% 82% 100%

500 100% 96% 94% 86% 100%

200 98% 96% 96% 84% 98%

100 100% 96% 96% 86% 100%

50 98% 96% 96% 82% 100%

20 100% 98% 98% 82% 98%

10 100% 100% 100% 82% 98%

server flows out of the set of fifty flows for each protocol. As can be seen in the table,

the classification accuracy ranges from 82% to 100%.

In general, the classification accuracy was lower for SMTP server flows than for

other protocols. We examined the misclassified flows in more detail and discovered

that these flows were generally 2-4 times longer than correctly classified flows. Longer

SMTP server flows represented longer periods of interaction, and thus contain in-

creasing numbers of observations classified as Telnet or FTP. In these few cases, our

feature set is not adequate for discerning the behavior of these flows.

It is more desirable to use a smaller window size because this decreases the time

to detect that a service is behaving abnormally. Indeed for SSH we see that too large

a packet window size (1000) hurts classification accuracy. For FTP, SSH and Telnet,

a window size as small as ten packets achieves 100% classification accuracy.

Because the proposed method would be used to monitor traffic in real time, we

did a rough calculation of classification time. The average length of time used by
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C5.0 to classify an entire flow was 70mS.1 Training is done offline so computation

time is of lesser importance, but note that the average length of time used by C5.0

to create each decision tree was 22 seconds. Finally, we need to address the storage

requirements for maintaining a window of n values to compute the value of each

of the features. We can approximate the value created by storing all n values by

retaining only the mean for each feature, µFi
and using the following update rule for

each new packet:

(n − 1)µFi
+ newFi

n

In future work we will investigate whether this technique significantly degrades per-

formance.

We conclude from our experimental results that the behavior of server flows

for the five protocols can be differentiated using a decision tree classifier built on

aggregate flows. We will later discuss how this method can be used to complement

an intrusion detection system.

5.4.4 Host-Specific Models

Our second experiment addresses whether creating models for specific hosts pro-

vides better performance than the aggregate model. There are three advantages to

using host-specific models:

1. By creating models for individual server flows, we can monitor these flows for

changes in behavior.

2. A host-specific model can capture the implementation subtleties of a particular

service running on a host. This resolution is missing in the aggregate model

consisting of many server flows.

1The hardware platform used for building the decision trees and classifying observations was a
500Mhz Dual Pentium III PC with 772MB of RAM running Red Hat Linux (kernel version 2.4.18).
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Table 5.2
Number of flows used in training and test sets for each host model.

Host Training Flows Test Flows

172.16.112.100 20 20

172.16.112.50 30 25

172.16.113.50 35 23

172.16.114.50 10 20

197.218.177.69 25 35

3. The training examples in an aggregate model will be dominated by the server

generating the most traffic. This may dilute examples from other servers. The

host-specific model solves this problem.

We first identified a set of hosts in the Lincoln Laboratory data that each ran

three or more server protocols. Training data for each host was collected by randomly

selecting server flows from week one for each of the protocols running on these hosts.

The number of flows used in each model is dependent on the number of available

flows for a given host. For each host, we chose the same number of flows for each

protocol. Table 5.2 lists the number of training and test flows.

Based on our results using the aggregate models, we chose a packet window size

of 100 for generating observations. The selection was driven by the fact that SMTP

accuracy was greatest using this window size with the aggregate models, and other

protocol classifications accuracies were between 96% and 100%. We then trained a

decision tree for each host that could be used to differentiate the server flows coming

from that host. Test data was collected from week three in the same manner as the

training data.

The results in Table 5.3 indicate that, in general, the host specific models achieve

approximately the same classification accuracy as the aggregate models. One dif-

ference observed is that classification accuracy varies by protocol. For example, the
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Table 5.3

Classification accuracy of host model decision trees on unseen server
flows. Each row reports the host address and the percentage of cor-
rectly classified flows for each protocol. Fields with a − indicate
there was no traffic of this protocol type for this host.

Host FTP SSH Telnet SMTP WWW

172.16.112.100 95% − 100% 90% 100%

172.16.112.50 92% 100% 84% 100% −

172.16.113.50 100% − 100% 100% −

172.16.114.50 100% 95% 100% 95% 95%

197.218.177.69 100% − 100% 100% −

classification accuracy of Telnet flows for host 172.16.112.50 is 84%, whereas the

classification of Telnet flows in the aggregate models averaged 96.2%. Examination

of the packets in the misclassified flows revealed an interesting phenomenon. We

often observed large time gaps between packets. The time gaps indicate lapses in

user activity where the Telnet server is not echoing characters or supplying responses

to commands. In our framework, a single large gap can radically alter the values

for the mean inter-arrival time of packets, thus resulting in misclassification of the

subsequent observations. We refer to this as the Water Cooler Effect – the user

temporarily leaves the interactive session, then resumes a short while later. We

are investigating the sensitivity of our classifiers to this effect. One possible solution

would be to subdivide flows based on some time gap threshold and use the interactive

sub-flows to build our classifiers.

5.4.5 Models from Real Network Traffic

In this section we present experiments with real network traffic. We collected

a number of server flows using the protocols described. We augmented this set to
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include flows from hosts acting as Kazaa servers. Kazaa [132, 145] is a peer-to-peer

file sharing system that is growing in popularity [146, 147]. Peer-to-peer network

traffic was not part of the Lincoln Laboratory dataset.

Our goal was to determine if there was a significant difference in classification

accuracy when using synthetic versus real traffic. We observed classification accura-

cies by protocol ranging from 85% to 100% for both the aggregate and host models.

The peer-to-peer traffic was classified correctly for 100% of the unseen flows. This

is an especially interesting result because Kazaa flows carry a port label that is

user-defined. Thus, we are able to correctly classify peer-to-peer flows behaviorally

– without the use of the port number. These results indicate that our classification

method is effective for real network traffic. The range of accuracies match those

observed with the synthetic data. Thus, we can identify no appreciable difference in

the per-flow behavior in the synthetic Lincoln Laboratory data versus those in real

network traffic.

5.5 Classification for Intrusion and Misuse Detection

The two types of classification models presented here give rise to new functionality

in the context of intrusion and misuse detection. Aggregate models are intended to

classify a flow based on the general behavior of many flows of a given type. The

question the aggregate model tries to answer is: What other flows does this flow

resemble? In contrast, host models are based on the previously observed behavior

of flows for a specific host. Given an unseen flow, the host models are intended to

answer the question: Does this flow resemble previous server flows from this host?

Intrusion/misuse detection systems and firewalls are designed to identify a priori

actions that are harmful to a system or network. An IDS may passively monitor

traffic and generate an alert in the presence of an attack condition. Firewalls actively

drop network packets that violate some network policy. Our classification method

attempts to identify activities indicative of intrusion or misuse after such an event has
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occurred. Working in concert with a priori mechanisms, we attempt to determine at

any moment in time whether there is an impending attack or artifacts of a successful

attack.

Figure 5.5 shows how our classification methods can be integrated into a network

with an existing IDS. The organization uses servers to provide network services (in-

ternally, externally, or both) to some community of users. Our host-flow classification

system monitors the output of these servers directly. The purpose is to determine if

currently observed flows continue to behave as expected. If an attacker manages to

take control of a particular service, he/she will need to interact with the server in

such a way as to exactly match the previous behavior. A trojaned web server that

behaves similar to a Telnet sever for all but a select group of host addresses would

not match the expected host model, and thus be detected.

The network carries additional user traffic to servers that are external to the or-

ganization. This traffic is monitored with the aggregate model. Here, we classify the

flow generally and compare this to the port label. Observation of traffic that resem-

bles Telnet to some non-standard server port may be an indication of an installed

backdoor. Traffic labeled as web traffic (with a server port of 80) that behaves more

like Telnet traffic may indicate the presence a proxy used to evade firewall rules.

A peer-to-peer client operating at some user-defined port may be a violation of the

network policy. In each of these cases the aggregate classifier can indicate if a given

flow behaves in a manner consistent with its port label. It may not be necessary

to monitor every flow – the system could be configured to randomly select a flow

and attempt to classify it. If this flow generally matches a flow that is unusual or

undesirable for a port range, it can be identified and investigated.

Our method can operate on its own physical system, or it may be a component

of an IDS or firewall. The decision will be driven by the number of flows the system

will be expected to monitor. Following the construction of the models, the system

makes simple and rapid classifications.
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Figure 5.3. Network placement of the host and aggregate classifiers.
Host classifiers monitor specific server flows for deviations from ex-
pected behavior. Aggregate classifiers monitor user traffic to deter-
mine if flow behavior matches generalized behavior of other flows of
the same type.
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5.6 Subverting Classification

Given the presence of a monitoring system described above, we examined ways

an attacker could manipulate a session to affect classification of a server flow. We

have previously seen one such example, albeit an innocuous one, in our discussion of

the Water Cooler Effect. Here, the user suspends interaction thus causing variation

in the arrival time of packets and hence a potentially large fluctuation in the mean

inter-arrival time measured across the packet window for the server flow. An attacker

can do the same thing. However, it is not clear that he/she would be able to cause

a particular classification to be chosen. It is more likely that he/she will alter the

observations as to cause some indeterminant class to be chosen. If a host classifier

is being used, the deviation from the expected behavior would trigger an alarm.

Another method might involve the use of extraneous TCP flags in packets sent

to the server. An example might be the use of the URG flag in HTTP packets.

The distribution of TCP flags in the corresponding server flow may or may not be

affected, based on the implementation of the server on that host. As with the effects

of timing, we are investigating the sensitivity of classifiers to this manipulation in

future work.

5.7 Related Work

There are a number of commercial products that attempt to identify flow type

[148–151]. These are primarily used in the context of bandwidth allocation. For

example, a network administrator creates a policy stating that web traffic must not

exceed a certain percentage of total bandwidth and uses one of these products to

selectively drop traffic when that policy is violated. Many details of the classification

methods used by these products are not publicly available because they are propri-

etary. Thus, we are unable to compare our method to those used in these products.

It is unclear whether any of these products can correctly classify flows in the presence

of malicious activity (as described in Section 5.1). One company, Packeteer [148],
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reports that their product uses information “from all seven layers of the protocol

stack” to create an application signature that is used to classify flows. As stated

previously, such a system may or may not be appropriate in an environment where

payload encryption is used or where there are concerns about user privacy.

We also identified a component of the Snort IDS [15] that is used to classify server

flows. However, this system relies on the port number and detection of the TCP 3-

way handshake. As stated previously, in the presence of a proxy or compromised

service, this system is unlikely to classify a flow correctly.

With respect to our feature set, the NATE (Network Analysis of Anomalous Traf-

fic Events) [31] system is also based on TCP flags. NATE uses principle component

analysis to identify that the TCP state flags can detect certain types of attacks.

Our method differs in two respects. First, the NATE system attempts to model

differences between normal traffic and attack traffic. They do not attempt to model

differences in behavior between protocols. The second difference involves NATE’s

use of clustering to identify anomalies. This method must be done off-line, thus lim-

iting the usefulness of the system in environments requiring near real-time detection.

In contrast, once a decision tree has been created, our system can monitor packets

in real-time.

5.8 Summary

We presented a novel approach for defining a set of features to model operational

behavior of server flow traffic. We demonstrated through the use of the C5.0 decision

tree algorithm that our features can differentiate the behavior of server protocols

with an accuracy of 82% to 100%. We illustrate empirically that aggregate models

can classify an unseen server flow as belonging to a family of previously seen flows,

and that host models can determine whether flows from a given server match the

behavior of previously seen flows from that server. These classifiers can augment

traditional intrusion detection systems to detect artifacts of successful attacks. Our
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techniques of classification are independent of packet labellings and are thus immune

to techniques that modify port numbers to conceal activity.

The decision tree classifiers can be sensitive to fluctuations in the inter-arrival

time of packets. This was exemplified in what we call the Water Cooler Effect. We

plan to investigate how this sensitivity can be mitigated to increase the classification

accuracy for certain protocols.
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6 CONCLUSIONS, SUMMARY, AND FUTURE WORK

The idea of anomaly detection for computer security was believed to be a practi-

cal solution for identifying malicious behavior since it was proposed twenty years

ago [38]. Early implementations were host based and relied on available accounting

information as data sources. The wide-scale proliferation of networking technologies

brought the promise that network-based anomaly detection could provide additional

capabilities. However, the selection of appropriate models has proven to be a signif-

icant challenge.

Models consist of a feature set and an analysis method. The feature sets based

on network traffic have either been crafted by human experts (often designed to

identify specific types of attacks) or were taken directly from raw network data.

Many analysis methods have been proposed, and seemingly all have been applied to

both types of feature sets. These methods include statistical analysis, artificial neural

networks, and a variety of machine learning and data mining techniques. Despite

these many attempts, notable observers (e.g., [35] and [8]) pronounced that existing

techniques generated far too many false positive alarms to be practical.

It is illogical to conclude that these analysis methods are the source of the false

positive alerts because of the success that these methods have shown in other do-

mains. Rather, these problems indicated that an examination of features and feature

extraction techniques was required.

In this dissertation, we presented a protocol analysis methodology to assist in

the selection of features for network anomaly detection. We identified classes of

protocol attributes based on operational behavior using our Inter-flow versus Intra-

flow Analysis (IVIA) method. These classes provide a helpful starting point for

further analysis and feature extraction. Those attributes identified as operationally

invariant make useful features because they can carry only one acceptable value.
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Conversely, attributes found to be operationally variable were shown not to make

useful features because of the vast normal value space associated with them.

Avoiding the selection of operationally variable attributes (OVAs) as features re-

moves a significant source of false positive alerts. However, most protocol attributes

are likely to be OVAs, so their absence also reduces the ability to model some aspects

of behavior. To remedy this problem, we presented two preprocessing transforma-

tions designed to represent the behavior of the values associated with OVAs. These

transformations have the added benefit that they are computable in constant time,

and are therefore computationally inexpensive. We refer to these new transformed

features as behavioral features.

We next presented experimental results comparing the ability of three models

(one using OVAs and the remaining two using behavioral features) to detect a col-

lection of Probing and Denial of Service (DoS) attacks. Although the OVA-based

models detected some attacks, the detections were shown to be serendipitous, mean-

ing that detections were based on characteristics unrelated to the mechanics of the

attack. Furthermore, the OVA-based models exhibited dramatically higher false pos-

itive alarm rates. Rule sets for OVA models exhibited lower feature coverage, and

in some cases it was impossible to generate a rule set that satisfied our design con-

straints. These results revealed that the use of OVAs as features presents a number

of practical problems.

Models based on behavioral features were shown to be superior in terms of both

detection and false positive rates. False positive rates were two to three orders of

magnitude lower than OVA-based models. In contrast to OVA models, detections

made by behavioral feature models exhibited strong links to attack behavior. Addi-

tional models were used to classify application server flow behavior.

The thesis hypotheses statements listed in Section 1.3 were shown to be true.

First, we showed that attributes likely to generate false positives can be identified

prior to model construction using IVIA (Sections 3.1 and 3.2). We then showed that

these operationally variable attributes can feasibly be transformed into behavioral
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features (Sections 3.3 and 3.4). The experimental results presented in Chapter 4

support the hypothesis of superior performance of behavioral feature models. Finally,

the experimental results presented in Chapter 5 demonstrate that behavioral feature

models can be used to model application server flow behavior without reliance on

the port number label carried in the packet header.

This dissertation presents a guide for selection and extraction of features for

anomaly detection models. We based our analysis on current protocols, but the

method provides sufficient generality to be applicable to future protocols, as well.

It is hoped that these techniques will enable future researchers and practitioners to

create more accurate and useful network-based anomaly detection systems.

6.1 Summary of Contributions

• Presented a classification method for network protocol attributes based on

operational behavior within and among network flows.

• Described the properties of two classes of attributes (operationally variant and

invariant) and their suitability as features for anomaly detection.

• Presented a collection of data preprocessing operations that transform opera-

tionally variable attributes into behavioral features.

• Described operators for the creation of higher order behavioral features.

• Showed through empirical results that behavioral feature models exhibit higher

detection rates and lower false positive rates than those based on operationally

variable attributes.

• Identified sources of so-called serendipitous detections in OVA model rule sets.

• Presented examples of behavioral feature rule sets that show correlation be-

tween attack mechanisms and feature relationships.
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• Showed through empirical results that behavioral feature models can be used

to model application server flow behavior independent of port number label

carried within packets.

• Described an enhanced intrusion detection system that monitors the behavior

of incoming and outgoing server flows.

6.2 Future Work

This dissertation examined the features of network traffic used for anomaly de-

tection and showed the significant performance gains possible when operationally

variable attributes are transformed into behavioral features. However, the use of

this technique revealed a number of other future research opportunities. We present

some of them here.

6.2.1 Behavioral Operators

We presented two types of behavioral operators in this dissertation. The first

is a collection of step metrics designed to capture the behavior of a generic value

sequence. This method has a number of advantages including, (1) it can be applied

to any value sequence, and (2) the individual metrics are not computationally ex-

pensive. The second type is derived from the protocol specification and is based on

the semantics of a given attribute. These specification-based metrics produce fewer

features than the step metrics, requiring less computation when constructing behav-

ior models. In addition, the models based on specification-based features achieved

the highest true detection rate in our experiments. The specification-based metrics

are a “shorthand” or optimization for describing the behavior of an attribute.

Future work in this area could explore new types of behavioral operators. These

might be used to present alternate representations of generic value sequences, or

new semantic optimizations. Examples of the latter include the entropy of certain
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packet handling options (e.g., IP Type of Service) and the correctness of checksum

fields (i.e., the percentage of correct IP Checksums). Computational complexity and

performance comparisons to existing operator/attribute combinations can be made

when debating the merits of future behavioral operators.

6.2.2 Enhancing Association Rule Models

The use of association rules for the experiments involving unsupervised learning

(Chapter 4) prompted additional questions of how this technique might be used more

effectively and efficiently. The following is a discussion of these observations.

Recall that association rules [117,118] are primarily used to discover “interesting”

patterns in the data. In these cases, the objective is not to discover relationships

among all features, but to identify those relationships that meet certain support

and confidence thresholds. However, in the context of network anomaly detection,

it is unclear what such thresholds should be. Further, when using association rules

to describe normal network traffic behavior, we are interested discovering as many

feature value interdependencies as possible.

A direction for future work in this area could be to explore the completeness

of the value space as defined by a set of association rules. Given a set of training

data, the task for this new rule mining algorithm would be to identify a minimal

rule set that completely covers the value space. Such a set would create a mesh

of relationships among features in normal traffic and permit examination of many

aspects of unseen traffic.

Another issue related to support and confidence thresholds appeared when im-

plementing our version of the LERAD algorithm [12]. This algorithm generates a set

of rules defining characteristics of normal packet values. A new packet observation

fails if it matches the left-hand side of a rule, but not the right-hand side. However,

when an observation does not match the left-hand side, the algorithm simply moves

on to the next rule. In the extreme case, an observation that does not match any
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rules would not generate any alerts. However, such an observation clearly cannot be

considered normal with respect to the training data. An area of future work is to

integrate provisions for the number or percentage of rules that must be satisfied for

an observation to be considered normal.

Our final remark concerns the application of rules to new observations. In our

experiments, Magnum Opus [104] often generated rules with the following structure.

A =⇒ B

. . .

B =⇒ C

In this example, condition B is checked twice when applying rules sequentially to

a new observation. An optimization would be to coalesce these rules into one to

remove the duplicate check of condition B.

A =⇒ B =⇒ C

We intend to explore how such rules can be combined to form “rule trees” that can

then be applied to new observations more efficiently.

6.2.3 Misuse / Anomaly Detection Integration

The realization that association rules are sets of normal conditions prompted us to

consider their integration with sets of abnormal (i.e., misuse) conditions. Association

rules are a human-readable representation of conditional relationships among feature

values. When applied to normal network traffic, the rules represent a set of conditions

that describe the normal value space. Conditional rules are also used in the context

of misuse detection. Here, the conditions represent signatures of attack behavior.

We can represent an instance of a misuse condition as Mi. Examples of misuse

conditions are the presence of a specified character string in a packet payload or the
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output of a sensor [18]. A misuse signature, Sm is the conjunction of of one or more

conditions that generates an alert.

If(M1 ∧ M2 ∧ . . . ∧ Mn) then ALERT

An anomaly detection condition can be represented by Ai and represents the left

and right-hand sides of an association rule. An anomaly detection “signature”, Sa,

represents a set of one or more association rules defining the normal space for the

named features.

If¬(A1 ∧ A2 ∧ . . . ∧ An) then ALERT

Organizing conditions in this manner presents an opportunity for the integration

of behavioral feature monitoring into an existing signature-based network intrusion

detection system. Several candidate systems are being considered. The new system

would combine signature-based models with anomaly detection based on behavior

feature models to produce a hybrid system capable of identifying both known and

novel attacks. The system could further provide a feedback mechanism wherein

user response to alerts is used to tailor the association rules employing behavioral

features.
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Appendix: Attack Detection Rulesets

This appendix contains a comprehensive list of rules used to identify attack flows

listed in Section 4.3. Rules are organized first by model name, then by attack

identification number and name.

The feature named size refers to the number of observations in the packet window.

Suffixes are attached to the names of protocol attributes to designate feature metrics.

The following suffixes are used.

null - Number of null steps

pos - Number of positive steps

neg - Number of negative steps

range - Difference between the global maximum and minimum values

step mean - Mean of the step size

step variance - Variance of the step size

mean - Value mean (used for length attributes)

variance - Value variance (used for length attributes)

percent - Percentage of observations in packet window with the attribute set (used

for options attributes)

A.1 TCP Port 20

A.1.1 17 - SATAN

(5.20 ≤ tcp hlen mean ≤ 5.50) =⇒ (40.80 ≤ ip len mean ≤ 42.0)
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(0.20 ≤ tcp flags syn percent ≤ 0.50) ∧

(ip tos range == 8) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(ip tos range == 8) ∧

(1 ≤ tcp urg null ≤ 4) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(ip tos range == 8) ∧

(1 ≤ ip ttl null ≤ 4) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(ip tos range == 8) ∧

(1 ≤ ip foffset null ≤ 4) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(ip tos range == 8) ∧

(1 ≤ ip id pos ≤ 4) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(0 ≤ ip tos null ≤ 3) ∧

(ip tos range == 8) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(ip tos range == 8) ∧

(0 ≤ tcp seqnum null ≤ 3) =⇒ (40.80 ≤ ip len mean ≤ 42.0)

(0.0 ≤ ip len variance ≤ 3.56) ∧

(5.20 ≤ tcp hlen mean ≤ 5.50) ∧

(ip tos range == 8) =⇒ (ip tos step variance > 10.240)

(0.0 ≤ ip len variance ≤ 3.56) ∧

(0.20 ≤ tcp flags syn percent ≤ 0.50) ∧

(ip tos range == 8) =⇒ (ip tos step variance > 10.240)
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A.2 TCP Port 21

A.2.1 1 - NTInfoscan

(3 ≤ tcp acknum pos ≤ 4) ∧

(tcp urg null == 5) =⇒ (1 ≤ tcp acknum null ≤ 2)

(ip foffset null == 5) ∧

(3 ≤ tcp acknum pos ≤ 4) =⇒ (1 ≤ tcp acknum null ≤ 2)

(ip ttl null == 5) ∧

(3 ≤ tcp acknum pos ≤ 4) =⇒ (1 ≤ tcp acknum null ≤ 2)

(ip id pos == 5) ∧

(3 ≤ tcp acknum pos ≤ 4) =⇒ (1 ≤ tcp acknum null ≤ 2)

(ip tos null == 5) ∧

(3 ≤ tcp acknum pos ≤ 4) =⇒ (1 ≤ tcp acknum null ≤ 2)

(ip tos null == 5) ∧

(tcp acknum null < 1) =⇒ (tcp acknum pos > 4)

(ip id pos == 5) ∧

(tcp acknum null < 1) =⇒ (tcp acknum pos > 4)

(tcp acknum null < 1) ∧

(tcp urg null == 5) =⇒ (tcp acknum pos > 4)

(ip foffset null == 5) ∧

(tcp acknum null < 1) =⇒ (tcp acknum pos > 4)

(ip ttl null == 5) ∧

(tcp acknum null < 1) =⇒ (tcp acknum pos > 4)

(tcp winsize mean == 32120.0) ∧

(ip tos null == 5) ∧
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(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧

(ip tos pos == 0) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧

(ip tos step mean == 0.0) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧

(ip tos step variance == 0.0) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp flags syn percent == 0.0) ∧

(tcp seqnum null == 2) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp seqnum null == 2) ∧

(1 ≤ tcp acknum null ≤ 2) ∧

(tcp urg null == 5) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(ip foffset null == 5) ∧

(tcp seqnum null == 2) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(ip ttl null == 5) ∧

(tcp seqnum null == 2) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(ip id pos == 5) ∧

(tcp seqnum null == 2) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧
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(ip flags df percent == 1.0) ∧

(tcp seqnum step mean < 7.0) =⇒ (tcp seqnum null > 2)

(tcp winsize mean == 32120.0) ∧

(tcp flags fin percent == 0.0) ∧

(tcp seqnum step mean < 7.0) =⇒ (tcp seqnum null > 2)

(tcp winsize mean == 32120.0) ∧

(0.40 ≤ tcp flags psh percent ≤ 0.60) ∧

(tcp seqnum step mean < 7.0) =⇒ (tcp seqnum null > 2)

(ip tos null == 5) ∧

(tcp seqnum null == 2) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

A.2.2 17 - SATAN

(tcp winsize mean == 32120.0) ∧

(ip tos null == 5) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧

(ip tos pos == 0) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧

(ip tos step mean == 0.0) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧
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(ip tos step variance == 0.0) ∧

(1 ≤ tcp acknum null ≤ 2) =⇒ (3 ≤ tcp acknum pos ≤ 4)

(tcp winsize mean == 32120.0) ∧

(ip flags df percent == 1.0) ∧

(tcp seqnum step mean < 7.0) =⇒ (tcp seqnum null > 2)

(tcp winsize mean == 32120.0) ∧

(tcp flags fin percent == 0.0) ∧

(tcp seqnum step mean < 7.0) =⇒ (tcp seqnum null > 2)

(tcp winsize mean == 32120.0) ∧

(0.40 ≤ tcp flags psh percent ≤ 0.60) ∧

(tcp seqnum step mean < 7.0) =⇒ (tcp seqnum null > 2)

A.3 TCP Port 22

A.3.1 25 - Port Sweep

(ip tos null == 5) ∧

(tcp acknum null < 2) =⇒ (tcp acknum pos > 3)

(ip tos pos == 0) ∧

(ip foffset null == 5) ∧

(tcp acknum null < 2) =⇒ (tcp acknum pos > 3)

(ip tos step variance == 0.0) ∧

(ip foffset null == 5) ∧

(tcp acknum null < 2) =⇒ (tcp acknum pos > 3)

(ip tos step mean == 0.0) ∧
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(ip foffset null == 5) ∧

(tcp acknum null < 2) =⇒ (tcp acknum pos > 3)

(ip tos pos == 0) ∧

(tcp acknum null < 2) ∧

(tcp urg null == 5) =⇒ (tcp acknum pos > 3)

(ip tos step variance == 0.0) ∧

(tcp acknum null < 2) ∧

(tcp urg null == 5) =⇒ (tcp acknum pos > 3)

(ip tos step mean == 0.0) ∧

(tcp acknum null < 2) ∧

(tcp urg null == 5) =⇒ (tcp acknum pos > 3)

A.4 TCP Port 23

A.4.1 17 - SATAN

(size == 5) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp acknum pos ≤ 3)

(0.40 ≤ tcp flags psh percent ≤ 0.60) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp acknum pos ≤ 3)

(2 ≤ tcp seqnum pos ≤ 3) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp acknum pos ≤ 3)

(2 ≤ tcp seqnum pos ≤ 3) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp seqnum null ≤ 3)
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A.4.2 24 - SATAN

(size == 5) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp acknum pos ≤ 3)

(0.40 ≤ tcp flags psh percent ≤ 0.60) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp acknum pos ≤ 3)

(2 ≤ tcp seqnum pos ≤ 3) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp acknum pos ≤ 3)

(2 ≤ tcp seqnum pos ≤ 3) ∧

(2 ≤ tcp acknum null ≤ 3) =⇒ (2 ≤ tcp seqnum null ≤ 3)

A.5 TCP Port 25

A.5.1 8 - Port Sweep

(tcp flags ack percent < 0.80) =⇒ (tcp flags syn percent > 0.20)

(tcp flags ack percent < 0.80) =⇒ (tcp hlen mean > 5.20)

(0.0 ≤ tcp flags syn percent ≤ 0.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

A.5.2 18 - Mail Bomb

(tcp hlen variance == 0.0) ∧
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(4 ≤ ip id pos ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(4 ≤ ip foffset null ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(size == 5) ∧

(tcp hlen variance == 0.0) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) ∧

(4 ≤ tcp urg null ≤ 5) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(4 ≤ ip ttl null ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(4 ≤ ip tos null ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp flags ack percent < 0.80) =⇒ (tcp flags syn percent > 0.20)

(tcp flags ack percent < 0.80) =⇒ (tcp hlen mean > 5.20)

(tcp flags syn percent > 0.20) =⇒ (tcp hlen mean > 5.20)
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(0.0 ≤ tcp flags syn percent ≤ 0.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.0 ≤ tcp flags syn percent ≤ 0.20)

A.5.3 26 - Neptune

(tcp hlen variance == 0.0) ∧

(4 ≤ ip id pos ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(4 ≤ ip foffset null ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(size == 5) ∧

(tcp hlen variance == 0.0) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) ∧

(4 ≤ tcp urg null ≤ 5) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(4 ≤ ip ttl null ≤ 5) ∧
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(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp hlen variance == 0.0) ∧

(4 ≤ ip tos null ≤ 5) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (tcp acknum pos > 3)

(tcp flags ack percent < 0.80) =⇒ (tcp flags syn percent > 0.20)

(tcp flags ack percent < 0.80) =⇒ (tcp hlen mean > 5.20)

(tcp flags syn percent > 0.20) =⇒ (tcp hlen mean > 5.20)

(0.0 ≤ tcp flags syn percent ≤ 0.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.0 ≤ tcp flags syn percent ≤ 0.20)

A.5.4 36 - Neptune

(tcp flags ack percent < 0.80) =⇒ (tcp flags syn percent > 0.20)

(tcp flags ack percent < 0.80) =⇒ (tcp hlen mean > 5.20)

(tcp flags syn percent > 0.20) =⇒ (tcp hlen mean > 5.20)

(0.0 ≤ tcp flags syn percent ≤ 0.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.80 ≤ tcp flags ack percent ≤ 1.0)

(5.0 ≤ tcp hlen mean ≤ 5.20) =⇒ (0.0 ≤ tcp flags syn percent ≤ 0.20)
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A.6 TCP Port 37

A.6.1 8 - Port Sweep

(1 ≤ ip tos null ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip tos null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip tos null ≤ 2) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(1 ≤ ip tos null ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(1 ≤ ip tos null ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

(1 ≤ ip foffset null ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip foffset null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip foffset null ≤ 2) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(1 ≤ ip foffset null ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(1 ≤ ip foffset null ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

(1 ≤ ip ttl null ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip ttl null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip ttl null ≤ 2) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(1 ≤ ip ttl null ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(1 ≤ ip ttl null ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

(1 ≤ ip id pos ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip id pos ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip id pos ≤ 2) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(1 ≤ ip id pos ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(2 ≤ size ≤ 3) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(2 ≤ size ≤ 3) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip id pos ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)
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(2 ≤ size ≤ 3) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(2 ≤ size ≤ 3) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(2 ≤ size ≤ 3) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

A.6.2 42 - Port Sweep

(1 ≤ ip tos null ≤ 2) =⇒ (1 ≤ ip id pos ≤ 2)

(1 ≤ ip tos null ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip tos null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip tos null ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(1 ≤ ip tos null ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

(1 ≤ ip foffset null ≤ 2) =⇒ (1 ≤ ip id pos ≤ 2)

(1 ≤ ip foffset null ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip foffset null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)

(1 ≤ ip foffset null ≤ 2) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(1 ≤ ip foffset null ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(1 ≤ ip foffset null ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

(1 ≤ ip ttl null ≤ 2) =⇒ (1 ≤ tcp urg null ≤ 2)

(1 ≤ ip ttl null ≤ 2) =⇒ (1 ≤ ip foffset null ≤ 2)

(1 ≤ ip ttl null ≤ 2) =⇒ (1 ≤ ip id pos ≤ 2)

(1 ≤ ip ttl null ≤ 2) =⇒ (1 ≤ ip tos null ≤ 2)

(1 ≤ ip ttl null ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

(1 ≤ ip ttl null ≤ 2) =⇒ (0.33 ≤ tcp flags syn percent ≤ 0.50)
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(1 ≤ ip ttl null ≤ 2) =⇒ (16316.0 ≤ tcp winsize mean ≤ 21584.0)

(1 ≤ ip ttl null ≤ 2) =⇒ (5.33 ≤ tcp hlen mean ≤ 5.50)

(1 ≤ ip ttl null ≤ 2) =⇒ (41.33 ≤ ip len mean ≤ 42.0)

(1 ≤ ip ttl null ≤ 2) =⇒ (2 ≤ size ≤ 3)

(1 ≤ ip id pos ≤ 2) =⇒ (0.50 ≤ tcp flags ack percent ≤ 0.67)

A.7 TCP Port 79

A.7.1 8 - Port Sweep

(2 ≤ ip foffset null ≤ 4) =⇒ (2 ≤ ip id pos ≤ 4)

(3 ≤ size ≤ 5) ∧

(0 ≤ tcp acknum null ≤ 2) ∧

(0 ≤ tcp acknum pos ≤ 1) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip foffset null ≤ 4) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip tos null ≤ 4) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ ip tos null ≤ 4) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ tcp urg null ≤ 4) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ tcp urg null ≤ 4) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip ttl null ≤ 4) ∧

(0 ≤ tcp acknum null ≤ 2) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ ip ttl null ≤ 4) ∧

(0 ≤ tcp acknum null ≤ 2) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)
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(tcp flags rst percent == 0.0) ∧

(2 ≤ ip ttl null ≤ 4) =⇒ (2 ≤ ip id pos ≤ 4)

(tcp flags rst percent == 0.0) ∧

(2 ≤ ip ttl null ≤ 4) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl step mean == 0.0) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl step mean == 0.0) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl range == 0) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl range == 0) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl step variance == 0.0) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl step variance == 0.0) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl pos == 0) =⇒ (2 ≤ ip id pos ≤ 4)

(2 ≤ ip ttl null ≤ 4) ∧

(ip ttl pos == 0) =⇒ (0.20 ≤ tcp flags syn percent ≤ 0.33)

(3 ≤ size ≤ 5) ∧

(0 ≤ tcp acknum null ≤ 2) ∧

(0 ≤ tcp acknum pos ≤ 1) =⇒ (2 ≤ ip id pos ≤ 4)
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A.8 TCP Port 80

A.8.1 1 - NTInfoscan

(1 ≤ ip id pos ≤ 3) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (1 ≤ tcp urg null ≤ 3)

(1 ≤ ip id pos ≤ 3) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (1 ≤ ip foffset null ≤ 3)

(1 ≤ ip id pos ≤ 3) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (1 ≤ ip ttl null ≤ 3)

(1 ≤ ip id pos ≤ 3) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (1 ≤ ip tos null ≤ 3)

(1 ≤ ip id pos ≤ 3) ∧

(0 ≤ tcp seqnum null ≤ 1) ∧

(0 ≤ tcp acknum null ≤ 1) =⇒ (2 ≤ size ≤ 4)

(0 ≤ tcp seqnum null ≤ 1) ∧

(1 ≤ tcp seqnum pos ≤ 2) =⇒ (1 ≤ tcp urg null ≤ 3)

(0 ≤ tcp seqnum null ≤ 1) ∧

(1 ≤ tcp seqnum pos ≤ 2) =⇒ (1 ≤ ip foffset null ≤ 3)

(0 ≤ tcp seqnum null ≤ 1) ∧

(1 ≤ tcp seqnum pos ≤ 2) =⇒ (1 ≤ ip ttl null ≤ 3)

(0 ≤ tcp seqnum null ≤ 1) ∧
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(1 ≤ tcp seqnum pos ≤ 2) =⇒ (1 ≤ ip tos null ≤ 3)

(0 ≤ tcp seqnum null ≤ 1) ∧

(1 ≤ tcp seqnum pos ≤ 2) =⇒ (2 ≤ size ≤ 4)

A.9 ICMP Echo Reply

A.9.1 2 and 35 - Ping of Death

(ip ttl null > 0) =⇒ (ip foffset null > 0)

(size > 1) =⇒ (ip foffset null > 0)

(ip id pos > 0) =⇒ (ip foffset null > 0)

(ip id step mean > 0.0) =⇒ (ip foffset null > 0)

(ip tos null > 0) =⇒ (ip foffset null > 0)

(ip foffset null == 0) =⇒ (ip ttl null == 0)

(ip foffset null == 0) =⇒ (ip id step mean == 0.0)

(ip foffset null == 0) =⇒ (ip id range == 0)

(ip foffset null == 0) =⇒ (ip id pos == 0)

(ip foffset null == 0) =⇒ (ip tos null == 0)

(ip foffset null == 0) =⇒ (size == 1)

(ip id range > 0) =⇒ (ip foffset null > 0)

(ip id step variance > 0.0) =⇒ (ip foffset null > 0)

(ip foffset null == 0) =⇒ (ip id step variance == 0.0)
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