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ABSTRACT

Chapin, Stephen Joel. Ph.D., Purdue University, December 1993. Scheduling Sup-
port Mechanisms for Autonomous, Heterogeneous, Distributed Systems. Major Pro-
fessor: Eugene H. Spa�ord

An essential component of e�ective use of distributed systems is proper task place-

ment, or scheduling. To produce high-quality schedules, scheduling algorithms require

underlying support mechanisms that provide information describing the distributed

system. The work presented here makes a clear distinction between scheduling poli-

cies and the underlying mechanism, and focuses on the problem of providing general-

purpose mechanisms that facilitate a broad spectrum of task placement algorithms.

This dissertation proposes a model for distributed scheduling support mechanisms.

This model includes scalable and extensible mechanisms that support the e�cient

implementation of scheduling policies on distributed systems, while preserving the

autonomy of the component systems. The mechanisms include provably correct in-

formation exchange protocols for system state dissemination in distributed systems.

MESSIAHS is a prototype implementation of these mechanisms, including a schedul-

ing module that implements the basic mechanism, as well as a library of function

calls and a specialized programming language for writing distributed schedulers. As

a demonstration of the utility of the prototype, several algorithms from the litera-

ture are implemented and their performance is analyzed. The experimental results

show average overhead of approximately 10% using MESSIAHS, measured against a

theoretical ideal running time. The results indicate that it is possible to build scal-

able, general-purpose mechanisms that support a variety of task placement algorithms

while preserving autonomy.
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1. INTRODUCTION

A typical research environment represents a large investment in computing equip-

ment, including dozens of workstations, several mainframe machines, and possibly

a small number of supercomputers. Taken collectively, the aggregate computing re-

sources are su�cient to solve di�cult problems such as large-number factoring or

climate simulation. When each machine is used in isolation, several limitations ap-

pear.

Gantz, Silverman, and Stuart [GSS89] and Litzkow [Lit87] show that equipment in

a workstation-based environment is underutilized, with processor utilization as low as

30%. Although the combined resources of several machines might solve the problem

at hand, users of this equipment often �nd that the resources local to each machine,

such as memory, disk space, and processing power, are not su�cient to execute large

programs (see Karp, Miura, and Simon [KMS93] for examples). Certain scienti�c

application programs have distinct components, best suited for massively-parallel

machines, vector-processing supercomputers, or graphics-visualization workstations.

Restricting execution of all the components to one machine or executing components

on inappropriate machines incurs delay that could be avoided if each component were

executed on the architecture best suited for it.

A solution to these limitations is to conglomerate the separate processors into

a distributed system. Distributed systems communicate by passing messages over

an external communications channel. Such systems are often called loosely-coupled

systems, in contrast to tightly-coupled parallel machines that communicate through

shared memory [HB84]. Coupling represents only one quality of distributed systems.

Enslow [Ens78] de�nes four aspects of distribution: hardware distribution, data dis-

tribution, processing distribution, and control distribution. Most distributed systems,
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especially those that assign programs to processors for execution, fail to exploit con-

trol distribution fully. Instead, these systems use a centralized control mechanism to

manage distributed hardware, which often results in poor processing distribution.

Distributed systems can be joined into larger distributed systems to further expand

the computational power of the whole. Software modules running on the individual

computers can assign programs to processors for execution. However, obstacles such

as incompatible architectures and restrictive administrative domains hinder the for-

mation of large-scale distributed systems composed of autonomous, heterogeneous

systems.

In a conventional situation, a user has to discover which processors are currently

available, reserve them for computation, manually place the programs and associ-

ated data �les on the machines, and serve as coordinator for their execution. Using

an automated scheduling system, the user submits the individual programs to the

scheduling system running on a host participating in the distributed system, the sys-

tem automatically locates suitable execution sites and schedules the programs for

execution.

This dissertation de�nes a task as a consumer of resources. Examples of tasks

include the conventional model of a computationally intensive unit in a larger pro-

gram, as well as a set of database queries (see Carey, et al. [CLL85]), output requests

for printers, and data transfers over a communication network. For simplicity of

description, this dissertation restricts further discussions to the conventional model

of placing computational tasks on processors. A task force (as de�ned in [VW84])

comprises a group of cooperating tasks for solving a single problem.

Within a distributed system, there are two levels of task scheduling: the associ-

ation of tasks with processors (global scheduling), and the choice of which task to

execute among those available on a processor (local scheduling) [CK88]. This disser-

tation concentrates on developing support for global scheduling.

Webster's Dictionary de�nes autonomous as \having the power of self-govern-

ment," or as \responding, reacting, or developing independently of the whole." Thus,
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an autonomous system makes local policy decisions and can act without the permis-

sion of any external authority. In autonomous systems, all information, behavior, and

policy pertaining to a system are private to that system. Any disclosure of private

information is at the discretion of the local system.

Because of the prevailing decentralization of computing resources, autonomy plays

an increasingly important role in distributed computation systems. No longer does a

single authoritative entity control the computers in a large organization. Users may

control a few machines of their own, and their department may have administrative

control over several such sets of machines. Their department may be part of a regional

site, which is, in turn, part of a nationwide organization. No single entity, from the

user to the large organization, has complete control over all the computers it may

wish to use.

Garcia-Molina and Kogan [GMK88], and Eliassen and Veijalainen [EV87] have

examined autonomy in distributed systems and devised taxonomies for di�erent types

of autonomy. The scheme proposed by Eliassen and Veijalainen is more general but

less detailed than that proposed by Garcia-Molina. The following four classes of

autonomy combine the two schemes and tailor the de�nitions to the application of

distributed scheduling.

design autonomy

The designers of individual systems are not bound by other architectures, but

can design their hardware and software to their own speci�cations and needs.

Heterogeneous systems are multiprocessor systems that may have processors of

dissimilar types. Design freedom can lead to heterogeneity, as machines can have

distinct instruction sets, byte orderings, processor speeds, operating systems,

and devices. Heterogeneity is a result of design autonomy, but is signi�cant

enough to deserve special mention. Because the individual processors within

the system can have disparate architectures, inter-processor communicationmay

require translation of data into a format understood by the recipient. Also, a

program compiled for one architecture cannot be directly executed on a machine
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of another architecture. Section 2.1.1 describes heterogeneity issues in greater

detail.

communication autonomy

Separate systems can make independent decisions about what information to

release, what messages to send, and when to send them. A system is not required

to advertise all its available facilities, nor is it required to respond to messages

received from other systems. A system is free to request scheduling for a task,

regardless of whether that task could be run locally.

administrative autonomy

Each system sets its own resource allocation policies, independent of the policies

of other systems. The local policy decides what resources are to be shared. In

particular, a local system can run in a manner counterproductive to a global

scheduling algorithm. All policy-tuning parameters are set by the local admin-

istrator. Also, because membership in the system is dynamic, a machine can

attempt to join any system; conversely, the module managing the administrative

aspects of a system can refuse any such attempt by any machine.

execution autonomy

Each system decides whether it will honor a request to execute a task and has

the right to stop executing a task it had previously accepted.

Execution autonomy allows a system to have a local scheduling policy; adminis-

trative autonomy allows the system to choose that policy. Many existing mechanisms

exhibit execution autonomy but have a uniform scheduling policy for all participating

machines, and thus do not have administrative autonomy.

To be considered autonomous, a system must display some degree of all four

types of autonomy. Mechanisms supporting task placement must support all four

types of autonomy. Therefore, the mechanisms must run on multiple architectures,

allow local decisions regarding communication with external systems and execution
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of tasks, and support a local scheduling policy. Unless noted otherwise, all uses of

the terms autonomous system and system in this dissertation refer to autonomous,

heterogeneous systems.

Because of execution and communication autonomy, all decisions pertaining to a

system are under its control. The system advertises as little or as much of its system

state as its local policy decrees, and cannot be forced to accept tasks for execution.

Therefore, a machine A may not receive complete information describing machine B;

A knows only what B chooses to tell A.

The execution autonomy constraint requires a system to be able to suspend a

task and remove it from a processor if the local scheduling policy determines that it

should no longer be run. Removal of a task is called task revocation. Revocation can

be accomplished by killing the task, by suspending the task, or by moving it to a new

processor (this is called task migration).

The combination of communication and design autonomy, and execution auton-

omy poses another problem for process migration. Execution autonomy can require

the migration mechanisms to move a process from one machine to another, but be-

cause of communication autonomy and design autonomy, the sender may not know

the architecture of the recipient machine. Therefore, advance translation of the pro-

gram image might be impossible. Section 2.1.1 discusses related work on machine-

independent program representation that could alleviate this problem. Machines with

di�erent instruction sets cannot directly share code. The mechanisms presented in

this dissertation provide support for, but do not include, migration of architecture-

dependent processes between heterogeneous systems.

Administrative autonomy means that a system cannot rely on neighboring systems

to behave in any speci�c manner. When combined with communication autonomy,

it means that expected inter-message times may be nonuniform between neighbors,

because they may not send messages with the same frequency. The combination of

administrative autonomy and execution autonomy means that the local scheduling
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Figure 1.1 A sample distributed system

policy might act contrary to the concerted e�orts of a group of cooperating remote

modules.

The mechanisms described in this dissertation support global task scheduling in

autonomous, heterogeneous, distributed systems. Figure 1.1 depicts a sample sys-

tem representing a cooperative e�ort among a university, a federally-funded national

laboratory, and a private corporation. Each organization contributes some of its

computational resources (workstations from the university, mainframes from indus-

try, and supercomputers from the national lab), and the resulting system provides a

variety of computational resources with more aggregate power than any single orga-

nization possesses. At the same time, each individual organization preserves some of

its autonomy and reserves the right to decide what runs on its machines.

We draw a distinction between the scheduling support mechanisms and the schedul-

ing policies and associated algorithms built upon these mechanisms. The algorithms

that implement the policies are responsible for deciding where a task should be run;
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the mechanisms are responsible for gathering the information required by the algo-

rithms and for carrying out the policy decisions. The mechanisms provide capability;

the policies de�ne how that capability is to be used. An administrator is an entity,

either a human or a software module, that decides the policy for a system.

1.1 Statement of Thesis

thesis

Automated support for the placement of tasks in distributed, autonomous,

heterogeneous systems can be achieved in a scalable manner while preserv-

ing autonomy and supporting a variety of scheduling algorithms.

Five principles guided the development of the mechanisms described by the thesis

statement. Each principle addresses part of the thesis statement, and together they

form a basis for constructing scheduling support mechanisms that ful�ll the thesis.

generality The support mechanisms should support a broad spectrum of algorithms,

and should be extensible to support current and future scheduling policies.

In particular, the representations of system capabilities and task requirements

should adapt to the needs of users and administrators.

autonomy There should be as little forfeiture of local control as is feasible. The

mechanisms should support the autonomy of the policy for each system; only

those data the local policy wishes to advertise to other systems should be adver-

tised. Each machine within the system should be free to have a local scheduling

policy that does not conform to a global policy. Parameters that control the

system's behavior should be tunable by the local administrator.

scalability The support mechanisms should function on systems ranging from a sin-

gle workstation to hundreds or thousands of processors, with interconnection
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schemes ranging from local area networks to wide area networks. Centraliza-

tion of information precludes scalability (see [Stu88]), and should therefore be

avoided.

non-interference High monitoring overhead and message tra�c can adversely a�ect

performance within the system. Therefore, the scheduling mechanisms should

communicate only necessary data to minimize their interference with the run-

ning of application programs. The scheduling module should also minimize the

use of memory, disk and other shared resources.

data soundness An ideal support mechanism supplies complete, perfectly accurate

information to scheduling algorithms. Lamport [Lam78] discusses information

dissemination latency in distributed systems, and shows that it is impossible

to know the state of the entire distributed system instantaneously. The best

that can be achieved is an estimate of the state at some point in the past.

However, the underlying mechanisms can guarantee individual properties of the

data. Of primary concern are the timeliness, completeness, and accuracy of the

data available to the algorithms.

Conicts can arise when two or more of the principles are observed to their fullest

extent. For example, the distributed and autonomous nature of the system precludes

global sharing of information. There is an obvious tradeo� between freshness of

data and minimization of resources spent collecting the data. Frequent and detailed

updates support data soundness but increase overhead. The support mechanisms

in this dissertation provide facilities to tune system behavior, giving administrators

freedom to choose from a range of performance alternatives.

Because of scalability and distribution, no machine can keep complete information

on every processor in a large system. The bookkeeping requirements are proportional

to the number of machines in the distributed system, the set of information de-

scribing each machine, and the amount of communication each machine does. This

bookkeeping could quickly consume the processing power of the system, and little or
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no productive work would be accomplished (see [WV80, FR90]). Again, there is a

tradeo� between the accuracy of a system description and its size. A solution is to

compress multiple system descriptions into one, thus saving space while preserving

much of the descriptive information.

Assumptions about behavior of the computing systems that make up the dis-

tributed system violate the autonomy principle. With complete autonomy, it is un-

likely that any useful work would be accomplished in a distributed system, because

there is no assurance that any of the individual systems are conforming to any stan-

dard of behavior. Tradeo�s between autonomy and the other principles occur often,

and are resolved in favor of autonomy to the greatest extent possible while still ful-

�lling the basic requirements of scheduling support.

Therefore, when a conict between autonomy and one of the other design prin-

ciples occurs, the resulting solution is formulated to include as little mechanism as

necessary and sacri�ce the least autonomy that will resolve the conict. A discussion

of these conicts and compromise solutions appear in chapter 3.

1.2 Organization of the Dissertation

The remainder of this dissertation is organized as follows: chapter 2 discusses

related work; chapter 3 describes an architecture for distributed systems; chapter 4

de�nes formal system state dissemination rules and proves them correct; chapter 5

describes the MESSIAHS prototype implementation of these mechanisms; chapter 6

gives performance results; and chapter 7 draws conclusions and states future directions

for this work.
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2. RELATED WORK

This chapter describes three areas of related work. The �rst section discusses

existing mechanisms that underlie the work in this dissertation, including support for

heterogeneity and task migration. Heterogeneous support is necessary for interoper-

ability between machines with design autonomy. Task migration supports execution

autonomy. The second section describes related work on mechanisms supporting

scheduling for distributed systems. Section two also examines the systems in light

of the �ve principles given in section 1.1. The third and fourth sections examine

scheduling algorithms. Section three presents a taxonomy of scheduling algorithms

for distributed systems, and section four relates a survey of distributed scheduling

algorithms and systems.

2.1 Extant Fundamental Mechanism

The mechanisms described in this dissertation are built upon fundamental mecha-

nisms developed by others. These extant components consist of support for heteroge-

neous computing and task migration mechanisms. Heterogeneous computing support,

in the form of a uniform data representation and an architecture-independent pro-

gram representation, is necessary to support design autonomy fully. Task migration

provides options for execution autonomy beyond task suspension or termination.

These issues are described here because they support important aspects of auton-

omy. The mechanisms developed as part of the thesis research for this dissertation

take advantage of this existing work and do not include explicit mechanisms that

duplicate existing functionality. The mechanisms were designed with these needs in

mind, and nothing in the design precludes the use of extant techniques; rather, the
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design assumes that these techniques are available, and can use them where they are

available.

2.1.1 Heterogeneous Computing

Machines with heterogeneous architectures often possess di�ering data represen-

tations. For two heterogeneous machines to communicate e�ectively, each must be

able to translate data to a format understood by the other. Machines with a common

data representation can communicate directly without resorting to an external data

representation.

Architectural heterogeneity of data representation is usually accommodated by

one of two approaches for communication among machines with n disparate archi-

tectures: either every machine has n � 1 conversion modules, one to convert from

its local data encoding to the encoding for each of the other n � 1 architectures in

use; or all machines can have a module to encode and decode from their architec-

ture's representation into a standard, common format. The former approach, called

asymmetric conversion, requires O(n2) di�erent conversion modules, while the latter

approach, called symmetric conversion, requires O(n) distinct modules (see Comer

and Stevens [CS93b, chapter 19]). The approach of symmetric data conversion is

generally preferred because of the relative ease of adding new data formats to the

distributed system.

ISO X.409, Abstract Syntax Notation One (ASN.1) is the international standard

for external data representation [fS87a, fS87b], and speci�es an explicit encoding.

Explicit encoding embeds type information in the data stream, and a host with no

prior knowledge of the data structure can interpret the data. The XDR (eXternal

Data Representation) standard [Sun87] speci�es an implicit encoding for data types,

which means that no type information is embedded in the data stream. The hosts

at the endpoints of a communication must agree upon the structure of the data

beforehand.
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A situation analogous to the external data representation problem exists for the

representation of compiled programs for heterogeneous systems. As of yet, no one

has speci�ed an architecture-independent and operating-system-independent program

representation. Machines that share a common object code format and instruction

set can share object �les without translation.

Various attempts have been made that have resulted in O(n2) solutions to the

problem. Essick [EI87], and Shub, et al. [DRS89, Shu90] devise multiple-architecture

task representations. Both representations combine machine code for multiple archi-

tectures in a single program.

External program representations, analogous to external data representations,

have been proposed. The Open Software Foundation has proposed ANDF (Arch-

itecture Neutral Distribution Format [Mac93]) and an associated implementation

technology, TDF (Ten15 Distribution Format [Pee92]), as standards for intermedi-

ate program representation for the OSF/1 operating system. UNCOL [Con58] is

an earlier e�ort at such a standard. While each of these addresses some aspects of

supporting architecture-independent program representation, none of them is wholly

satisfactory. The speci�cation of a uni�ed, external program representation is an

open problem.

The mechanisms described by this dissertation use the existing solutions to arch-

itecture-independent data representation. The problem of determining an archi-

tecture-independent program representation is an active research area. Current re-

search focuses on specifying intermediate forms for program compilation. Rather than

preclude support for heterogeneous systems, the mechanisms described in this disser-

tation are designed to take advantage of such advances when they become available.

2.1.2 Task Migration

A vital component of execution autonomy is the ability to revoke a running task

and to reclaim the resources used by the task. Terminating the task provides the

required functionality, but to users of the distributed system, this action appears
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capricious and unsatisfactory. A solution to this problem, called task migration,

moves a running task from a source processor to a destination processor.

The design of the mechanisms discussed in chapter 3 assumes the presence of

an underlying checkpointing and task-migration mechanism for the support of task

revocation and execution autonomy. This section gives a brief survey of several alter-

natives for process migration mechanisms. It �rst examines one in detail, and then

presents several mechanisms as examples, noting the unique features of each.

Task migration mechanisms use variations on a three-step process:

1. (checkpoint) The source system stops a running process and saves its state.

2. (transfer) The saved state of the process is transferred to the destination system,

and resources are released at the source system.

3. (restart) The destination system restarts the process.

If the process migration mechanism is transparent, the process will not detect that

it has moved. There are several factors that complicate the mechanism. For example,

open �les and communication endpoints must be replicated on the destination system

to achieve transparent migration. In general, any location-dependent aspects of the

process impede migration.

DEMOS/MP

Powell and Miller [PM83] discusses process migration in the DEMOS/MP dis-

tributed operating system. DEMOS/MP is a message-based operating system, and

all interactions between processes occur via communications-based system calls. DE-

MOS/MP splits the transfer step into six substeps, yielding an eight-step migration

mechanism. The steps follow, with actions by the source and destination machines

marked.

1. (source) Stop the executing process, and mark it in migration.

2a. (source) Request migration by the destination.
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2b. (destination) Allocate a new process state within the kernel.

2c. (destination) Copy the process state from the source.

2d. (destination) Copy the process memory (code, data, stack) from the source.

2e. (source) Forward any messages that arrived for the process during the previous

steps.

2f. (source) Reclaim the resources used by the process, but keep a forwarding address

so that messages will be correctly delivered to the destination processor.

3. (destination) Restart the process.

The numbering preserves that of the basic algorithm. Steps 2a through 2e indicate

substeps of the transfer process. The DEMOS/MP approach is typical of migration

mechanisms that attempt to optimize various aspects of the transfer step.

Sprite

The Sprite operating system achieves transparent process migration [OCD+88,

DO91]. Sprite uses the basic checkpoint{transfer{restart algorithm, but simpli�es the

transfer process because of the use of backing �les. Instead of paging to local storage,

Sprite pages to ordinary �les in the network �le system. Thus, any machine in the

Sprite system can access the backing �le for a process. To implement the transfer

step, the source pages out the running process and passes information describing the

backing �le to the destination, which uses the same �le and pages in the migrated

process.

The V System

The V system uses a technique called precopying, wherein the memory is copied

while the process continues to execute [TLC85]. After the memory is precopied, the

process is stopped and any altered pages are copied again. This reduces the amount

of time a process is frozen.
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Accent

The Accent operating system uses a lazy approach to transfer [Zay87]. The virtual

memory image of the process is left on the source, and as page faults occur on the

destination, the memory is moved one page at a time. Lazy copying has the advantage

that unneeded memory is never copied, but the disadvantage that resources cannot

be immediately reclaimed at the source.

Locus, Charlotte, and work by Bryant and Finkel

Locus uses the basic checkpoint{transfer{restart algorithm, with the optimization

that read-only segments that already exist on the target machine are not copied

[PW85]. The Charlotte distributed operating system uses the basic algorithm, with

the addition of message endpoint forwarding [AF87, FA89]. Bryant and Finkel [BF81]

concentrates on developing stable process migration methods. A stable method avoids

process thrashing, which occurs when the migration of a task immediately induces

another migration.

2.2 Scheduling Support Systems

Solutions to the problem of scheduling support for distributed systems have been

proposed, but none of the proposals ful�ll all the goals set forth in the thesis statement

in section 1.1. This section describes prior research in scheduling support mechanisms.

In this discussion, the terms local task and foreign task are de�ned from the point

of view of the host executing the task. A local task executes on the host where

it originated, without going through the global scheduling system. A foreign task

originates at a host di�erent from the one on which it executes.

NetShare

NetShare is a distributed systems construction product of Aggregate Computing,

Inc. [Agg93c, Agg93b, Agg93a]. NetShare comprises services that provide resource
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management and task execution on a heterogeneous local-area network. NetShare

has two main components, the Resource Management Subsystem and the Task Man-

agement Subsystem.

The Resource Manager consists of three parts: the Resource Information Server

(RIS), the Resource Agents (RA), and the Client Side Resource Library (CSRL). The

RIS is a centralized database of information describing resources available within the

system, including state information for individual machines. Resource Agents run on

each machine and advertise their system state to the RIS. Clients use the CSRL to

request resource allocation through the RIS. The CSRL is a library of function calls

that are linked with individual application programs. There is no scheduling agent

external to the applications; they are self-scheduling.

Application

Client Side
Resource Library

RIS

Agent

Agent

Agent

1

2

Figure 2.1 The NetShare Resource Management Subsystem

Figure 2.1 shows the interaction between an application, the RIS, and Resource

Agents. In step (1), state information passes from Agents to the RIS. In step (2), the

application uses the CSRL to query the RIS.

The Agent updates consist of the following information:
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� the name, architecture, model, and network address of the host

� the name, version, and release of the operating system

� the amount of physical, free virtual, and used virtual memory

� one, �ve, and 15 minute load averages

� the idle time and CPU usage of the host

� power rating, based on standard benchmarks

� number of users

� two user-de�nable properties

The two user-de�nable properties provide a limited extension mechanism for Net-

Share. Clients query the database through the CSRL, and receive a set of matching

records in response. A sample call to the CSRL, which appears in [Agg93c], is:

select UNIX_HOST if ((UNIX_HOST:LOAD_5 < 1.0) &&

(UNIX_HOST:USERS == 0))

order by (UNIX_HOST:LOAD_5)

This call queries the database for hosts running the Unix operating system, with

a �ve-minute load average less than 1.0, and no active users. The RIS �nds the

matching set of hosts, and returns the set, sorted by �ve-minute load average. The

syntax and use of the resource management mechanism is similar to that found in

the Univers [BPY90] and Pro�le [Pet88] naming systems.

The client uses the Task Management Subsystem (TMS) to schedule the individual

tasks for execution. The TMS is composed of the Task Servers (TS) and the Client

Side Task Library (CSTL). Application programs place individual tasks with calls to

the CSTL.
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Figure 2.2 The NetShare Task Management Subsystem

Figure 2.2 shows the relationship between the application and the Task Servers.

In the depicted scenario, the client application has selected two servers using the

RMS, and has used the TMS to place seven tasks on the servers.

Task Servers have limited support for autonomy, in that administrators can set

quotas limiting the number of tasks that are either placed by a host (an export quota),

or that have been accepted from a foreign host (import quotas).

NetShare has several limitations that prevent it from meeting the guidelines ex-

pressed in chapter 1. NetShare uses centralized information and �le storage, which

limit the scalability of systems that use NetShare. The two-�eld extension mecha-

nism prohibits elaborate scheduling policies or multiple policies that use data not in

the standard set. Execution autonomy is compromised because the policy expression

mechanism is completely under the control of the application program; the acceptance

of a task for execution is based solely on the import quota of the target machine.
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Load Balancer

Load Balancer [Fre], a product of Freedman Sharp and Associates Inc., is a batch

queuing and load sharing system for Unix operating systems. Load Balancer is

similar to NetShare in that Load Balancer has a single resource manager (lbmasterd),

a per-node local task manager (lblocald), centralized decision making, and limited

autonomy support.

Load Balancer has a static con�guration �le covering all hosts, users, and applica-

tions within the system. The lbmasterd reads the con�guration �le, and is responsible

for directing scheduling application programs to hosts for execution. Table 2.1 con-

tains the �elds in the con�guration �le describing hosts and tasks.

Table 2.1 Load Balancer con�guration �le �elds

host description application description
hours of availability revocation behavior
cpu architecture per-architecture estimated runtime

RAM RAM usage
swap space swap space usage

maximum number of foreign tasks
maximum system load

number of CPUs

The lblocald process collects system state information and forwards it to the lb-

masterd. lbmasterd also performs local task management on tasks scheduled by Load

Balancer, and determines when a system is considered idle, and thus eligible to accept

Load Balancer tasks.

The revocation behavior for an application is centrally speci�ed in the con�gu-

ration �le, which violates administrative autonomy for the individual hosts. There

is no provision for extending the description mechanism, although the presence of

default host, user, and application descriptions provides some generality. Because of
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Figure 2.3 A sample DRUMS system

its centralized decision making, Load balancer violates the scalability and execution

autonomy requirements.

DRUMS and ANY

DRUMS1 [BH91a, BH91b, Bon91] is a distributed information collection and man-

agement system developed at Victoria University, Wellington. DRUMS has three

main components: local system state monitors (rstat+), processes that collect in-

formation from a set of hosts (collector), and a replicated centralized information

manager (database). Figure 2.3 shows the structure of a DRUMS system.

A collector process introduces one layer of hierarchical structure, and periodically

queries a set of hosts to obtain their system state from the rstat+ daemons. A collector

process then broadcasts the data to all the database processes. The database processes

store the system description data for all hosts in the system and respond to client

requests.

1DRUMS: Distributed Resource MeasUrement Service
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DRUMS concentrates on data-collection, and uses an associated scheduler called

ANY. ANY queries a database to obtain a set of hosts that match a description. A

description contains a set of desired characteristics and a list of resource weightings.

The characteristics are grouped as follows:

Statistical measurements, such as system load, swap space, and memory availability

Hardware requirements, such as vector processors, a oating-point processor, or local

disks

Architecture and system software, including the processor type (e.g. Sun SPARC)

and operating system (e.g. 4.3BSD Unix)

User interaction, including the presence of a user on the console, and the number of

users logged in to the machine

Hostnames and network addresses, which allow the restriction of queries to particular

hosts or networks

These characteristics can be combined with logical AND, OR, and NOT operators.

The resulting set of matching hosts is sorted based on the weightings given in the

description, and the highest-ranked hosts are returned.

DRUMS and ANY provide a data collection mechanism and the ability to cus-

tomize the scheduling policy of a local host. However, the centralized database pro-

cesses limit scalability, particularly because of the broadcast mechanism used by col-

lector processes. There is no provision within DRUMS for local hosts to reject foreign

tasks, which precludes execution autonomy. DRUMS does not provide extensible

description mechanisms, and therefore does not follow the principle of generality.

Remote UNIX, Condor, Butler, and Distributed Batch

Remote Unix and its successor, Condor, were developed at the University of

Wisconsin [Lit87, BLL92]. Butler was developed as part of the Andrew project
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at Carnegie-Mellon University [Nic87], and Distributed Batch was developed at the

MITRE Corporation [GSS89]. All of these systems attempt to increase utilization

and share load across a set of Unix-based workstations, but are less complete sys-

tems than NetShare or Load Balancer. Therefore, this section groups these systems

together and gives a brief description of each.

Remote Unix and Condor use a Central Resource Manager, which gathers infor-

mation about all the participating hosts, and a Local Scheduler per host that controls

task execution for that host. RemoteUnix has a simple two-level priority scheme for

local and foreign tasks, while Condor has a policy expression mechanism that provides

administrative autonomy. The centralized control of the Central Resource Manager

limits scalability. There is no provision for extension of the description mechanism.

Both Condor and Remote Unix support checkpointing and task migration to facili-

tate execution autonomy, but neither provides support for communication autonomy.

Butler uses a central Machine Registry and a shared �le system to manage a set

of homogeneous workstations. There is no provision for administrative or execution

autonomy; all control is centralized. Hosts are dedicated to one task at a time, and

are not returned to the free pool until the task completes execution.

Distributed Batch runs on a local-area network of 4.2BSD Unix workstations,

using centralized storage. Distributed Batch contains revocation support in the form

of task termination, suspension, and migration. Hosts can be selected based on

architecture, operating system version, available memory, local disk con�guration,

and oating point hardware. There is no administrative autonomy within Distributed

Batch.

All of these systems violate the principle of scalability because of centralized �le

storage and information broadcasting. None of these systems provide support for all

four aspects of autonomy. These systems do not meet the requirements of generality,

in part because they have no extensible description mechanisms.
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2.3 A Taxonomy of Scheduling Algorithms

Casavant and Kuhl [CK88] proposes a taxonomy for scheduling algorithms in

distributed systems, which is reproduced in �gure 2.4. Section 2.4 surveys related

work in the area of scheduling algorithms, and classi�es those algorithms in terms of

this taxonomy. Chapter 6 describes experiments performed using algorithms chosen

to represent di�erent portions of the taxonomy.

At the topmost layer, schedulers are either local or global. Global scheduling, or

macro-scheduling, chooses where to run a task. Local scheduling, or micro-scheduling,

chooses which eligible task executes next on a particular processor. This dissertation

concentrates on support for global scheduling, and uses of the term scheduling refer

to global scheduling throughout the remainder of the dissertation.

Global scheduling has two subcategories: static and dynamic scheduling. Static,

or compile-time, scheduling depends only on the makeup of the task force and the

topology of the distributed system. Static schedulers assume that precise system

and task description information is available at the time the program is compiled.

Dynamic, or run-time, scheduling takes system state into account, and makes all

decisions regarding the placement of a task at the time it is executed.

In physically non-distributed scheduling policies, a single processor makes all de-

cisions regarding task placement. Under physically distributed algorithms, the logical

authority for the decision-making process is distributed among the processors that

constitute the system.

Under non-cooperative distributed scheduling policies, individual processors make

scheduling choices independent of the choices made by other processors. With coop-

erative scheduling, the processors subordinate local autonomy to the achievement of

a common goal.

Both static and cooperative distributed scheduling have optimal and suboptimal

branches. Optimal assignments can be reached if complete information describing the

system and the task force is available. Suboptimal algorithms are either approximate
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Figure 2.4 A taxonomy of scheduling algorithms from [CK88]

or heuristic. Heuristic algorithms use guiding principles, such as assigning tasks with

heavy inter-task communication to the same processor, or placing large jobs �rst.

Approximate solutions use the same computational methods as optimal solutions,

but use solutions that are within an acceptable range, according to an algorithm-

dependent metric.

Approximate and optimal algorithms employ techniques based on one of four com-

putational approaches: enumeration of all possible solutions, graph theory, mathe-

matical programming, or queuing theory.

There are other properties of scheduling algorithms that are not represented in

the taxonomy, but apply to several di�erent branches simultaneously. These proper-

ties are adaptive, bidding, load balancing, probabilistic, and one-time assignment or

dynamic reassignment.
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Any of the dynamic categories can have a subclass containing adaptive algorithms.

Many researchers use the terms dynamic and adaptive interchangeably; in this disser-

tation, the term adaptive refers only to algorithms that employ history mechanisms

to track system response to past scheduling decisions, and modify the scheduling

algorithm accordingly. Bidding algorithms advertise work to be done and wait for

responses from available processors.

Load balancing policies attempt to distribute the workload so that processor uti-

lization is approximately equal for all processors in the system. Eager, et al. [ELZ85]

discusses load-balancing algorithms using task migration in detail and classi�es them

according to whether they are sender-initiated or receiver-initiated. Under sender-

initiated load balancing, the busy processor �nds an idle processor to receive a task.

With receiver-initiated load balancing, an idle processor locates an overloaded pro-

cessor and requests a task. Wang and Morris [WM85] presents a similar taxonomy

using the names source-initiated for sender-initiated and server-initiated for receiver-

initiated load balancing.

Probabilistic algorithms operate in one of two methods. The �rst method makes

scheduling choices based on statistics rather than exact information. The second

method randomly orders the tasks within a task force, then schedules the tasks in

that order. Algorithms using the latter method produce several such schedules, and

choose the best among them, relying on the randomness of the ordering to produce

at least one acceptable schedule.

With one-time assignment algorithms, a task runs for its entire lifetime on the

processor where it is initially scheduled. Dynamic reassignment algorithms attempt

to perform migration of tasks to more suitable processors.

The work presented in this dissertation provides support for global dynamic

scheduling algorithms. Global static algorithms can be implemented using the mech-

anisms, but such implementations will not produce optimal results. These issues are

discussed in chapter 6, Experimental Results.
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2.4 Scheduling Algorithms

Many researchers have devised algorithms for task placement in distributed sys-

tems. This section categorizes several of these techniques in terms of the taxonomy

presented in the previous section, and analyzes their applicability to the general prob-

lem of global scheduling for autonomous, heterogeneous, distributed systems.

Tables 2.2, 2.3, and 2.4 display information garnered from our survey of existing

scheduling algorithms and mechanisms. For each algorithm or mechanism, an entry

indicates whether a method is a policy, mechanism, or both; whether the method is

distributed, or supports heterogeneity or autonomy; and whether the method mini-

mizes overhead, supports scalability, or is extensible. Entries are either Y, N, P, or x,

indicating the answer is yes, no, partially, or not applicable. In the case of autonomy,

the letters A, C, or E indicate support for administrative, communications, or execu-

tion autonomy. Design autonomy is not listed, as it is covered by the heterogeneity

column. The remainder of this section contains a brief description of each method,

with a discussion of its place in the taxonomy and its individual properties.

2.4.1 Dynamic, Distributed, Cooperative, Suboptimal Algorithms

All of the algorithms in this section are dynamic, distributed, cooperative, subop-

timal, and heuristic.

Blake [Bla92] describes four suboptimal, heuristic algorithms. Under the �rst

algorithm, Non-Scheduling (NS), a task is run where it is submitted. The second

algorithm is Random Scheduling (RS), wherein a processor is selected at random and

is forced to run a task. The third algorithm is Arrival Balanced Scheduling (ABS), in

which the task is assigned to the processor that will complete it �rst, as estimated by

the scheduling host. The fourth method uses receiver-initiated load balancing, and is

called End Balanced Scheduling (EBS). NS, RS, and ABS use one-time assignment;

EBS uses dynamic reassignment.
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Table 2.2 Summary of distributed scheduling survey, part I
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Blake [Bla92] (NS) Y N Y N C Y Y x

(ABS) Y N Y N N N Y x

(RS) Y N Y N N Y Y x

(EBS) Y N Y N N N Y x

(CBS) Y N N N N N N x

Condor [BLL92] Y Y P N A x N N

Remote Unix [Lit87] Y Y P N A x N N

Butler [Nic87] Y Y P Y A x N N

MITRE [GSS89] Y Y P P A x N N

Casavant and Kuhl [CK84] Y Y Y N E x P N

Ghafoor and Ahmad [GA90] Y Y Y N E Y P N

Stankovic [Sta81, Sta85a] Y N Y N N x N x

Ramamritham and Stankovic [RS84] Y N Y N E x N x

Wave Scheduling [VW84] Y Y Y N E x P N

Ni and Abani [NA81] (LED) Y N Y N N x N N

(SQ) Y N Y N N Y Y x
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Table 2.3 Summary of distributed scheduling survey, part II
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Stankovic and Sidhu [SS84] Y Y Y N EAC x P N

Stankovic [Sta85b] Y N Y N N x N N

Andrews et al. [ADD82] Y N Y x E x Y N

Majumdar and Green [MG80] Y Y Y N N x N N

Bonomi [Bon90] Y N N N N x N N

Bonomi and Kumar [BK90] Y N N Y N x N N

Greedy Load-Sharing [Cho90] Y N Y N N X Y N

Gao, et al. [GLR84] (BAR) Y N Y N N x N N

(BUW) Y N Y N N x N N

Stankovic [Sta84] Y N Y N N x P N

Chou and Abraham [CA83] Y N Y N N x Y N

Bryant and Finkel [BF81] Y N Y N N x Y N

Chow and Kohler [CK79] Y N N Y N x N N

Casey [Cas81] (dipstick) Y N Y N E x N N

(bidding) Y N Y N E x N N

(adaptive learning) Y N Y N N Y Y N
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Table 2.4 Summary of distributed scheduling survey, part III
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Hwang et al. [HCG+82] Y Y Y Y N x N N

MICROS [WV80] Y Y Y N N Y Y N

Klappholz and Park [KP84] (DRS) Y N Y N N x Y N

Reif and Spirakis [RS82] Y N Y N N x N N

Ousterhout, et al. [OSS80] Y Y N N N x N N

Bergmann and Jagadeesh [BJ91] Y N N N N x N N

Drexl [Dre90] Y N N Y N x x N

Hochbaum and Shmoys [HS88] Y N N Y N x x N

Hsu, et al. [HWK89] Y N N Y N x x N

Stone [Sto77] Y N N Y N x x N

Lo [Lo88] Y N N Y N x x N

Price and Salama [PS90] Y N N Y N x x N

Ramakrishnan et al. [RCD91] Y N N Y N x x N

Sarkar [Sar89] Y N N Y N x x N

Sarkar and Hennessey [SH86b] Y N N Y N x x N
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Casavant and Kuhl [CK84] describes a distributed task execution environment

for UNIX System 7, with the primary goal of load balancing without altering the

user interface to the operating system. As such, the system combines mechanism and

policy. This system supports execution autonomy, but not communication autonomy

or administrative autonomy.

Ghafoor and Ahmad [GA90] describes a bidding system that combines mechanism

and policy. A module called an Information Collector/Dispatcher runs on each node

and monitors the local load and that of the node's neighbors. The system passes a task

between nodes until either a node accepts the task or the task reaches its transfer

limit, in which case the current node accepts the task. This algorithm assumes

homogeneous processors and has limited support for execution autonomy.

Stankovic [Sta81, Sta85a] describe methods for homogeneous systems based on

Bayesian decision theory. There is no support for autonomy, nor are the methods

scalable because they require full knowledge of all nodes in the system. Ramamritham

and Stankovic [RS84] presents a distributed scheduling algorithm for hard real-time

systems. This work supports a form of execution autonomy that guarantees a hard

real-time deadline. A node can choose to accept a task and guarantee its completion

by a deadline, or to decline the task.

Van Tilborg and Wittie [VW84] presents Wave Scheduling for hierarchical virtual

machines. The task force is recursively subdivided and the processing ows through

the virtual machine like a wave, hence the name. Wave Scheduling combines a non-

extensible mechanism with policy, and assumes the processors are homogeneous.

Ni and Abani [NA81] presents two dynamic methods for load balancing on systems

connected by local area networks: Least Expected Delay and Shortest Queue. Least

Expected Delay assigns the task to the host with the smallest expected completion

time, as estimated from data describing the task and the processors. Shortest Queue

assigns the task to the host with the fewest number of waiting jobs. These two meth-

ods are not scalable because they use information broadcasting to ensure complete
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information at all nodes. [NA81] also presents an optimal stochastic strategy using

mathematical programming.

The method described in Stankovic and Sidhu [SS84] uses task clusters and dis-

tributed groups. Task clusters are sets of tasks with heavy inter-task communication

that should be on the same host. Distributed groups also have inter-task communica-

tion, but execute faster when spread across separate hosts. This method is a bidding

strategy, and uses non-extensible system and task description messages.

Stankovic [Sta85b] lists two scheduling methods. The �rst is adaptive with dy-

namic reassignment, and is based on broadcast messages and stochastic learning au-

tomata. This method uses a system of rewards and penalties as a feedback mechanism

to tune the policy. The second method uses bidding and one-time assignment in a

real-time environment, similar to that in [SS84].

Andrews, et al. [ADD82] describes a bidding method with dynamic reassignment

based on three types of servers: free, preferred, and retentive. Free server allocation

will choose any available server from an identical pool. Preferred server allocation

asks for a server with a particular characteristic, but will take any server if none

is available with the characteristic. Retentive server allocation asks for particular

characteristics, and if no matching server is found, a server, busy or free, must ful�ll

the request.

Majumdar and Green [MG80] discusses the Real Time Resource Manager, a load-

balancing system running on multiple VAX 11/780 computers. A module runs on

each participating system, with �ve functional components: DETECT, which checks

for an overload on the local processor; STATUS, which generates a status report in

response to an overload detection on another processor; PRESCHED, which presched-

ules the recon�guration task; RECONF, which recon�gures the system; and REINIT,

which reinitializes the system after a recon�guration. RTRM uses broadcast commu-

nication of a non-extensible description, which limits scalability, and does not support

autonomy.
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Bonomi [Bon90] discusses properties of the Join the Shortest Queue (JSQ) heuris-

tic for load balancing, and presents a heuristic that performs better, based on queuing

theory. Bonomi and Kumar [BK90] presents an adaptive heuristic based on stochastic

splitting of task forces and shows that in a least-squares sense, the heuristic balances

the server idle times.

Chowdhury [Cho90] describes the Greedy load-sharing algorithm. The Greedy

algorithm uses system load to decide where a job should be placed. This algorithm

is non-cooperative in the sense that decisions are made for the local good, but it is

cooperative because scheduling assignments are always accepted and all systems are

working towards a global load balancing policy.

Gao, et al. [GLR84] describes two load-balancing algorithms using broadcast in-

formation. The �rst algorithm balances arrival rates, with the assumption that all

jobs take the same time. The second algorithm balances un�nished work. Stankovic

[Sta84] gives three variants of load-balancing algorithms based on point-to-point com-

munication that compare the local load to the load on remote processors. Chou and

Abraham [CA83] describes a class of load-redistribution algorithms for processor-

failure recovery in distributed systems.

The work presented in Bryant and Finkel [BF81] combines load balancing, dy-

namic reassignment, and probabilistic scheduling to ensure stability under task migra-

tion. This method uses neighbor-to-neighbor communication and forced acceptance

to load balance between pairs of machines. Chow and Kohler [CK79] presents load-

balancing strategies using a centralized job controller, based on analysis of queuing

theory models of heterogeneous distributed systems.

Casey [Cas81] gives an earlier and less complete version of the Casavant and

Kuhl taxonomy, with the term centralised replacing non-distributed and decentralised

substituting for distributed. This paper also lists three methods for load balancing:

Dipstick, Bidding, and Adaptive Learning, then describes a load-balancing system

whereby each processor includes a two-byte status update with each message sent.

The Dipstick method is the same as the traditional watermark processing found in
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many operating systems [Com84]. The Adaptive Learning algorithm uses a feedback

mechanism based on the run queue length at each processor.

Hwang, et al. [HCG+82] describes a specialized implementation of a distributed

Unix project for a network of Digital Equipment Corporation machines, and an

associated load-balancing strategy. This project supports neither autonomy nor scal-

ability.

Wittie and Van Tilborg [WV80] describes MICROS and MICRONET. MICROS

is the load-balancing operating system for MICRONET, which is a recon�gurable

and extensible network of 16 LSI-11 nodes. MICROS uses hierarchical structuring

and data summaries within a tree structured system. All scheduling takes place in a

master/slave relationship, so autonomy is not supported.

2.4.2 Dynamic Non-cooperative Algorithms

Klappholz and Park [KP84] describes Deliberate Random Scheduling (DRS) as a

probabilistic, one-time assignment method to accomplish load balancing in heavily-

loaded systems. Under DRS, when a task is spawned, a processor is randomly selected

from the set of ready processors, and the task is assigned to the selected processor.

DRS dictates a priority scheme for time-slicing, and is thus a mixture of local and

global scheduling. There is no administrative autonomy or execution autonomy with

this system, because DRS is intended for tightly-coupled machines.

Reif and Spirakis [RS82] presents a Resource Granting System (RGS) based on

probabilities and using broadcast communication. This work assumes the existence

of either an underlying handshaking mechanism or of shared variables to negotiate

task placement. The use of broadcast communication to keep all resource providers

updated with the status of computations in progress limits the scalability of this

algorithm.
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2.4.3 Dynamic Non-distributed Algorithms

Ousterhout, et al. [OSS80] describes Medusa, a distributed operating system for

the Cm* multiprocessor. Medusa uses static assignment and centralized decision

making it a combined policy and mechanism. It does not support autonomy, nor is

the mechanism scalable.

In addition to the four distributed algorithms already mentioned, Blake [Bla92]

describes a �fth method called Continual Balanced Scheduling (CBS), that uses a

centralized scheduler. Each time a task arrives, CBS generates a mapping within

two time quanta of the optimum, and causes tasks to be migrated accordingly. The

centralized scheduler limits the scalability of this approach.

2.4.4 Static Algorithms

All the algorithms in this section are static, and as such, are centralized and

without support for autonomy.

Bergmann and Jagadeesh [BJ91] describes a simple centralized scheme using a

heuristic approach to schedule a task force on a set of homogeneous processors. The

processors are tightly-coupled and have shared memory. The algorithm generates

an initial mapping, then uses a bounded probabilistic approach to move towards the

optimal solution.

Drexl [Dre90] describes a stochastic scheduling algorithm for heterogeneous sys-

tems. The algorithm uses one-time assignment, and uses a probability-based penalty

function to produce schedules within an acceptable range.

Hochbaum and Shmoys [HS88] describes a polynomial-time, approximate, enu-

merative scheduling technique for processors with di�erent processing speeds, called

the dual-approximation algorithm. The algorithm solves a relaxed form of the bin-

packing problem to produce a schedule within a parameterized factor, �, of optimal.

That is, the total run time is bounded by (1 + �) times the optimal run time.

Hsu, et al. [HWK89] describes an approximation technique called the critical sink

underestimate method. The task force is represented as a directed acyclic graph,
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with vertices representing tasks and edges representing execution dependencies. If

an edge (�; �) appears in the graph, then � must execute before �. A node with no

incoming edges is called a source, and a node with no outgoing edges is a sink. When

the last task represented by a sink �nishes, the computation is complete; this last

task is called the critical sink. The mapping is derived through an enumerative state

space search with pruning, which results in an underestimate of the running time for

a partially mapped computation, and hence, the name critical sink underestimate.

Stone [Sto77] describes a method for optimal assignment on a two-processor sys-

tem based on a Max Flow/Min Cut algorithm for sources and sinks in a weighted

directed graph. A maximum ow is one that moves the maximum quantity of goods

along the edges from sources to sinks. A minimum cutset for a network is the set of

edges with the smallest combined weighting, which, when removed from the graph,

disconnects all sources from all sinks. The algorithm relates task assignment to com-

modity ows in networks, and shows that deriving a Max Flow/Min Cut provides an

optimal mapping.

Lo [Lo88] describes a method based on Stone's Max Flow/Min Cut algorithm for

scheduling in heterogeneous systems. This method utilizes a set of heuristics to map

from a general system representation to a two-processor system so that Stone's work

applies.

Price and Salama [PS90] describes three heuristics for assigning precedence-con-

strained tasks to a network of identical processors. With the �rst heuristic, the tasks

are sorted in increasing order of communication, and then are iteratively assigned

so as to minimize total communication time. The second heuristic creates pairs of

tasks that communicate, sorts the pairs in decreasing order of communication, then

groups the pairs into clusters. The third method, simulated annealing, starts with a

mapping and uses probability-based functions to move towards an optimal mapping.

Ramakrishnan, et al. [RCD91] presents a re�nement of the A* algorithm2 that

can be used either to �nd optimal mappings or to �nd approximate mappings. The

2See Nilson [Nil80, chapter 2].
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algorithm uses several heuristics based on the sum of communication costs for a task,

the task's estimated mean processing cost, a combination of communication costs

and mean processing cost, and the di�erence between the minimum and maximum

processing costs for a task. The algorithm also uses �-relaxation similar to the dual-

approximation algorithm of Hochbaum and Shmoys [HS88].

Sarkar [Sar89] and Sarkar and Hennessey [SH86b] describe the GR graph rep-

resentation and static partitioning and scheduling algorithms for single-assignment

programs based on the SISAL language. In GR, nodes represent tasks and edges rep-

resent communication. The algorithm consists of four steps: cost assignment, graph

expansion, internalization, and processor assignment. The cost assignment step es-

timates the execution cost of nodes within the graph, and communication costs of

edges. The graph expansion step expands complex nodes, e.g. loops, to ensure that

su�cient parallelism exists in the graph to keep all processors busy. The internal-

ization step performs clustering on the tasks, and the processor assignment phase

assigns clusters to processors so as to minimize the parallel execution time.

2.5 Summary

This chapter examined three areas of prior work related to the thesis: support for

heterogeneity, extant scheduling support mechanisms, and a taxonomy and survey of

existing scheduling algorithms. The mechanisms developed in later chapters assume

the existence of external data representation and task migration mechanisms to sup-

port autonomy, and can take advantage of existing functionality to accomplish these

tasks.

Several software systems solve restricted cases of the general problem of support for

distributed scheduling, including NetShare, Load Balancer, Condor, Butler, Remote

Unix, and Distributed Batch. However, none of these meet all the requirements for

generality, scalability, autonomy, data soundness, and non-interference set forth in

section 1.1.
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A taxonomy of scheduling policies, originally proposed by Casavant and Kuhl

[CK88], was applied to a broad spectrum of scheduling algorithms from the literature.

These surveyed algorithms were also analyzed with respect to the the design principles

set forth in chapter 1.1 to determine what capabilities the algorithms require of the

underlying mechanism.
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3. DISTRIBUTED SYSTEM ARCHITECTURE

This chapter describes a model for the architecture of distributed, autonomous,

heterogeneous systems. It describes the administrative and communication structure

for such systems, and examines the role of individual nodes within the larger system.

3.1 The Architectural Model

This dissertation considers mechanisms supporting task scheduling in distributed

systems. The architectural model for these mechanisms is hierarchical, based on ob-

servations of administrative domains in existing computer systems. A virtual system

represents a subset of the resources of one or more real systems, and has a hier-

archical structure modeling the administrative hierarchies of computer systems and

institutional organization. Virtual systems can be combined into encapsulating vir-

tual systems. For example, in �gure 1.1, the University, National Lab, and Industry

are each virtual systems, and are collected into a single large distributed system.

Within the University, National Lab, and Industry virtual systems are other virtual

systems, giving a hierarchical structure. At the lowest level of grouping, each virtual

system typically consists of a subset of the capabilities of a single machine.

In this way, virtual systems combine aspects of multicomputers [Spa86] and virtual

machines (see [MS70, SM79], which describe the IBM CP/67 and VM/370 operating

systems). Virtual machines present the user with a subset of the capabilities of the

physical machine. Multicomputers represent the capabilities of multiple machines

as a single collected virtual computer. Both virtual machines and multicomputers

incorporate the central concept of a virtual representation of computing resources,

which is also present in virtual systems.
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Figure 3.1 A sample virtual system

For example, the set of computers at Purdue University forms a virtual system.

Within the Purdue hierarchy, subordinate virtual systems are administered by the

School of Engineering (ECN), the Department of Computer Sciences (CS), and the

Computing Center (PUCC), and others. The computer science machines comprise

several groups: those owned by the department at large, the Software Engineering

Research Center, the Xinu/Cypress project, and the Renaissance project, among

others. Figure 3.1 depicts this virtual system. The Renaissance system is both an

encapsulating system and a subordinate. Renaissance encapsulates leonardo, raphael,

and nyneve; at the same time, Renaissance is subordinate to CS.

Networks do not form the basis for virtual systems; administrative domains do.

Virtual systems are logical, administrative groupings that may or may not correspond

to physical groupings of machines. The interconnection network for a set of machines

may suggest an e�cient grouping of virtual systems, but it does not de�ne the system.

bredbeddle and blays are machines on the same local-area network, and owned by the

same researcher, so it is natural to place them within the same virtual system. nyneve

is under administrative control of two research projects, the Xinu project and the

Renaissance project, and therefore belongs to two virtual systems.
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This hierarchical structure is similar to that presented in Feitelson and Rudolph

[FR90], which describes Distributed Hierarchical Control. Under Distributed Hier-

archical Control, the system uses a hierarchically-structured multiprocessor as the

master processing element in a larger multiprocessor. In this system, lower levels in

the control tree pass condensed and abstracted description information up to higher

levels, where scheduling decisions are made (see also [WV80]).

3.1.1 Representation and System Structure

Directed acyclic graphs (DAGs) can represent virtual systems. The graph for

�gure 3.1 is in �gure 3.2. Each vertex, or node, within the graph marks the root of

an administrative hierarchy, and appears as a virtual system to nodes outside that

administrative domain. Nodes map to physical machines, or hosts. A single node

can map to multiple machines, and more than one node can map onto an individual

machine.

The real capabilities of the virtual system are bounded by the combined capa-

bilities of all its encapsulated systems, but virtual systems can advertise capabilities

greater than or di�erent from those that they actually have. The mechanisms cannot

force the capabilities of the virtual machine to correspond to the real capabilities of

the underlying hardware, and would be errant in doing so. For example, there is soft-

ware available for SPARC workstations that simulates an Intel processor running the

MS-DOS operating system. Even though the hardware cannot directly execute MS-

DOS programs, the virtual system containing a SPARC machine and the simulation

software could advertise the ability to run MS-DOS programs.

In some cases, there is a one-to-one mapping from nodes to machines, but not

always. For example, there is a machine leonardo at Purdue, but there is no machine

named CS or Renaissance. These virtual systems can either map onto their own

machines, or they can map onto other virtual machines within the distributed system.

A machine within a virtual system acts as a representative for that system to higher
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Figure 3.2 The directed acyclic graph for �gure 3.1

levels within the hierarchy. Thus, any of nyneve, blays, or bredbeddle might act as the

Xinu/Cypress spokesman within the CS system.

As de�ned earlier, virtual systems are hierarchical constructs, where a virtual

system is made up of one or more subordinate systems. An encapsulating virtual

system is a parent, and a subordinate system is a child. In the example, CS is the

parent of serc, Renaissance, etc., and they are its children. As is demonstrated by

nyneve, a child may have multiple parents. Children with the same parent are called

siblings. This usage corresponds to the de�nitions of son, father , brother , proper

ancestor , and proper descendant from [AHU74]. The term neighbor refers to one of a

node's parents, children, or siblings.

Each virtual system in the hierarchy has a software module (a scheduling support

module) that is responsible for maintaining the set of information required by the

global scheduling policy and distributing information describing the system state

to its neighbors within the graph.1 This module also controls task execution and

1We sometimes use the notation X as a shorthand for \the scheduling module for virtual system
X."
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movement through the system, and is responsible for collecting data describing the

local system. The module provides the mechanism upon which the scheduling policy

is built.

Prescribing the system advertisement pattern within the distributed system forces

a partial sacri�ce of communication autonomy by the participating hosts. Chapter 4

formally de�nes the rules for inter-node communication of system state information

within distributed systems. This prescription is necessary to form a common base for

the implementation of scheduling policies.

There are two facets to the local policy that the modules support: task place-

ment and task acceptance. The task placement policy takes a set of tasks and a

description of the underlying multicomputer and devises an assignment of tasks to

processors according to an optimizing criterion. The task acceptance portion of the

policy supports administrative autonomy and execution autonomy by allowing each

node to determine its own local acceptance and execution policy.

A state advertisement and request mechanism lies at the heart of the scheduling

module. A machine advertises its state through a system description vector (SDV)

that describes the capabilities and state of a system. When a task is to be scheduled,

modules exchange task description vectors (TDVs) describing the resource require-

ments of a task.

3.1.2 The System Description Vector

The system description vector encapsulates the state of a system. A scheduling

module uses an SDV to advertise its abilities to other systems that may request it to

schedule tasks. Scheduling modules use SDVs as the basis for choosing a candidate

system for a task from among their neighboring systems. The system description

vector is designed to support the scheduling of conventional tasks, but a exible

extension mechanism permits the tailoring of the vector to other applications.

A review of the scheduling algorithms in section 2.4 yielded a small basis set

containing the data most used by the algorithms. Few of these scheduling algorithms
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use any information beyond processor speed. Of the algorithms in the survey, most

use the processor speed as input to their algorithms, while a small number considered

the communications structure of the system.

The description vector contains a �xed portion and a variable portion. The �xed

portion contains data items supporting the scheduling algorithms from the literature.

The variable portion allows administrators to customize the information set in support

of specialized policies. The �xed data set includes the following items:

� memory statistics (available and total)

� processor load (queue length, average wait time, and processor utilization �)

� processor characteristics (processor speeds, the number of processors)

� a measure of the system's willingness to take on new tasks

The modules automatically determine inter-node communication costs.

This design de�nes a static set of machine classes for each characteristic. A system

that provides special services, such as specialized I/O devices or vector processors can

use the extension mechanism described in section 3.2.2.6.

3.1.3 The Task Description Vector

The task description vector is similar to the system description vector|it rep-

resents the resource requirements of a task. The task vector is used in conjunction

with a system description to decide if a task will be accepted for execution. The task

acceptance function can be thought of as a task �lter that compares the two vectors,

subject to the local policy, and decides if a task should be accepted.

The surveyed scheduling algorithms demand speci�c information about tasks, in

contrast to their simplistic demands for system description information. More than

half of the 47 algorithms computed results based on the estimated run-time of a task,

and more than half used inter-task communication estimates. Therefore, the task

description vector consists of the following data items:
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� memory requirements

� estimated run time

� originating system

� estimated communications load

Tasks that require special services describe those services using the same extension

mechanism used for the system description vectors. Special services might include

hardware requirements (vectors processors, speci�c architectures), operating system

requirements (UNIX, VMS), or software requirements (text processors, compilers).

Table 3.1 displays the relationship between �elds in the system description vector

and corresponding �elds in the task description vector. The third column in the table

indicates the connection between the �elds with expected use by the policy module.

Table 3.1 Comparison of system descriptions to task description

System Description Task Description Use by Policy Module

available memory memory requirements compare capacity
processor speed estimate if task will
processor load estimated time complete in acceptable time
communication cost communication load compare capacity
willingness used to decide which neighbor

to request scheduling from
originating system bookkeeping and policy decisions



45

Policy

Network

Scheduling
Algorithm

Mechanism

Macro-Scheduler Task Manipulation

Scheduling
Module

Data Reporting and Task Manipulation Interface

Machine-dependent layer

Abstract Data and Communication Management

Figure 3.3 The structure of scheduling module

3.2 Module Structure

The structure of a scheduling module is in �gure 3.3. Three layers make up

the module: the interface layer, the abstract management layer, and the machine-

dependent layer. The machine-dependent layer implements communications proto-

cols, task manipulation primitives and data acquisition routines over the native op-

erating system. The abstract management layer uses the machine-dependent layer

to communicate with other modules, and provides abstract, architecture and operat-

ing system independent operations for data communication and interpretation. The

interface layer presents the algorithm implementer with access to the abstract oper-

ations in the management layer. Two sample interface layers, a library of function

calls and an interpreted language, appear in chapter 5.

3.2.1 The Machine-dependent Layer

The machine-dependent layer ful�lls four functions: information encoding, access

to network and transport protocols, data acquisition, and task manipulation. The

lowest layer abstracts these machine-dependent features and presents them to higher

layers.
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Information encoding uses an external data representation, as described in section

2.1.1. This layer provides routines to convert the machine-dependent encodings of

basic data types into standard format. The data acquisition routines use operating

system-speci�c calls to obtain system state information to �ll the SDV.

The communication protocols de�ned in section 3.2.2.2 assume certain character-

istics for network communication. The lowest layer provides access to an datagram-

oriented service for the advertisement of system state information, and a reliable

protocol for task and data transfer. For the datagram service, an unreliable proto-

col such as the User Datagram Protocol (UDP) [Pos80a] is acceptable. Examples of

reliable protocols include TCP [Pos80b] or a member of the File Transport Protocol

(FTP) family [PR85, Sol92, Lot84]. The ISIS system implements levels of service

ranging from unreliable messaging protocols at the lowest level to reliable multicast

protocols [BJ87].

The choice of protocol depends on the critical characteristic of the channel. For

the update channel, timeliness is critical, and reliable protocols typically have higher

overhead and delay than unreliable protocols. For the task channel, a reliable protocol

ensures delivery of the task and associated data. If an e�cient implementation of a

reliable messaging protocol exists, such as in later versions of ISIS, then it could

be used for the update channel. Section 3.2.2.2 discusses the requirements of the

channels in more detail.

In terms of the OSI seven-layer model [DZ83], the machine-dependent layer of the

scheduling module contains parts of the session and presentation layers, and provides

access to the network and transport layers below. Functions of the OSI application

layer appear in the higher layers of the schedule module.

The set of task manipulation primitives contains six members: start, kill, suspend,

resume, checkpoint, and migrate. Start begins execution of a program image as a task.

Kill aborts a running task. Suspend temporarily stops a running task, and resume

restarts a suspended task. Checkpoint saves a task to a program image, and migrate

moves a program image between machines.
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3.2.2 Abstract Data and Protocol Management

The middle layer provides a uniform implementation of primitives for inter-module

communication. It consists of a set of event-based semantics that de�ne inter-module

interaction, the communication protocols used by the modules, and the extension

mechanism for the description vectors.

3.2.2.1 Event-based Semantics

The support mechanisms use event-based semantics. Figure 3.4 depicts the hi-

erarchy of events. There are three types of events: �nished events, timeout events,

and message events. Each event has an associated handler, which performs actions

in response to an occurrence of the event.

eventsz }| {
message �nished timeoutz }| { z }| {

request reply query status outputz }| { z }| { z }| { z }| { input
schedule schedule system system
task task task task
kill

recon�gure

recalculation
revocation

Figure 3.4 Hierarchy of events

A �nished event occurs when a task completes execution on the local host. The

�nished event handler noti�es the originating system that the task has completed,

and returns any results.

Timeout events occur when a time limit expires. There are four types of time-

out events: output timeouts, input timeouts, recalculation timeouts, and revocation
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timeouts. When an output timeout occurs, the handler sends a system state adver-

tisement (an SDV) to a neighbor. An input timeout indicates that a neighbor has not

advertised its state within the bounds of the period. In response to an input timeout

for a neighbor, the module may send a status query to that neighbor. Upon a recal-

culation timeout, the handler recomputes the update vectors it passes to neighbors.

A revocation timeout causes its handler to examine the current host state to see if a

task should be revoked.

Message events occur when a message arrives for a module. There are four classes

of message events: request message events, reply message events, query message

events, and status message events. Each of these message event types has subtypes.

Request message events ask the handler to perform a service, and comprise schedule

request message events, task request message events, kill request message events, and

recon�guration request message events. Reply messages occur in response to request

messages, and reply message events have two subtypes: schedule reply message events

and task reply message events. Reply message events are paired with the correspon-

ding request message event subtypes.

Query message events and status message events have two subtypes, task and

system. Query events ask the handler to provide for information about tasks and

systems, rather than for services to be performed. Status messages contain infor-

mation describing tasks and systems, and status message events may occur without

any query taking place. A complete description of the messages that correspond to

message events appears in sections 3.2.2.3 and 3.2.2.4.

A planned extension to the event mechanism includes access points for external

agents to trigger events. In this way, the operating system can notify the scheduling

module that conditions have changed. For example, the memory manager for the

operating system could notify the module that the supply of free memory frames has

been exhausted, and trigger a revocation event. Exploitation of this feature would

require additional support from the operating system.
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3.2.2.2 The Protocols

The communication protocols de�ne the interaction between scheduling modules

within the distributed system. All information passing and inter-module coordination

takes place through the protocols.

Conceptually, the protocol has three channels: the control, update, and task chan-

nels. The update channel advertises system state. The task channel moves a task

between systems, and the control channel is used to pass control messages and out-

of-band data. The update and control channels only connect neighbors within the

distributed system; the task channel may connect any two virtual systems. This

sacri�ce of communication autonomy is necessary to maintain administrative and

communication autonomy at higher levels in the hierarchy.

3.2.2.3 The Update Channel

The update protocol is message-based. Each message contains the system de-

scription vector for the sending system, and consists of a message header and a �xed

set of data, followed by an optional set of policy-de�ned data. The interpretation of

the policy-de�ned data is done by the two modules at opposite ends of the channel.

The update channel is unidirectional; the recipient of an update message returns no

information through the update channel. The update channel makes no attempt to

ensure reliability. If a reliable message passing mechanism exists, it may be used. As

noted by Boggs, et al. in [BMK88], networks are generally reliable under normal use.

Timely delivery of data is more important than reliable delivery; late information

is likely to be out-of-date, and therefore of little value. Reliable protocols generally

have higher communication overhead than unreliable protocols. Unreliable protocols

can also deliver duplicated or out-of-order messages, which can be detected using

sequence numbers within the update messages.

The advertisement mechanism operates in one of two modes: polled and timeout-

driven. Under polled mode, a system can query another as to its status through the

control channel and receive a reply through the update channel.
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With timeout-driven updates, the administrator sets the timer for output time-

outs. When the countdown timer expires, the scheduling support module advertises

the state representation for its virtual system through the update channel. This is

done regardless of how recently the module received updates from other systems.

The length of the period is a locally tunable parameter, allowing the administrator

to determine the tradeo� between overhead and data soundness. A short timeout

period ensures that update recipients have an accurate view of the sender, but incurs

a penalty of increased machine load. A long timeout is computationally inexpensive,

but risks the development of suboptimal schedules based on outdated information.

Update cycles cannot be allowed in the communications structure of a system. An

update cycle occurs when an update vector that describes a system is incorporated

into another system's update vector and subsequently advertised back to the original

system. Such behavior causes an ever-increasing overestimation of system resources,

analogous to the count to in�nity problem in network routing protocols (see Comer

[Com91, chapter 15]). For any system, there are three sets of systems that could pass

it updates: its children, its parents, and its siblings within the hierarchy. Methods of

avoiding overestimation of system resources are discussed in chapter 4.

3.2.2.4 The Control Channel

The control channel is intended to be a bidirectional, reliable, message-based chan-

nel, such as the Simple Reliable Message Protocol [Ost93] or the Reliable Datagram

Protocol [PH90, VHS84]. A control message consists of a header, including an ID

number for the message and a message type, and data that depends on the type

of the message. The following de�ned control message types correspond to message

events: request messages, reply messages, query messages, and status messages. Each

of these message types has subtypes, detailed below.

request messages
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schedule

The sending system requests another system to accept a task for execution.

This request includes a task description vector for the referenced task.

task

The system requests a task from another system. This request includes a

copy of a task description vector describing a task the requester will accept.

Receiver-initiated load balancing schemes could use this type of message.

kill

The sender requests that the receiver stop executing the task named in

the message. If the receiver chooses to honor the request, it can returns

a task status message with a killed subtype (see below). The receiver is

neither obligated to kill the task (execution autonomy), nor to inform the

requester if the request was honored (communication autonomy).

recon�gure

The sender requests that the receiver recompute its connectivity, in the

event of link failure or dynamic system reorganization. Chapter 4 discusses

methods of recomputing connectivity for systemswith di�erent DAG-based

structures.

reply messages

schedule

The recipient of a schedule request sends a schedule reply having one of two

subtypes: accept or deny. An accept subtype indicates that the task has

been accepted for execution, and includes the identi�cation number of the

accepted schedule request message. The deny subtype indicates that the

neighboring system declines to execute the task.

task

The sending system replies to a task request message with a task reply

message. Like the schedule reply message, a task reply can have an accept
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or a deny subtype. An accept subtype means that the sender has a task

eligible for migration that matches the description in the original task

request message, and the task is moved through the task channel.

A deny subtype indicates that the sender declines to supply a task. The

requested system will not migrate a task to the requester; either it is

unwilling, or it has no matching tasks. The data includes the identi�cation

number of the rejected task request message.

query messages

task status

The sender is requesting information on the status of a task, typically one

that it submitted at some point in the past.

system status

The sender is querying the state of a neighboring system. A system de-

scription vector may be returned through the update channel in response

to this request.

status messages

task status

The sender is responding to a task status query message, or notifying the

receiver of the completion of a job. This message can report one of seven

possible states: executing, �nished, aborted, killed, revoked, denied, and error.

An executing status indicates that the task is still eligible for execution,

although it may be blocked. The �nished state is sent upon completion of

a task, while aborted indicates that the task terminated abnormally, e.g.

a bus error or division by zero. The �nished state does not guarantee that

the task correctly performed its intended function, only that it completed

execution.
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The killed status indicates that the task was killed on request from the

originating system. If the administrator or local policy revokes a task, the

scheduling module may send a revoked message. A denied reply means that

the requested system would not accept the task for execution.

The error status is returned in the case of a malformed request. Errors

in requests include, but are not limited to, querying the status of a task

that was scheduled by another system and asking about a nonexistent

task. This reply code is intentionally vague, to support future security

enhancements by forestalling the acquisition of unauthorized information.

3.2.2.5 The Task Channel

The task channel reliably transfers a task between two nodes in a distributed sys-

tem. After negotiating a task's destination through the control channel, the module

opens a task channel to move the task. This may either be directly between the

source and destination, or by a special form of delivery called proxy transfer. Proxy

transfer is used when the destination is inside a virtual system that prohibits outside

systems from directly accessing its members. In this case, the task is delivered to

the encapsulating virtual system, which is then responsible for forwarding the task

to its destination. Gar�nkel and Spa�ord [GS91] de�ne this type of behavior as a

�rewall. Cheswick discusses the the construction of a secure packet router embodying

the �rewall concept in [Che90].

3.2.2.6 The Extension Mechanism

It is impossible to prede�ne the complete set of characteristics used by all present

and future scheduling algorithms. Therefore, the description vectors include an ex-

tension mechanism that allows users to customize the description of a system or task.

Users may append a set of simple values to the description vector, in the form of

(type, variable, value) triples. The extension mechanism is guaranteed to im-

plement four basic variable types: integers, booleans, oating point numbers, and
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strings. Aggregate types such as records, arrays, or unions may be available but are

not guaranteed to be present.

The extension mechanism is similar in concept to the attribute-based descriptions

of the Pro�le [Pet88] and Univers [BPY90] systems developed at the University of

Arizona. We have simpli�ed and tailored the concept to our more limited purposes.

The mechanism is the same for extending both task and system description vec-

tors, but the meaning of the �elds is di�erent. The �elds describe the requirements of

a task or the capabilities of a system. For example, an SDV might contain a boolean

variable latex with value true to indicate that the system has the LaTEX text process-

ing package available, and LaTEX text-formatting tasks could have a boolean variable

latex set to true. The �rst indicates an o�er of service, and the second indicates a

request for service. It is up to the system providing the service to correctly interpret

the TDV.

3.2.3 The Interface Layer

The interface layer is the implementation vehicle for the scheduling policy, and

allows administrators to express policy in terms of the operations provided by the

management and machine-dependent layers. The administrator can specify multiple

scheduling policies for a single system, and use an adaptive umbrella policy to switch

between them based on past behavior of the system or the characteristics of the task.

The architecture does not de�ne the form of the interface layer; any interface

that provides access to the internal mechanisms of the module is su�cient. Di�erent

modules within the same system can use di�erent interface layers|this is a form of

design autonomy.

Two interface layers are described in chapter 5. The �rst is a library of function

calls. An administrator can write his scheduling policy in a high-level language and

then compile and link his policy into the scheduling module.

The second layer is an interpreter for a simple language that allows the admin-

istrator to construct �lters to control system behavior. Filters are logical predicates
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that take as input two description vectors, and return a true or false value based

on the contents of the description vector. If a true value is returned, an associated

action is taken, such as accepting the task for execution, or selecting a neighbor as a

candidate for task scheduling.

3.2.4 Expected Use

The mechanisms are designed for primary support of medium to coarse-grained

tasks. The granularity of a task, as de�ned in [Sto93], is the ratio of a task's com-

putation time (R) to its communication time (C). Coarse-grained tasks have a high

value of R=C, and include CPU-bound programs such as traditional scienti�c com-

putations. Medium-grained tasks include text processing and program compilation.

Chapter 6 lists experimental results that validate these assumptions. The mecha-

nisms will support scheduling for �ne-grained tasks (those with a small R=C ratio),

but will not do so with the same e�ectiveness as for tasks with higher granularity.

The expected system structure has a small branching factor (< 10) at all levels

except at the level immediately above the leaves. The branching factor at the leaves is

expected to accommodate a moderate computing cluster, with perhaps a few hundred

systems. Thus, the expected use of the mechanisms might include several thousand

machines. As will be observed in the next chapter, there are tradeo�s when choosing

a system structure. Systems with large branching factors and small depth will have

more up-to-date data, but will expend greater resources communicating with other

systems. Systems with small branching factors and large depth will have greater delay

in message propagation between remote parts of the system, but the communication

load on each individual system will be lessened.

3.3 Execution of a Scheduling Module

As a simple example of how the individual layers interact, we will describe the

hypothetical execution of a scheduling module implementing a simple policy. At an

initial steady state, there are no tasks running on the local system, and the scheduling
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module has received update messages from its neighbors, and therefore has a view of

each neighbor, consisting of the SDV advertised by the neighbor.

A user on the local host submits a task to the distributed system, causing a

schedule request event. Included in the request is a TDV describing the task. The

scheduling module invokes a task �lter, comparing the TDV with the SDV of each

neighbor as well as the SDV for itself, and determines which SDVmost closely matches

the TDV according to the local policy. If the local system's SDVmost closely matches,

the local system accepts the task. If the SDV most closely matches a neighbor, the

request is forwarded to the neighbor. If the schedule request had come from a neighbor

rather than a user on the local system, the module would have behaved similarly,

except that the neighbor that submitted the request would not be considered by the

task �lter.

Assume that the local module accepts the task. The scheduling module opens

a task channel to the client program, and transfers the task and associated data to

the local host. The task begins executing, and the module enters bookkeeping data

regarding the task.

After a short time, a recalculation timeout event occurs, the scheduling module

uses the data-collection functions to determine the local system state, and stores it in

an SDV. The module then creates an update message to send to each neighbor, based

on its own SDV and the SDVs it has received from its neighbors. The exact contents

of the SDV contained within the update message can depend on the destination of

the message; chapter 4 discusses the combining rules used to form update messages.

A revocation timeout occurs, and the module checks the system state against

the local policy, and determines that no tasks need to be revoked. If the policy

had dictated that tasks needed to be revoked, perhaps because of increased system

load caused by interactive users, a revocation �lter would have determined likely

candidates for revocation.

A few moments later, an output timeout occurs, and the module sends the actual

update messages computed during the handling of the recalculation event. Shortly
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thereafter, the task completes execution, and the module returns the results to the

client program, and returns to the steady state.

3.4 Summary

This chapter has outlined an architectural model that may be used to construct

distributed, autonomous, heterogeneous systems. It explained the role of scheduling

modules within the larger system, and described the operations and inter-module

communication protocols for these modules.
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4. FORMAL MODELS FOR SYSTEM STATE DISSEMINATION

Previous chapters describe the description vector dissemination mechanism and

introduce modeling of distributed systems with directed acyclic graphs. This chapter

gives three sets of rules that govern the ow of update information through the system,

and proves that the rules are sound.

If schedule writers are to have con�dence that their schedulers function correctly,

the underlying mechanismsmust perform properly. In the case of information dissem-

ination, we have chosen proper performance to mean that the support mechanisms

guarantee that information advertised by a host, through its update channel, reaches

every other host within the system exactly once.

There are two aspects of exactly once semantics: guaranteeing that advertised in-

formation reaches all other nodes within the system, de�ned here as completeness, and

guaranteeing that information is not duplicated during advertisement, de�ned here as

correctness. The correctness constraint arises from one of the basic assumptions for

the information dissemination mechanisms: overestimation of system resources must

be avoided.

These guarantees apply only to the underlying mechanism; because of commu-

nication autonomy, nodes within the distributed system may choose not to forward

information they have received, thus preventing the advertisement from reaching some

nodes within the system. Nodes could also advertise false information, thus overesti-

mating resources. This is acceptable because it is a policy decision; the proofs in this

chapter guarantee only that the underlying mechanism is sound.

We de�ne two subtypes of completeness: global completeness and local complete-

ness. Information advertised with a globally complete state dissemination mechanism

reaches all other nodes within the entire distributed system, while a locally complete
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Figure 4.1 Global and local completeness

mechanism guarantees that advertised information reaches all other nodes with the

same root.

As an example distinguishing local completeness from global completeness, con-

sider �gure 4.1. The system rooted at a contains the nodes fa; b; c; dg, and the system

rooted at e contains the nodes fb; eg. With a globally complete mechanism, informa-

tion advertised by e will reach a, b, c, and d. With a locally complete mechanism, it

will only reach b. Similarly, with a globally complete mechanism, an advertisement

by d reaches e, but not with a locally complete mechanism.

At �rst glance, a locally complete mechanism might seem less desirable than a

globally complete mechanism. However, the administrative hierarchies that give rise

to the system structure provide a motivation for local completeness. In terms of

administrative domains, b is a shared resource jointly administered by e and a. By

joining with e to administer b, a has not granted e the right to use a, c, or d. Local

completeness allows administrators to automatically restrict data advertisements and

scheduling requests to a rooted subgraph, provides autonomy support, and can form

the basis for security mechanisms.

This chapter de�nes operations for combining update vectors and analyzes the

semantics of the operation. Section 4.2 de�nes notation that is common to all the

combining rules. Section 4.3 proves that for tree-structured distributed systems, the

update mechanism is correct and globally complete. Section 4.4 re�nes the update
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mechanism, and proves the re�ned mechanism correct and locally complete for a class

of non-tree-structured systems. Section 4.5 de�nes a globally complete and correct

mechanism for systems structured as general DAGs.

4.1 Assumptions About Policy

This chapter proves that the update mechanism is sound, and proves that if ac-

curate and complete information is supplied to the mechanisms, then accurate and

complete information will be disseminated throughout the distributed system. How-

ever, sound mechanism does not preclude the advertisement of erroneous system

descriptions, whether by accident or malice.

The model for update ow is that a module collects several description vectors,

adds information describing the local system, and condenses the resulting set of de-

scription vectors into one vector. During this process, the system can corrupt the

information content of the vector in one of three ways: the system can underestimate

resources, overestimate resources, or change values within the description vectors that

do not represent quantities.

Underestimation of resources can hinder completeness, but is necessary to support

communication autonomy. For example, a research group might wish to make a group

of workstations available to outside agencies for general purpose computation, but

restrict access to a parallel processor to members of the research group. The support

for communication autonomy within the mechanisms allows the research group to

restrict advertisement of the parallel processor's resources to other virtual machines

under the administrative control of the research group. In any case, underestimation

of resources will not cause tasks to be erroneously scheduled, but it might leave

available resources unused.

Overestimation of resources can cause task requests to be misdirected, and can

result in ine�cient schedules and execution delays. However, because the mechanisms

do not include any sort of voting procedure, the mechanisms have no way of verifying
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that a virtual system actually possesses the resources it advertises, and must accept

and propagate the advertisement.

Changing of data, such as altering strings containing �le names, can cause results

similar to overestimation. Omitting non-quantitative data can cause e�ects similar

to underestimation.

Therefore, the communication mechanisms assume that systems can and will un-

derestimate resources in support of communication autonomy. However, systems are

not expected to overestimate or change resource information. Policies can be written

that violate these assumptions, but no assurances can be made about the performance

of such policies.

4.2 Notation

This chapter uses a multiset notation to denote the system description vectors

passed between systems (the update vectors from section 3.1). A multiset is a col-

lection of similar elements, and may contain duplicate elements. Even though the

actual data passed through the update vector is untagged, the proofs use the name

of a system to represent its capabilities in the multiset. For example, the set fa; b; cg
represents a description vector that contains the capabilities of the distributed system

combining a, b, and c. The set fRenaissance; leonardo; raphael; nyneveg represents
the capabilities of the Renaissance virtual system from �gure 3.2. This notation makes

it obvious when a description vector violates the correctness constraint by including

a node's capabilities multiple times, because the name of the node appears multiple

times in the multiset.

We de�ne four operators on multisets: ], \, n, and kk. The operator ] is the

multiset union operator with duplicate inclusion. For example, fa; bg ] fa; cg =

fa; a; b; cg. The ] operator coalesces the representation of two system description

vectors into one. The notation
U

i 2 range Si represents the mapping of the ] operator

over multiplemultisets, and � denotes the emptymultiset. n is the di�erence operator
for multisets, and is de�ned to remove as many instances of an item from the �rst
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set as appear in the second set, e.g. fa; a; b; cg n fa; b; dg = fa; cg. The intersection

operator for multisets, \, yields a multiset containing the lesser number of each

element common to two multisets, e.g. fa; bg \ fb; b; cg = fbg. The kk operator

returns the number of elements in the set, e.g. kfa; b; cgk = 3:

4.3 Tree-structured Systems

This section de�nes and proves properties of update semantics for tree-structured

systems. We use standard de�nitions from graph notation, as found in [AHU74]. A

tree is a graph G = (V; E) with the following three properties:

1. There is exactly one vertex, called the root, that has no parent.

2. Every vertex except the root has exactly one parent.

3. There is a path from the root to each vertex; furthermore, this path is unique.

An individual edge in the graph is denoted by listing its endpoints, e.g. an edge from

vertex v1 to vertex v2 is written (v1; v2).

The tree-structure of these graphs is motivated by existing administrative do-

mains. The typical administrative domain within an organization is tree-structured,

and these rules are optimized for the expected case.

4.3.1 Combining Rules

For a node x, equations 4.1 through 4.5 give de�nitions for the sets containing

the parent of x (Pax), the children of x, (Chx), the siblings of x (Six), the ancestors

(Anx), and the descendants (Dex) of x. Note that with tree-structured systems,

kPaxk equals 1.

Pax = fp j (p; x) 2 Eg (4.1)

Chx = fc j (x; c) 2 Eg (4.2)

Six = fs j (9p j (p; x) 2 E; (p; s) 2 E; s 6= x)g (4.3)
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Figure 4.2 A tree-structured distributed system

Anx = fa j a 2 Pax or (9p j p 2 Pax; a 2 Anp)g (4.4)

Dex = fd j x 2 Andg (4.5)

Each system computes two sets of system status data to be passed to its neighbors.

The U set is passed up to the system's parents and sideways to its siblings, and the

D set is passed down to its children. The notation Ux and Dx refers to the sets

maintained by a system x within a tree-structured system. Equations 4.6 and 4.7

de�ne these recursively in terms of the structure of the system. The total data stored

for outgoing update vectors is independent of the number of children or siblings for

a node, which helps to bound the resource usage of the mechanisms.

Ux = fxg ]
0
@ ]
i 2 Chx

Ui

1
A (4:6)

Dx = fxg ]
0
@ ]
j 2 Pax

Dj

1
A ]

0
@ ]
k 2 Six

Uk

1
A (4:7)

Informally, the U vectors include the description of the node and the U vectors

from all its children. The D vector includes a node and the D vector from its parent

and the U vectors from all of its siblings. The U and D vectors for the example

system in �gure 4.2 are in table 4.1.
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Table 4.1 Example U and D sets

Ua = fa; b; c; d; e; fg Da = fag
Ub = fb; d; eg Db = fa; b; c; fg
Uc = fc; fg Dc = fa; b; c; d; eg
Ud = fd; eg Dd = fa; b; c; d; fg
Ue = feg De = fa; b; c; d; e; fg
Uf = ffg Df = fa; b; c; d; e; fg

4.3.2 Proofs of Semantics

This section contains proofs that the mechanisms de�ned in equations 4.6 and 4.7

are globally complete and correct.

To prove that the semantics are complete, we must prove that a datum advertised

by a node will reach all other nodes in the tree. To prove that the semantics are

correct, we must prove that datum reaches other nodes at most once.

The following steps provide an outline of the proof: 1) prove that a system appears

in a node's U vector if and only if the system is a member of the subtree rooted at the

node, 2) prove that a system appears in a node's D vector if and only if that system

is not a descendant of the node, 3) prove that no system appears more than once in a

U vector, and 4) prove that no system appears more than once in a D vector. Steps

one and two prove completeness, and steps three and four prove correctness of the

semantics for tree-structured systems.

The �rst lemma states that the U vector for a node represents the node and its

descendants, and only the node and its descendants.

LEMMA 4.1 (y 2 Ux), (y = x or y 2 Dex)

(a system appears in a node's U vector if and only if the system is a member of the

subtree rooted at the node.)

Proof (by induction): Recall the de�nition of Ux in equation 4.6. First

comes the proof of the ) implication.
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For a leaf system, Ux = fxg, and the implication holds. This is

the base case. For a non-leaf system, the induction step assumes

that the implication is true for all children of x. Thus, 8c 2 Chx,

Uc contains only descendants of c, and c itself. The second term

of equation 4.6 adds only children of x and their descendants,

which are also descendants of x. Therefore the second clause of

the implication holds, and the ) case is true.

Now for the ( implication:

By de�nition, x is always in Ux, so we need only prove that all

descendants of x are members of Ux. At a leaf node there are

no descendants, so the base case is proven. For the induction

step, we assume that the implication holds for all children of

x. Therefore, the second term in the de�nition of Ux adds all

children of x, and all of their descendants, which is to say it

adds all the descendants of x. Thus, y 2 Dex ) y 2 Ux. 2

The next lemma states that any system that appears in Dx is not a descendant

of x, and also that all non-descendants of x appear in Dx. This lemma will be used

to establish the completeness property for tree-structured graphs.

LEMMA 4.2 y 2 Dx , y 62 Dex

First comes the proof of the ) implication.

Proof (by induction): At the root, Dx = fxg. By de�nition,

x 62 Dex. For the induction step, assume that the lemma is true

for the parent of the node x. Suppose that the lemma is false

for x, i.e. 9y such that y 2 Dx and y 2 Dex, and examine each

of the three terms in the de�nition of Dx. y cannot be x, as

x 62 Dex by de�nition. y cannot come from the second term, as
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that would violate the induction assumption. From lemma 4.1

and the fact that the U vectors for siblings are disjoint because

of the tree-structure of the graph, y cannot come from the third

term. Therefore, y cannot exist, and the lemma is true for x in

the inductive step. 2

Now comes the proof of the ( implication.

Proof (by induction): At the root, Dx = fxg. Because x is

the root, all other nodes are descendants of x, so the base case

is true. For the induction step, we partition the set of non-

descendants of x into two groups: those that are not descendants

of x's parent, p, and those that are descendants of p. The

induction step assumes the implication holds for p.

All non-descendants of p are also non-descendants of x, and

because of the induction assumption, are included in Dx by the

second term in the de�nition of Dx. This leaves the descendants

of p for consideration. From the ( implication of lemma 4.1,

all siblings of x and their descendants are included by the third

term in Dx. By de�nition, x 2 Dx. Therefore, all descendants

of p that are not descendants of x appear in Dx.

Therefore, all non-descendants of x appear in Dx. 2

THEOREM 4.1 The Completeness Theorem for Tree-Structured systems:

Information describing each node reaches every other node within the system, using

rules 4.6 and 4.7.

Proof: By lemma 4.2, information describing all non-descendants of a node

x appears at x. By lemma 4.1, information describing all descendants of x

is visible to x. As x knows about itself, x receives a description of all nodes

in the system, and the semantics are (globally and locally) complete. 2
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The next lemma is crucial in establishing correctness. This lemma states that U

vectors do not contain duplicate entries.

LEMMA 4.3 8y 2 Ux; y 62 (Ux n fyg)
(No system is represented more than once in a U vector.)

Proof (by induction): At a leaf, Ux = fxg, and the lemma is true. Assume

that the lemma is true for all children of a node x.

If the lemma is false, then 9y j y 2 (Ux n fyg). Based on equation 4.6,

either y = x and x 2 Uc for some child c of x, y appears in the U vectors of

multiple children of x, or a child of x has duplicates in its U vector. From

lemma 4.1, x 2 Uc ) x 2 Dex, which cannot be in an acyclic graph.

Likewise, the tree-structure of the graph means that the U vectors for

two children of a node are disjoint, so y cannot appear in the U vectors

of multiple children of x. The induction assumption precludes the third

possibility. Therefore, y cannot exist, and the lemma is proven. 2

The �nal lemma in this section states that D vectors do not contain duplicate

entries. This lemma is also vital to proving correctness.

LEMMA 4.4 8y 2 Dx; y 62 (Dx n fyg)
(No system is represented more than once in a D vector)

Proof (by induction): At the root, Dx = fxg, and the lemma is true. For

the induction assumption, assume that the lemma is true for the parent

of a node.

If the lemma were false, then 9y j y 2 (Dx n fyg). Based on equation 4.7,

one of the following must be true:

1. x 2 Dp for p 2 Pax (interaction of the �rst and second terms)

2. x 2 Uk for some k 2 Six (interaction of the �rst and third term)
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3. Dp \ Uk 6= � for p 2 Pax and some k 2 Six (interaction between the

second and third terms)

4. Uj \ Uk 6= � for some j; k 2 Six; j 6= k (interaction between two

members of the third term)

Lemma 4.3 and the induction assumption eliminate the possibility of du-

plicates within a single incoming vector. By lemma4.2, (1) cannot be true.

For x to appear in a sibling's U vector, x would must be a descendant of

its sibling, which violates the tree structure of the graph; this eliminates

case (2). For (3) to hold, a system simultaneously be a descendant of p

(corollary of lemma 4.1 and the fact that k 2 Chp) and also not be a

descendant (lemma 4.2). Therefore, (3) cannot hold. The disjointedness

of U vectors for siblings eliminates case (4).

Thus, y cannot exist and the lemma is proven. 2

THEOREM 4.2 The Correctness Theorem for Tree-Structured Systems:

No system's attributes appear in any update vector more than once, using rules 4.6

and 4.7.

Proof: Lemma 4.3 states that no system appears more than once in a U

vector. By Lemma 4.4, no D vector has duplicate entries. From lemmas

4.1 and 4.2, the D and U vectors arriving at a node are disjoint. Therefore,

the semantics for combining update vectors will not overestimate system

resources, and are thus correct. 2

In theorems 4.1 and 4.2, we have shown that the update protocol presented here

will accurately disseminate system description information through a tree-structured

distributed system.
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4.4 A Subclass of Non-tree-structured DAGs

Equations 4.6 and 4.7 cannot be applied to more general directed acyclic graphs|

if a node has two parents with a common ancestor, the capabilities of the system will

be overestimated (see the example in �gure 4.3). The resulting erroneous U and D

sets are in table 4.2. Dd violates the correctness constraint, because it overstates

resources; the two paths between a and d cause this.

ae

b

d

c

Figure 4.3 A non-tree-structured system

Table 4.2 Erroneous U and D sets for �gure 4.3

Ua = fa; b; c; d; dg Da = fag
Ub = fb; dg Db = fa; b; c; d; eg
Uc = fc; dg Dc = fa; b; c; dg
Ud = fdg Dd = fa; a; b; b; c; c; d; d; d; eg
Ue = fb; d; eg De = feg

4.4.1 A Re�nement: Primary Parents

Introducing the notion of primary parents for each system and modifying the U

and D vector de�nitions solve this problem. A node may have more than one primary

parent, but no two primary parents of a node may share a common ancestor. For

example, in �gure 4.3, b has two parents, a and e, which do not have a common

ancestor, so both a and e may be primary parents of b. In contrast, both of d's
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parents, b and c, have a common ancestor in a, and therefore they cannot both be

primary parents for d.

A primary link joins a primary parent to a child. A primary path is a path

composed only of primary links. The proofs and semantics presented here assume

that the primary parents have already been selected, and that these links form a

spanning tree for the graph. As a result, a primary path exists from each node to

all of its roots, and there is exactly one primary path between any two nodes within

the system. Note that the spanning tree does not reduce the proofs to the previous

case, as the spanning tree is undirected, while the links within the original graph are

directed. Section 4.4.3 discusses rules for constructing an appropriate spanning tree.

The notions of primary ancestor, primary descendant, and primary sibling are

analogous to the notions of ancestor, descendant, and sibling de�ned earlier. Equa-

tions 4.8 through 4.12 de�ne the sets of primary parents, children, siblings, ancestors,

descendants, and roots for a node.

PPx = fp j (p; x) 2 E; and (p; x) is a primary linkg (4.8)

PCx = fc j (x; c) 2 E; and (x; c) is a primary linkg (4.9)

PSx = fsj (9p j p 2 PPs; p 2 PPx; s 6= x)g (4.10)

PAx = fa j a 2 PPx or (9p j p 2 PPx; a 2 PAp)g (4.11)

PDx = fd j x 2 PAdg (4.12)

PRx = fr j (r = x or r 2 PAx); PPr = �g (4.13)

As noted in a previous section, non-tree-structured graphs occur in practice when

two systems share administrative control of a third system (e.g. a machine jointly

administered by two research projects). The combining rules for primary parents

resemble those for tree-structured systems, with the following exceptions: only pri-

mary parents and primary siblings of a node incorporate U updates from that node;

similarly, only primary children of a node incorporate its D updates. Other parents,

children, and siblings receive the updates and can use them to make scheduling de-

cisions, but do not include them in the computation of their own update vectors.
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a

b c

d

e

Figure 4.4 A non-tree-structured system with primary parents

Equations 4.14 and 4.15 incorporate the primary parent into the de�nitions of the

U and D vectors. As in tree-structured systems, the data storage requirements for

outgoing vectors are constant.

Ux = fxg ]
0
@ ]

i 2 PCx

Ui

1
A (4:14)

Dx = fxg ]
0
@ ]

j 2 PPx

Dj

1
A ]

0
@ ]

k 2 PSx

Uk

1
A (4:15)

In �gure 4.4, the solid arrows represent the primary links, and the dashed line is

a non-primary link between c and d. The U and D vectors for �gure 4.4 are in table

4.3.

Table 4.3 U and D sets for �gure 4.4

Ua = fa; b; c; dg Da = fag
Ub = fb; dg Db = fa; b; c; eg
Uc = fcg Dc = fa; b; c; dg
Ud = fdg Dd = fa; b; c; d; eg
Ue = fb; d; eg De = feg

4.4.2 Proofs of Semantics for Primary Parents

This section proves that the semantics de�ned in equations 4.14 and 4.15 are

correct and locally complete for DAG-structured systems that ful�ll the constraints

outlined previously.
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Once again, there are four steps to the proofs of correctness and completeness:

1) prove that a system appears in a node's U vector if and only if the system is a

member of the primary subtree rooted at the node, 2) prove that a system appears in

a node's D vector if and only if that system is not a primary descendant of the node,

but shares a common primary root with the node, 3) prove that no system appears

more than once in a U vector, and 4) prove that no system appears more than once

in a D vector.

The �rst lemma states that the U vector for a node represents the node itself, plus

all the node's primary descendants. In addition, the lemma states that the U vector

represents no other systems.

LEMMA 4.5 (y 2 Ux), (y = x or y 2 PDx)

A system appears in the U vector for a node if and only if the system is a primary

descendant of the node, or the system and the node are the same.

The proof follows the same form as that for lemma 4.1, considering pri-

mary descendants instead of descendants.

The next step in proving local completeness is to prove that a host is represented

in a node's D vector if and only if the host is not a primary descendant of the node and

the host and the node share a common primary root. In the case of tree-structured

graphs, the second condition was met by all nodes because there was a single root. In

the more general case, there may be multiple roots, so the proof of this lemma does

not follow directly from the proof for tree-structured graphs.

LEMMA 4.6 y 2 Dx , (y 62 PDx) and (PRx \ PRy 6= �)

Proof (by induction):

) implication:

At the root, Dx = fxg. By de�nition, x is not a primary de-

scendant of itself. Also by de�nition, x is its own primary root,

so the lemma holds in the base case.
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For the induction step, assume that the lemma is true for all

primary parents of the node x. Choose a node y 2 Dx. If y =

x, the implication is true from the de�nition of PDx. If y comes

from the second term in the de�nition of Dx, then the induction

assumption applies. If y comes from the third term, then from

lemma 4.5, y is not a primary descendant of x. Because any

two nodes that share a primary ancestor share a primary root,

PRy \ PRx 6= �. Therefore, the ) implication holds.

( implication:

At the root x, the only node not a primary descendant of x that

shares a primary root with x is x itself, and x 2 Dx. This is the

base case.

For the induction step, assume the implication is true for all

parents of x. From the assumption, all nodes with the same

roots as x that are not descendants of x's primary parents are

included in Dx. From the de�nition of Dx, lemma 4.5, and the

spanning tree imposed by the primary links, all primary siblings

of x and their primary descendants appear in Dx. Therefore,

the ( implication is true.2

THEOREM 4.3 The Local Completeness Theorem for Primary Parents: Information

describing each node reaches every other node with the same primary root, under rules

4.14 and 4.15.

Proof: By lemma 4.6, information describing all non-descendants of a

node x, that share a primary root with x, appears at x. By lemma 4.5,

information describing all descendants of x is visible to x. Because x

knows about itself, x receives a description of all nodes in the system with

the same primary root. 2
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The proof of correctness for primary parents has two subparts, showing that nei-

ther U nor D vectors have duplicate entries.

LEMMA 4.7 8y 2 Ux; y 62 (Ux n fyg)
(No system is represented more than once in a U vector.)

This proof follows the same form as the proof for lemma 4.2, considering

primary children instead of children.

Proving that no system is represented more than once in aD vector is more di�cult

for primary parents than for tree-structured systems, because of the interplay possible

between the D vectors of multiple primary parents.

LEMMA 4.8 (No system is represented more than once in a D vector)

8y 2 Dx; y 62 (Dx n fyg)

Assume 9yjy 2 (Dx n fyg). Then, based on equation 4.15, one of the

following must be true:

1. x 2 Dp for some p 2 PPx (interaction of the �rst and second terms)

2. x 2 Uk for some k 2 PSx (interaction of the �rst and third term)

3. Dm \ Uk 6= � for m 2 PPx and some k 2 PSx (interaction between

the second and third terms)

4. Dj \ Dk 6= � for any j; k 2 PPx; j 6= k (interaction between two

members of the second term)

5. Uj \ Uk 6= � for any j; k 2 PSx; j 6= k (interaction between two

members of the third term)

By lemma 4.6, (1) cannot be true. Lemma 4.5 and the imposition of a

spanning tree by the primary parent links eliminate cases (2) and (5). For

(3) to hold, a system must simultaneously be a descendant of p (corollary
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of lemma 4.5 and the fact that k 2 PCp) and also not be a descendant

(lemma 4.6). Therefore, (3) cannot hold. If (4) were true, then the two

primary parents j and k must share a common root (lemma 4.6), and

thus could not both be primary parents of x because of the spanning tree

imposed by the primary links.

Thus, a contradiction is reached and y cannot exist, so the lemma is

proven. 2

THEOREM 4.4 The Correctness Theorem for Primary Parents: No system's at-

tributes appear in any update vector more than once using rules 4.14 and 4.15.

Proof: Lemma 4.7 states that no system appears more than once in a

U vector. By lemma 4.8, no D vector has duplicate entries. From lem-

mas 4.5 and 4.6, the vectors arriving at a node are disjoint. Therefore,

the semantics for combining update vectors will not overestimate system

resources, and are thus correct. 2

Theorems 4.3 and 4.4 show that the update protocol presented here will correctly

and with local completeness disseminate system description information through a

DAG-structured distributed system that meets the constraints detailed in the next

section.

4.4.3 Constraints on Primary Parents

The proofs in the previous section assume that a spanning tree has already been

imposed on the graph representing the system. However, this may not always be

possible to do and still retain local completeness. This section de�nes a subclass of

directed acyclic graphs for which spanning trees can be imposed without loss of local

completeness. A spanning tree that preserves local completeness is called a viable

spanning tree, and a graph with a viable spanning tree is a viable graph.

We �rst examine situations in which the primary parent mechanism fails. For ex-

ample, consider �gure 4.5. The graph in part (a) represents a distributed system with
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(a)

a b

e

c d

(b)

a b

e

c d

(c)

a b

e

c d

Figure 4.5 A distributed system and two spanning trees

multiple spanning trees. Sub�gures (b) and (c) represent two choices. e must choose

either c or d as its primary parent. Choosing c as the primary parent, represented in

sub�gure (b), allows local completeness, because each node in the spanning tree is a

primary descendent of all roots of which it was a descendant in the original graph.

In sub�gure (c), e is not a primary descendant of a, so information describing e will

not reach a.

a b c

d e

f

(a)

a b c

d e

f

(b)

a b c

d e

f

(c)

Figure 4.6 A distributed system with no viable primary parents

The graph depicted in �gure 4.6 part (a) has no spanning tree that allows for local

completeness. If f makes e its primary parent (sub�gure (b)), then a will not receive

a description of f . If f makes d its primary parent (sub�gure (c)), then c will not

receive information describing f . There is no viable spanning tree for this graph.
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To preserve completeness, it is necessary that a directed path from each of a node's

roots to the node still exist in the subgraph covered by the spanning tree. Formally,

the following predicate de�nes the viability property of a directed graph.

viable(V;E), 8v 2 V, there exists a subset P of Pav such that�S
p2P Rop

�
= Rov;8p; q 2 PRop \ Roq = �; and

the primary links form a spanning tree for the

graph.

(4:16)

The �rst part of this de�nition is a statement of viability in terms of set covering,

and determining the �rst property of viability for a graph is equivalent to determining

an exact cover for a node's root set by its parents' root sets. This is known to be an

NP-complete problem (see [AHU74]). The second part of the de�nition ensures that

the primary links selected by the set covering form a spanning tree.

The remainder of this section describes and analyzes a method for determining if

a graph is viable. First, each node must be able to compute its Rox set. This can be

accomplished by having each node annotate its Dp vector with a label indicating its

Rox set. At a root, Rox = fxg. The root set of any other node is the union of its

parents' root sets, i.e. Rox =
S
p2Pax Rop.

Figure 4.7 contains a straightforward O(2n) algorithm, where n is the number of

parents of a node, to test all possible combinations of the parent sets for coverage.

The number of parents for a node is expected to be small, so this exponential growth

is acceptable. This algorithm assumes that the root sets of the parents are stored in

the set R = fR1; R2; : : : ; Rng. The algorithm takes as input the set R, a cover set C,
a set of primary parents P, a root set to be covered Ro, and two integers to act as

counters and limit variables. It returns the list of parents that create the cover set, if

an exact cover is possible. A return value of � indicates failure.

Each node can independently determine if an exact cover set of its root set by its

parents' sets exists with a call

check viable(
S
p2PaxfRopg, �, �, Rox, 1, kPaxk).
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check viable(R, C, P, Ro, i, lim)

1. if (C = Ro) return P;
2. for j in i : : : lim f
3. if (C \Rj = �) f
4. P 0 check viable(R, C [Rj , P [ fjg, Ro, j+1, n);

5. if (P 0 6= �) return P 0;

6. g
7. g
8. return �;

Figure 4.7 An algorithm to compute set covering for primary parents

This can be done in parallel, and the parallel running time is O(2m), where m =

max(kPavk);8v 2 V. If the maximum number of parents for a node is �xed, this

becomes a constant-time algorithm.

To verify that the primary links associated with the resultant primary parent set

form a spanning tree for the graph, it is su�cient to show that there is unique path

between nodes.

Duplicate-path detection can be accomplished by broadcasting a status message

across the reliable control channel with a unique token across all primary links. Nodes

that receive the message broadcast it out over all primary links except the one over

which the message was received. If the set of primary links forms a spanning tree,

no node will receive the message twice. If a node receives the message twice, it

can send an error reply to the originator of the message, indicating that the system

con�guration is incorrect. Thus, a host can determine if a viable spanning tree will

exist when the host attempts to join a distributed system.
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4.5 General Directed Acyclic Graphs

Prior sections have described combination rules for certain subclasses of directed

acyclic graphs. This section gives globally complete and correct combination rules

for general DAGs, with the tradeo� of higher computational and communication

overhead.

4.5.1 General Combination Rules

First, a spanning tree is imposed on the graph using primary parents. The viability

constraint of the previous section does not apply; any spanning tree will su�ce. Unlike

the previous semantics, these rules do not pass updates to siblings. Also, instead of

sending the same vector to multiple neighbors, these rules require a distinct update

vector for each parent or child. Thus, the storage and computational requirements are

O(kPaxk + kChxk) for a node x. The rules for the update vector U are in equation

4.17. Note that the name U does not indicate a direction of passage in this case.

Uxn = fxg ]
0
@ ]
p 2 PPx;p 6=n

Upx

1
A ]

0
@ ]
c 2 PCx;c6=n

Ucx

1
A (4:17)

The e�ect of this rule can be summarized as follows:

Over a link from x to y, send out information describing x and the sum

of information received by x on all other links.

Equation 4.17 employs the technique of a split horizon update found in network

routing protocols [Hed88, Mal93].

4.5.2 Proofs of General Rules

This section proves rule 4.17 globally complete and correct, given that a spanning

tree has been imposed on the graph.

THEOREM 4.5 The Completeness Theorem: Information describing a node reaches

all other nodes in the system, under rule 4.17.
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Proof: the �rst terms of rule 4.17 advertises a node to all its neighbors.

The second and third terms of these rules propagate the information from

one link to all other links. Therefore, each system is advertised to its

neighbors, and because of the imposed spanning tree, the advertised in-

formation is propagated to all other nodes within the system. 2

THEOREM 4.6 The Correctness Theorem: No system's attributes appear in any

update vector more than once using rule 4.17.

Proof: Assume that there exists some y that appears more than once in

an update vector for a node x. Under rule 4.17, only at a node y does

the description information for y enter the system; all other nodes only

propagate the information. Therefore, either y = x and x appears in one

of the incoming update vectors, or y appears in multiple incoming update

vectors. The �rst indicates a cycle in the update vectors, and the second

indicates two paths between x and y. Neither of these can occur in the

presence of a spanning tree for a directed acyclic graph. Therefore, y

cannot appear twice, and the theorem is proved. 2

Theorems 4.5 and 4.6 demonstrate that the general semantics shown here are

correct and globally complete.

4.6 Structuring Heuristics and Implications

Given a collection of machines, the question arises of how to best impose a dis-

tributed system structure using the rules de�ned in this chapter.

The tree-structured rules are the simplest, require the least overhead, and apply to

a majority of existing administrative domains where organizations do not collaborate

to manage a common resource pool. The typical case for a small department, in

which all machines are within a single domain, can be accommodated by making all

the machines children of single virtual node.
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The primary-parent rules are appropriate for administering shared resources, if a

viable spanning tree can be determined. If no viable spanning tree can be determined,

the general rules will provide global completeness for any administrative structure.

If the graph becomes partitioned, either because of the failure of a communication

link or because a host becomes unavailable, the mechanisms can automatically recover

through the use of input timeouts. After a policy-speci�c number of missed input

timeouts, a module will mark its neighbor as unreachable and will not incorporate

the update vector for that neighbor into its outgoing description vectors until a new

update vector is received from the neighbor.

There are three factors a�ecting the delay between a partitioning of the com-

munications graph and when a node's incoming description vectors reect the new

system state: the time it takes for the neighbor nearest the failed node or link to

mark the system as unreachable, the distance along the update path to the failed

node or link, and the update frequency of other nodes along that path. Requests may

be misdirected while the representation at each node is adapting to the new system

state. This can result in a loss of e�ciency, but will not produce erroneous scheduling

results.

4.7 Summary

This chapter described three formal models for system update dissemination in

distributed, hierarchical, autonomous systems. The �rst model is correct and globally

complete for systems based on trees. The second model is correct and locally complete

for a subclass of DAGs in which nodes have at most one common ancestor. The third

model is correct and globally complete for DAGs with at most one path between

nodes.
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5. MESSIAHS: A PROTOTYPE IMPLEMENTATION

This chapter discusses a prototype implementation of the scheduling support

mechanisms de�ned in chapters 3 and 4. The prototype implementation is called

MESSIAHS: Mechanisms E�ecting Scheduling Support In Autonomous, Hetero-

geneous Systems.

MESSIAHS demonstrates how the abstract design set forth in chapter 3 can be

mapped onto real architectures, and serves as a testbed for evaluating the design.

The architectural model is machine-independent, and the prototype implementation

uses SunOS 4.1 running on Sun-3 and SPARC workstations. Experimental results

and analysis derived from executing several algorithms from the literature appears in

chapter 6.

The �rst section describes the machine-dependent layer of the module, and the

second section details the management layer. The third and fourth sections present

two interface layers: one layer based on a library of function calls suitable for linking

with a scheduler written in a high-level language, and another layer consisting of a

policy speci�cation language.

5.1 The Machine-Dependent Layer

The machine-dependent layer provides the interface in table 5.1 to the manage-

ment layer of the module. The prototype does not implement those functions marked

with a y.
The functions divide into three main groups: data collection, message passing,

and task management. The data collection routines gather information that forms

the system description for the local host. The message-passing routines implement
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Table 5.1 Functions in the machine-dependent layer

Purpose Function Name Description
data collection collect process data collect data regarding the number of

processes and load statistics
collect memory data collect data on available and total

memory
collect disk data collect data on available temporary

disk space
collect network data collect data on inter-module communi-

cation time
message passing get message receive a message from the network

send message send a message over the network
task management suspend task pause a running task

resume task continue executing a suspend task
kill task halt execution of a task and remove it

from the system
checkpoint tasky save the state of a task
migrate tasky checkpoints a task and moves it to a

target host
revert tasky returns a task to its originating system

abstract message exchange between modules. The task management routines provide

access to the underlying operating system process manipulation primitives.

The data collection operations are implemented using the kvm open(), kvm read(),

kvm nlist(), and kvm close() routines that access kernel state in SunOS 4.1. The col-

lect process data() function collects information on the number of processes in the

ready queue, and the percentage of processor utilization. collect memory data() de-

termines how much of the physical memory is in use. collect disk data() �nds the

amount of public free space on a system, typically in the /tmp directory on SunOS.

collect network data() determines the average round-trip time between a host and its

neighboring systems within the graph.

An alternative data collection implementation could use the rstat() call, which uses

the Remote Procedure Call (RPC) mechanisms of SunOS to query a daemon that
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monitors the kernel state. However, the rstatd daemon does not provide information

on physical memory statistics or communication time estimates, which are required

to implement the mechanisms. Use of rstat() and rstatd also involves communication

and context-switching overhead.

The message passing routines use the SunOS socket abstraction for communication

and the User Datagram Protocol (UDP) to exchange information between modules.

UDP was chosen because it provides an unreliable datagram protocol, which is the

minimum level of service required for the update and control channels. The message

passing routines encode the data using the XDR standard for external data represen-

tation.

The task manipulation primitives use the SunOS kill() system call, which sends

a software interrupt, called a signal, to a process. The signals used are sigstop,

which pauses a process, sigcont, which resumes a paused process, and sigkill,

which terminates a process. The task migration primitive is not implemented in the

prototype, but is a stub procedure for later completion.

5.2 Abstract Data and Communication Management

The middle layer in �gure 3.3 comprises the abstract data and task manipula-

tion functions. These functions use the basic mechanism provided by the machine-

dependent layer to construct higher-level semantic operations. For example, the

send sr() routine, which sends a schedule request to a neighbor, is implemented using

the send message() function. Table 5.2 lists the abstract data and task management

functions.

The message-passing functions construct a message from the pertinent data and

use the send message() function to communicate with a neighboring module. There

is one send routine for each message type de�ned in chapter 3.

MESSIAHS maintains two hash tables containing description vectors: one table

containing description vectors of foreign tasks executing on the local host and another
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Table 5.2 Functions in the abtract data and communication layer

Purpose Function Name Description
data exchange send sr send a schedule request message

send sa send a schedule accept message
send sd send a schedule deny message
send trq send a task request message
send ta send a task accept message
send td send a task deny message
send trv send a task revoke message
send ssq send a system status query
send ssv send a system status vector
send tsq send a task status query
send tsv send a task status vector
send jr send a join request
send jd send a join deny

description vec-
tor access

sys lookup �nd the SDV for a system in the system
hash table

sys �rst return the �rst neighbor from the sys-
tem hash table

sys next return the next neighbor from the sys-
tem hash table

task lookup �nd the TDV for a task in the task hash
table

task �rst return the �rst task from the task hash
table

task next return the next task from the task hash
table

events register event insert an event into the timeout event
queue

enqueue event enqueue an event
dequeue event dequeue an event
new queue allocate an event queue
qempty check if a queue is empty
set input timeout enqueue an input timeout
set output timeout enqueue an output timeout
set recalc timeout enqueue a recalculation timeout
set revoke timeout enqueue a revocation timeout
set oto period set the output timeout period
set ito period set the input timeout period
set rcto period set the recalculation timeout period
set rvto period set the revocation timeout period
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table for description vectors of neighboring systems. The hash tables use double hash-

ing as described in Knuth [Knu73, pp. 521{526] for e�ciency. The sys lookup() and

task lookup() routines search the tables for a particular task or system. The sys �rst(),

sys next(), task �rst(), and task next() routines iterate over the tables, returning suc-

cessive description vectors with each call.

The event manipulation routines provide access to the internal event queues used

by the module. The register event() function inserts a timed event into the timeout

queue, and the enqueue() and dequeue() routines allow direct manipulation of the

queues. The set timeout routines enqueue timeout events of particular types, and the

set period functions set the timeout periods for the various timers in MESSIAHS. If

a timeout period is set to 0, the associated timer is disabled. Input timeouts occur

when a neighbor has not sent a status message to the local host within the timeout

period. Output timeouts indicate that the local host should advertise its state to

its neighbors. Recalculation timeouts cause the local host to recompute its update

vectors. When a revocation timeout occurs, the host checks its state to see if tasks

should be revoked.

5.3 A Language for Policy Speci�cation

This section describes a sample interface layer, called the MESSIAHS Interface

Language (MIL). MIL is a policy speci�cation language, and contains direct support

for dynamic scheduling algorithms, without precluding support for static algorithms.

Static algorithms consider only the system topography, not the state, when calculat-

ing the mapping. Dynamic algorithms take the current system state as input, and

the resultant mapping depends on the state (see [CK88]). Figure 5.1 depicts the

structure of an MIL program. The grammars for deriving the various rules, along

with explanations of their semantics, appear in the rest of this section.
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begin state

<node state rules>

end

begin combining

<data combination rules>

end

begin schedfilter

<sched request filter rules>

end

begin taskfilter

<task request filter rules>

end

begin revokefilter

<revocation filter rules>

end

begin revokerules

<revocation rules>

end

Figure 5.1 MIL speci�cation template

5.3.1 Expressions and Types

MIL de�nes four basic types for data values: integers (int), booleans (bool),

oats (float), and strings (string). Integers are a sequence of decimal digits.

Booleans have a value of either true or false. Floats are two decimal digit sequences

separated by a decimal point, e.g. 123.45. Strings are a sequence of characters

delimited by quotation marks (").

Identi�ers are a dollar sign followed by either a single word or two words separated

by a period. The latter case speci�es �elds within description vectors. The legal

vectors are the received task description (task), the description of a task already

executing on the system (loctask), the system description of a neighboring system

(sys), the description of the local node (me), and the description being constructed
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by data combination (out). loctask is used to process task requests and revocation

events. sys is used for the data combination rules and for schedule request. out is used

only for the data combination rules, and me can appear in any of the six sections.

The following grammar de�nes the expression types used by the language. This

grammar derives expressions of the base types only; in particular, there is no access

to the Procclass �eld of the SDV with MIL.

int-binop ! + j { j / j * j mod j & j j max j min
int-expr ! int-expr int-binop int-expr j

(int-expr) j integer j int(oat-expr) j id

oat-binop ! + j { j / j * j max j min
oat-expr ! oat-expr oat-binop oat-expr j

(oat-expr) j oat j oat(int-expr) j id

string-expr ! string-expr + string-expr j
(string-expr) j string j id

comparator ! < j > j == j >= j <= j <>
bool-binop ! and j or j xor
bool-expr ! bool-expr bool-binop bool-expr j

not bool-expr j
int-expr comparator int-expr j
oat-expr comparator oat-expr j
string-expr comparator string-expr j
match(string-expr, string-expr) j
(bool-expr) j true j false j id

5.3.2 Access to Intrinsic Mechanisms

MIL includes �ve task manipulation primitives: kill, suspend, wake, migrate, and

revert. Other operations, such as process checkpointing, are available in the lower-

level mechanisms, but are not explicitly included in the language. kill aborts a task,

discards any interim results, and frees system resources used by the task. suspend tem-

porarily blocks a running task. wake resumes a suspended task. migrate checkpoints a

task and attempts to schedule the task on neighboring systems. revert checkpoints the

task and returns the task to the originating system for rescheduling. Task revocation
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rules take the following form, using a boolean guard to determine when to take an

action.

task-action ! kill j
suspend j
wake j
migrate j
revert

revocation-rule ! bool-expr : task-action ;

The node state section is a list of types, identi�ers, and constant values. Node state

declarations are parameters that a�ect system state. The four node state parameters

are specint92, specfp92, recalc timeout, and revocation timeout. The specint92 and

specfp92 parameters list the speed of the host in terms of the SPEC benchmarks

[Staly]. The recalc timeout and revocation timeout parameters determine the timeout

periods for the associated events.

5.3.3 Data Combination and Filters

MIL provides a mechanism to combine description vectors. To support communi-

cation autonomy, this mechanism allows the administrator to write rules specifying

operations to coalesce the data.

int-action ! discard j set int-expr
oat-action ! discard j set oat-expr
bool-action ! discard j set bool-expr
string-action ! discard j set string-expr

combining-rule ! int id bool-expr: int-action ; j
oat id bool-expr: oat-action ; j
string id bool-expr: string-action ; j
bool id bool-expr: bool-action ;

The boolean expression acts as a guard, and the action is performed for a particular

(type, identi�er) pair if the value of the guard is true. Administrators may supply

multiple rules for the same pair. If multiple rules exist, the module evaluates them

in the order written, performing the action corresponding to the �rst guard that

evaluates to true.
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If no matching rule is found for a pair, the identi�er is discarded. Explicit dis-

carding of data items, via the discard action, ful�lls the constraint of communication

autonomy. The set value action assigns value to the current pair in the outgoing

description vector. An error in evaluating a guard automatically evaluates to false.

If the evaluation of an action expression causes a run-time error, e.g. a division by 0,

the action converts to discard.

The extension mechanism for description vectors allows the addition of simple

attributes to the description of a system or task. The additional data must be of

a primitive type; no aggregate types or arrays are permitted. The combining rules

extend the description vectors, by adding new data �elds with the set action.

In MIL, a �lter is a series of guarded statements, similar to combining rules. In

place of an action, �lters de�ne integer expressions,

�lter-stmt ! bool-expr : int-expr ;

A return value of 0 indicates that there is no match. A negative value indicates an

error, and a positive value measures the a�nity of the two vectors, with higher values

indicate a better match. If the guard expression uses an unde�ned variable, the guard

evaluates to false. If the integer expression references an unde�ned variable, the �lter

returns -1, indicating an error. With appropriate extension variables and guards, a

single scheduling module can serve multiple scheduling policies.

5.3.4 Speci�cation Evaluation

The extension and node state rules are interpreted when the speci�cation is �rst

loaded. The data combination rules are applied when a recalculation timeout occurs.

When a revocation timeout occurs, the module passes once through the list of revo-

cation rules, repeatedly evaluating each one until its guards return false. If the guard

evaluates to true, the revocation �lter is applied to the appropriate list of tasks to

provide a target for the revocation action. If no task matches, the module moves on

to the next rule in the list.
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begin state

1. int $recalc_period 60;

end

begin combining

2. bool $out.hasLaTeX $sys.hasLaTeX: set true;

3. bool $out.hasLaTeX $sys.address == $me.address:

set true;

end

begin schedfilter

4. $task.needsLaTeX and $sys.hasLaTeX and

int($sys.loadave) < 5 : 6 - int($sys.loadave);

end

Figure 5.2 A simple MIL speci�cation

When a scheduling request arrives, the module iterates over the list of available

systems, evaluating the request �lter rules in order until a guard that evaluates to

true is found, or the rules are exhausted. If no matching rule is found, 0 is returned.

If a rule is found, its value is returned as the suitability ranking for that system. The

module follows a similar procedure for task requests, iterating over the set of available

tasks.

5.3.5 A Small Example

Figure 5.2 shows a simple MIL speci�cation for a SPARC IPC participating in a

distributed LaTEX text-processing system. Line 1 in the node state section sets the

period for SDV recalculation at 60 seconds. Every minute, each system using this

policy speci�cation will compute its SDV and forward updates to its neighbors.

The SDV extension variable hasLaTeX is true if the system has LaTEX available

and wishes to act as a formatting server. Clients requesting LaTEX processing set the

needsLaTeX variable to true in their task description vector. The combining rule in

line 2 sets the outgoing hasLaTeX variable if any of the incoming description vectors
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have it set, and the rule on line 3 sets the hasLaTeX variable for the local hosts. Hosts

providing the LaTEX service would use line 3; hosts not providing the service would

use line 2 to propagate advertisements by other hosts.

The scheduling �lter rule in line 4 compares the available system vectors to the

incoming task vector, accepts servers with load averages of less than �ve, and ranks

the systems based on their load average. The guard would fail for a neighbor that

has not set the hasLaTeX variable, and return false.

5.4 Example Algorithms

This section presents two applications built using MIL, in addition to the simple

LaTEX batch processing system described earlier. The �rst application demonstrates

the task revocation facility as used by a general-purpose distributed batch system.

The second application implements a load-balancing algorithm.

5.4.1 Distributed Batch

The mitre distributed batch [GSS89], Condor [BLL92], and Remote Unix [Lit87]

systems support general-purpose distributed processing for machines running the

Unix operating system.

Recall that Condor has some support for execution autonomy. In particular, Con-

dor includes a limited policy expression mechanism, with prede�ned variables and

functions, without the possibility of extending the system or task description. Con-

dor uses over 100 prede�ned variables and functions, all of which can be duplicated

in MIL. Thus, MIL and Condor are roughly equivalent in terms of the e�ort required

to customize the scheduling policy, but MIL and MESSIAHS provide additional au-

tonomy support and extensibility.

Figure 5.3 lists a short speci�cation �le for a SPARC IPC participating in a

distributed batching system. The state rules (lines 1{4) give the speed ratings for an

IPC and the recalculation and revocation timeout periods.
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begin state

1. float $SPECint92 13.8;

2. float $SPECfp92 11.1;

3. int $recalc_period 30;

4. int $revocation_period 30;

end

begin combining

5. string $out.proctype not match($out.proctype, "SPARC"):

set $out.proctype + ":SPARC";

6. string $out.OSname not match($out.OSname, "SunOS4.1"):

set $out.OSname + ":SunOS4.1";

7. string $out.proctype not match($out.proctype, $sys.proctype):

set $out.proctype + $sys.proctype;

8. string $out.OSname not match($out.OSname, $sys.OSname):

set $out.OSname + $sys.OSname;

end

begin schedfilter

9. $sys.address == $me.address and

match($sys.proctype, $task.proctype) and

match($sys.OSname, $task.OSname):

max(2000 - (1000 * int($sys.loadave)), 0);

10. match($sys.proctype, $task.proctype) and

match($sys.OSname, $task.OSname):

max(4000 - (1000 * int($sys.loadave)), 0);

end

begin revokefilter

11. true: 1;

end

begin revokerules

12. $me.loadave > 2.0 and $me.nactivetasks > 2: suspend;

13. $me.loadave < 1.0 and $me.nsuspendedtasks > 0: wake;

end

Figure 5.3 Remote execution speci�cation
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The combining rules in lines 5 and 6 ensure that the processor type variable, proc-

type, contains the string ":SPARC" and that the operating system variable OSname

contains the string ":SunOS4.1". Lines 7 and 8 propagate incoming processor and

operating system names.

The example schedule request �lter (lines 9 and 10) computes a rating function

in the range [0, 2000] for the local system, and [0, 4000] for remote systems. The

scheduling request rules ensure that the processor type and operating system match,

and assign a priority to a match based on the system load average. Because there

is no provision for requesting tasks from a busy system, the section for task request

rules is empty.

Hosts participating in the batch system preserve autonomy by varying the param-

eters of the schedule request �lter. For example, tasks submitted by a local user can

be given higher priority by basing the rating function on the source address of the

task.

The task revocation rules (lines 12 and 13) determine, based on the computational

load on the node, whether active tasks should be suspended, or whether suspended

tasks should be returned to execution. The true guard in the revocation �lter rule

(line 10) matches any available task, and the value portion of the rule assigns an equal

priority to all tasks under consideration.

5.4.2 Load Balancing

Several researchers have investigated load balancing and sharing policies for dis-

tributed systems, such as those described in [Cho90], [ELZ85], and [Puc88].

The Greedy Load-Sharing Algorithm [Cho90], makes decisions based on a local

optimum. When a user submits a task for execution, the receiving system attempts

to place the task with a less busy neighbor, according to a weighting function. If no

suitable neighbor is found, the task is accepted for local execution.

The suggested weighting function to determine if a task should be placed remotely

is f(n) = n div 3, where n is the number of tasks currently executing on the local
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begin state

1. int $recalc_period 5;

end

begin combining

2. int $out.minload ($sys.address == $me.address) :

set min($out.minload, $me.ntasks);

3. int $out.minload true:

set min($out.minload, $sys.minload);

end

begin schedfilter

4. $sys.address == $me.address : 1;

5. $sys.minload <= ($me.ntasks / 3) : max(100 - $sys.minload, 2);

end

Figure 5.4 Speci�cation for Greedy Load Sharing

system. The algorithm searches for neighbors whose advertised load is less than or

equal to one-third the local load. Because the Greedy algorithm depends on local

state, it is dynamic.

The policy speci�cation in �gure 5.4 implements a variant of the Greedy algorithm.

The original algorithm used a limited probing strategy to collect the set of candidates

for task reception. The version in �gure 5.4 sets the recalculation and retransmission

periods low (line 1), and depends on the SDV dissemination mechanism to determine

the candidate systems.

The combination rules (lines 2 and 3) set the $minload �eld to be the minimum of

the load advertised by neighbors and the local load. The �lter assigns a low priority to

local execution (line 4), and rates the neighboring systems on a scale of two through

100 (line 5). Any eligible neighbor takes precedence over local execution, but if the

resultant candidate set is empty, the local system executes the task.
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The Greedy algorithm has no provision for task revocation; any tasks accepted run

to completion. Thus, systems using the depicted speci�cation yield some execution

autonomy in the spirit of cooperation.

5.5 A Library of Function Calls

This section describes a library of function calls, called a scheduling toolkit that

provides access to the underlying mechanism. The toolkit consists of the functions

detailed in sections 5.1 and 5.2 combined with the functions listed in table 5.3.

Table 5.3 Functions in the MESSIAHS toolkit

Purpose Function Name Description
data exchange send Uvec send the U update vector to a

parent
send Dvec send the D update vector to a

child
send Svec send the U update vector to a

sibling
description vector merge SDV merges two SDVs into one
manipulation merge statvec merge two statistics vectors into

one
merge procclass merge two procclass sets into one

miscellaneous mk sid sb return a printable form of the sys-
tem identi�cation number

Log produce output in the error log
pLog produce output in the error log,

including operating-system spe-
ci�c error messages

The send Uvec(), send Dvec(), and send Svec() functions send update vectors to a

system's parents, children, and siblings, respectively.

As shown in �gure 5.5, statistics vectors (statvec) are components of the proc-

class structure, which are used to condense the advertised state information for a
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virtual system. Processors are grouped into process classes on a logarithmic scale,

based on their computation speed. The statvec �elds represent multiple processors

using statistical descriptions of their capabilities. Processor speed was chosen as the

grouping factor because research of the existing scheduling algorithms indicates that

processor speed is the primary consideration for task placement (see chapter 2). The

SPEC ratings were chosen as the default speed rating because they are the most

widely available benchmark for both integer and oating point performance. Other

measures of speed can be included through the extension mechanism.

The merge statvec() function merges two statistics vectors, and merge procclass()

merges two processor classes into one. The merge SDV() function provides a default

mechanism for merging two system description vectors into one. The functions in

�gure 5.3 form the basis for MIL, described in section 5.3.

Table 5.4 Prede�ned event handlers in MESSIAHS

Function Name Corresponding Event
handle msg sr sched request message
handle msg sa sched accept message
handle msg sd sched deny message
handle msg trq task request message
handle msg ta task accept message
handle msg td task deny message
handle msg trv task revoke message
handle msg ssq system status query message
handle msg ssv system status vector message
handle msg tsq task status query message
handle msg tsv task status vector message
handle msg jr join request message
handle msg jd join deny message
handle input timeout input timeout
handle output timeout output timeout
handle recalc timeout recalculation timeout
handle revoke timeout revocation timeout
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struct statvec {

float min, max, mean, stddev, total;

};

typedef struct statvec Statvec;

struct procclass {

bit32 nsys; /* # of machines in this class */

Statvec qlen; /* run queue statistics */

Statvec busy; /* load on cpu (percentage) */

Statvec physmem; /* total physical memory */

Statvec freemem; /* available memory */

Statvec specint92; /* ratings for SPECint 92 */

Statvec specfp92; /* ratings for SPECfp 92 */

Statvec freedisk; /* public disk space (/tmp) stats */

};

typedef struct procclass Procclass;

#define SDV_NPROCCLASS 7

#define SDV_MAXUSERDEF 2048 /* multiple of 2 for cksum */

struct SDV {

SysId sid; /* Autonomous System ID */

bit32 nsys; /* number of total systems */

bit32 ntasks; /* number of total tasks */

bit32 nactivetasks; /* number of active tasks */

bit32 nsuspendedtasks; /* number of suspended tasks */

float willingness; /* probability of taking on */

/* a new task */

float global_load; /* global load average */

Procclass procs[SDV_NPROCCLASS]; /* information on the */

/* different classes of procs */

/* in the autonomous system */

bit32 userdeflen; /* length of user-defined data */

bit8 userdef[SDV_MAXUSERDEF]; /* user defined data */

};

typedef struct SDV Sdv;

Figure 5.5 MESSIAHS data structures
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nt = 0;

for (i = 0; i < SDV_NPROCCLASS; i++) {

pp = &(psdv->procs[i]);

if (pp->nsys > 0) {

float ps, la, d;

la = pp->qlen.min;

ps = pp->specint92.mean;

d = (la + 1) * ptdv->runtime * ptdv->specint92;

value = (int) (1000 * ps / d);

if (value > nt) {

nt = value;

}

}

}

return nt;

Figure 5.6 Toolkit implementation of the ABS algorithm

The programmer uses the toolkit to write a set of event handlers, as discussed

in section 3.2.2.1. These handlers comprise the scheduling policy. MESSIAHS pre-

de�nes the set of handlers listed in table 5.4, which may be overloaded by the admin-

istrator to create a new policy.

As an example, the MESSIAHS prototype includes a default handler for schedule

request messages. The administrator customizes the scheduling policy by writing a

�lter routine. Figure 5.6 lists the code for Arrival Balanced Scheduling [Bla92], �gure

5.7 lists the code for the greedy algorithm, and �gure 5.8 lists the code for the BOS

algorithm. The next chapter analyzes the performance of these implementations.

The implementations of three algorithms demonstrate that the underlying mecha-

nisms are easy to use. The longest of the three algorithms, BOS, represents less than

one-half of one percent of the code for the scheduling support module. Writing a new

algorithm involves editing a code skeleton and inserting the algorithm code in a C

switch statement. This process takes only a few minutes for a programmer familiar
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if (sidmatch(psdv->sid, pmysdv->sid)) {

return 1;

} else if(psdv->global_load <= (pmysdv->ntasks / 3)) {

gl = (int) psdv->global_load;

nt = (int) psdv->ntasks;

value = ((100 - gl) * 1000) + (999 - nt);

return(value);

} else {

return 0;

}

Figure 5.7 Toolkit implementation of the greedy algorithm

with the MESSIAHS code. In contrast, writing a scheduler from scratch, including

data collection, data communication, and task management would take man-months

of e�ort.

This ratio of schedule code size to support code size is consistent with that seen in

other distributed scheduling support systems, such as Condor. However, MESSIAHS

has ease-of-use advantages because of its separation of mechanism and policy, and

because of its support for customizable scheduling policies.

5.6 Summary

This chapter described the MESSIAHS prototype implementation of the schedul-

ing support mechanisms discussed in chapter 3. The prototype implements the mech-

anisms while adhering to the design principles from chapter 1.

Two sample user interfaces were de�ned: the MESSIAHS Interface Language,

which facilitates rapid prototyping of new algorithms, and the scheduler's toolkit,

which provides full access to the underlying mechanisms. Three sample MIL algo-

rithms were given, and three sample schedulers were developed using the toolkit.
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i = 100000;

if (is_sibling(pste)) {

return (0);

}

/* add in 'self' and 'target' */

if (pste == pmyste) {

i -= ((pmysdv->ntasks + 1) * (pmysdv->ntasks + 1));

} else {

i -= (pmysdv->ntasks * pmysdv->ntasks);

gl = (pste->sdv.ntasks + 1) * (pste->sdv.ntasks + 1);

nt = MAX(pste->sdv.nsys, 1);

i -= (gl / nt);

}

for (pshte = sys_first(); pshte != (Shte *) NULL;

pshte = sys_next(pshte)) {

if (pshte->entry != pste) {

nt = MAX(pshte->entry->sdv.nsys, 1);

gl = pshte->entry->sdv.ntasks *

pshte->entry->sdv.ntasks;

i -= (gl / nt);

}

}

return i;

Figure 5.8 Toolkit implementation of the BOS algorithm
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6. EXPERIMENTAL RESULTS

This chapter describes the results of experiments conducted to gain insight into

the performance of the prototype implementation. Three algorithms from di�erent

subtrees of the taxonomy presented in section 2.3 were implemented using the MES-

SIAHS prototype. The execution time of each algorithm was recorded for a variety of

conditions. Section 6.3 compares the results to best-case execution times to determine

the overhead associated with the prototype implementation.

The experiments performed use simulated tasks, generated with a Poisson distri-

bution. The tasks were simulated because there were no actual job traces available

for distributed, autonomous systems. Section 6.2 gives the statistical basis for the

simulated tasks and explains the derivation of the parameters for the experiments.

6.1 Experimental Architecture

The performance experiments use the system con�guration listed in �gure 6.1.

The test con�guration consists of six Sun 3/50 workstations and two Sun SPARC

IPC workstations. The con�guration is tree-structured, and includes two levels of

encapsulating virtual systems. The longest path between nodes has three communi-

cation steps (e.g. maple|oak|ash|poplar; the oak|ash communication is directly

between siblings, and bypasses elizabeth).

Each experiment embodies the following steps:

1. a scheduling module begins execution on each machine

2. a dispatcher program loops, performing the following three steps:

(a) the next task description is loaded from the data �le

(b) the dispatcher sleeps until the delay period for the task expires
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Figure 6.1 Experimental Con�guration

(c) the dispatcher requests scheduling for the task

3. the simulation waits for all tasks to terminate

4. the scheduling modules cease execution

Each task records its execution information, including when it started and com-

pleted, in a log �le.

The performance evaluation involved the execution of three distinct algorithms

from the literature, and comparisons of their performance with a theoretical op-

timum. The algorithms were the Greedy Load-Sharing Algorithm (Greedy) from

[Cho90], Arrival-Balanced Scheduling (ABS) from [Bla92], and a variation of the

BOS algorithm (BOS) from [BJ91]. In all cases, the scheduling modules used an

update frequency of one quanta.

The Greedy and ABS algorithms are dynamic, in that they schedule tasks as they

arrive at the system. For each algorithm, task sets were generated with three di�erent

arrival rates and ten di�erent means for execution times. The inter-task delay was

selected from a uniform distribution between zero and the arrival rate parameter; e.g.

for an inter-task delay parameter of three, tasks would arrive separated by zero, one,

two, or three quanta with approximately equal frequency. This is the same model

used in [Bla92].
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The Greedy algorithm is classi�ed as dynamic, distributed, non-cooperative, sub-

optimal, and heuristic. The Greedy algorithm rates the load on a host as the number

of tasks the host has accepted for execution, without regard to processor speed. Figure

6.2 lists the decision �lter for the Greedy algorithm. Self refers to the local host.

Rate self at 1;
For each neighbor N f

if (load on N is � one-third the local load) f
rate N at f(N );

g
g
Schedule the task on the highest-rated system;

Figure 6.2 Pseudocode for the Greedy algorithm

f(N ) depends on the minimum load of any host represented within N 's status

vector (minload) and the number of tasks running on all hosts encapsulated within

N (ntasks). f(N ) is de�ned as

f(N ) = (100 �N :minload) � 1000 + 999 �N :ntasks:

f(N ) uses minload as its primary determinant of task placement, with the number

of total tasks used to break ties.

The ABS algorithm uses more system description information, including the pro-

cessor speed. The Casavant and Kuhl taxonomy classi�es ABS as dynamic, dis-

tributed, cooperative, suboptimal, and heuristic. The pseudocode in �gure 6.3 repre-

sents the implementation of the ABS algorithm.

The ABS algorithm estimates the execution time of a task for a processor, based

on the computational load and speed of the processor, and uses that estimate to select

a target system for scheduling.

For each execution-time mean, 96 tasks are selected from a Poisson distribution

with a given mean (see 6.2 for details). The experiments use means in the range
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for each system S, including self and all neighbors N f
nt = 0;
for (each procclass PC in S's description vector) f

if (PC contains at least one system) f
la = the lightest load in PC;
ps = the average speed of PC;
tr = estimated runtime of the task on the base processor;
d = (la + 1) � tr;
value = (int) (1000 � ps / d);
if (value > nt) then nt = value

g
g
rate S at nt;

g

Figure 6.3 Pseudocode for Arrival-Balanced Scheduling

f1; 2; : : : ; 10g. Thus thirty tests are run for each of the Greedy and ABS algorithms.

To facilitate reproducability and analysis, the same task set is used in both tests.

The BOS algorithm does not take inter-task delay into account, because it is a

static, suboptimal, heuristic algorithm and requires that all tasks be available for

placement at the same time. Therefore, the experiment using BOS employed ten test

runs, one for each execution-time mean between one and 10. Figure 6.4 lists the BOS

algorithm.

To determine the optimal performance for the algorithms, a program simulated

the execution of each algorithm in the presence of perfect information describing the

state for all eight hosts. This simulation was event-based, triggering an event each

time a task was submitted or a task completed. No time was charged to a task for

the computation of the scheduling policy; therefore, these best-case results are overly

optimistic because they include only running time for the tasks. Each of the sample

task sets was simulated for each algorithm. The results of these experiments appear

in section 6.3.
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for each task t f
min = MAXINT;
for each system S 2 S f

temporarily assign t to S;
c =

P
M2S (M:ntasks)2;

if (c < min) f
min = c;
minsys = S;

g
g
schedule t on minsys;

g

Figure 6.4 Pseudocode for the BOS algorithm

6.2 Statistical Background

As mentioned, the experiments use simulated tasks, generated with a Poisson

distribution. A Poisson distribution is accepted as closely modeling job behavior in

computer systems (see [Bla92, Fin88]). A Poisson distribution has a single parameter,

�, and is de�ned as

f(x) =
�xe��

x!
; x = 0; 1; 2; : : : (6:1)

The parameter � is both the mean and the variance of the distribution. Figure 6.5

displays Poisson distributions with � values of 3, 5, and 10.

A result of the Central Limit Theorem (see [HPS71, chapter 7]) is that, for a

continuous distribution with mean �, and standard deviation �, a sample Sn of size

n, and an error limit c,

P
�����Snn � �

���� � c
�
� 2(1 ��(�)) (6:2)

where

� =
c
p
n

�
(6:3)

and � is the normal distribution evaluated at �.
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Figure 6.5 Sample Poisson distributions

The variance of a continuous distribution is the square of the standard deviation,

so for the Poisson distribution, � = �2. Solving equation 6.3 for n yields

n =
�2�2

c2
=

�2�

c2
(6:4)

To apply equations 6.2 and 6.3, the value of the error limit, c, and the con�dence

interval must be chosen. The smallest measurable time in the simulations was one-

�fth of a quanta. To facilitate scalability, and because of computational limits of the

simulation, the error limit was made relative to the mean of the distribution, and set

at c = :2
p
�.

Substituting the values of � and c in equation 6.3 yields

n =
�2�

:04�
= 25�2:

Thus, equation 6.2 becomes

P
����� Sn25�2

� �

���� � :2
p
�
�
� 2(1 � �(�)):
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Setting the left hand side to a con�dence interval of 95%, so that the probability

on the left hand side equals 5%, yields

0:05 � 2(1 � �(�)):

Solving for � and consulting a table of values for the normal distribution yields � =

1:96, and thus

n = 25�2 = 96:

Thus, with a sample size of 96 generated tasks, it is 95% probable that the sample

mean di�ers from the theoretical mean by no more than 0:2
p
�.

6.3 Results and Analysis

This section gives the results for each of the experiments and analyzes the results,

comparing the results to the simulated performance of the algorithm in the presence of

perfect information. The experiments estimate the computational overhead caused by

using the MESSIAHS prototype. Two components comprise the overhead: overhead

caused by computing the schedule, and overhead incurred because of ine�ciency in

the computed schedule. No attempt was made to separate the two types of overhead.

It is important to realize that even if the algorithms compute an optimal schedule,

the performance will still appear suboptimal because of the cost of computing the

schedule, which does not appear in the theoretical minimum time.

During the execution of the experiments, the resource usage of the MESSIAHS

module was measured. The module places a computational load of less than 0.5%

of the CPU time on a Sun 3/501 when the module is exchanging update or control

messages, or starting new tasks. The scheduling module uses between 68 and 416

kilobytes of memory. The module uses no disk space.

Results for each tested algorithm appear in tabular and graphical form. For

the tables, the Mean column lists the execution-time mean and the Delay column,

if it appears, lists the maximum inter-task delay. The Minimum column lists the

1As measured by the top program during the simulations.
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theoretical minimum running time, and the Actual column lists the actual running

time. Running time is measured from the time the �rst task is submitted to the

system until the time the last task �nishes execution. The Overhead column lists

the di�erence between the Actual and the Minimum times, as a percentage of the

Minimum2.

The bar graphs display the information visually. For each test and execution-time

mean, pairs of bars appear. The dark bar represents the minimum running time and

the light bar represents the actual running time.

6.3.1 The Greedy and ABS Algorithms

The results for the Greedy and ABS algorithms appear together because they are

both dynamic algorithms.

Table 6.1 displays the results using the Greedy algorithm. The Greedy algorithm

runs within 7.12% of the optimum, on average, with a standard deviation of 7.38.

Figures 6.6 and 6.7 show graphs of the minimum and measured execution times for

the Greedy algorithm.

Table 6.2 lists the results for ABS, and �gures 6.8 and 6.9 display the results in

graphical form. The mean of the overhead is 9.67%, with a standard deviation of

8.09. Note that although the relative overhead is higher for ABS than for Greedy, the

absolute running time is very nearly the same. The overhead for ABS appears higher

because ABS has a lower theoretical minimum running time than does the Greedy

algorithm.

The largest discrepancies for both the Greedy and ABS algorithms occur in the

tests with inter-task delay of at most one quantum. This overhead occurs because

the algorithms are using out-of-date information, and the ABS algorithm receives

a heavier relative penalty than does Greedy because ABS is more sensitive to stale

system description information. As the inter-task delay increases, updates percolate

2That is, Overhead = Actual { Minimum
Minimum

.
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Table 6.1 Experimental Results for the Greedy Load-Sharing Algorithm

Mean Delay Minimum Actual % Overhead
1 4.72 5.02 6.35

1 2 8.18 8.55 4.52
3 13.23 13.57 2.57
1 4.28 4.70 9.81

2 2 9.88 10.32 4.45
3 14.45 14.65 1.38
1 4.30 4.83 12.32

3 2 8.88 9.17 3.27
3 14.48 14.80 2.21
1 4.28 4.95 15.65

4 2 10.30 10.73 4.17
3 14.23 14.53 2.11
1 4.87 5.17 6.16

5 2 10.33 10.75 4.07
3 14.27 14.55 1.96
1 4.92 6.03 22.56

6 2 9.82 10.02 2.04
3 12.93 13.33 3.09
1 5.05 5.85 15.84

7 2 9.85 10.10 2.54
3 12.98 13.15 1.31
1 5.12 6.12 19.53

8 2 10.93 11.18 2.29
3 14.37 14.68 2.16
1 5.43 5.98 10.12

9 2 10.98 11.63 5.92
3 13.80 14.05 1.81
1 5.48 7.31 33.39

10 2 8.98 9.48 5.57
3 13.85 14.48 4.55
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Table 6.2 Experimental Results for Arrival Balanced Scheduling

Mean Delay Minimum Actual % Overhead
1 4.72 5.03 6.57

1 2 8.12 8.58 5.67
3 13.22 13.52 2.27
1 4.22 4.82 14.21

2 2 9.82 10.15 3.36
3 14.42 14.73 2.15
1 4.22 4.77 13.03

3 2 8.73 8.98 2.86
3 14.42 14.73 2.15
1 4.22 5.28 25.12

4 2 10.13 10.80 6.61
3 14.13 14.47 2.41
1 4.73 5.48 15.86

5 2 10.15 10.90 7.39
3 14.13 14.38 1.77
1 4.73 5.28 11.63

6 2 9.57 9.78 2.19
3 12.67 13.50 6.55
1 4.85 6.02 24.12

7 2 9.57 10.07 5.22
3 12.67 12.98 2.45
1 4.85 6.25 28.87

8 2 10.58 11.67 10.30
3 13.98 14.92 6.72
1 5.17 5.97 15.47

9 2 10.60 11.70 10.38
3 13.32 14.12 6.01
1 5.17 6.78 31.14

10 2 8.52 9.45 10.92
3 13.32 14.22 6.76
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further through the system between each task's arrival, so that the scheduling modules

have more accurate description information with which to work.

6.3.2 The BOS Algorithm

The results for the BOS algorithm appear in table 6.3 and �gure 6.10. The

overhead for BOS has a mean of 36.53% and a standard deviation of 10.28. These

numbers are much higher than for the dynamic algorithms. There are several reasons

for this. The MESSIAHS mechanisms do not schedule task forces in a single pass;

the tasks must be submitted and scheduled piecemeal. This causes delay, relative to

the minimum, because the tasks are scheduled serially. In the minimum case, they

are all scheduled simultaneously, with no passage of simulated time. In addition,

the computational requirements of the BOS algorithm (O(n2)) are higher than the

requirements of ABS or Greedy (both are O(n)). Again, the minimum time estimate

does not include this computational cost.

Table 6.3 Experimental Results for the BOS algorithm

Mean Minimum Actual % Overhead
1 0.68 0.92 34.79
2 1.07 1.33 24.60
3 1.62 2.28 40.94
4 2.05 2.78 35.77
5 2.32 3.30 42.24
6 2.72 3.52 29.41
7 3.23 3.93 21.67
8 3.65 5.72 56.66
9 4.20 5.48 30.55
10 4.63 6.88 48.66

These causes of overhead will appear, in general, in any static algorithm that is

run as a dynamic algorithm. Static algorithms have no run-time cost, because static
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algorithms devise the schedule at compile time. However, dynamic versions of static

algorithms are applicable in a wider range of areas, because dynamic algorithms do

not assume a static system description or con�guration.

The implementation of a static algorithm provides an example of a worst-case

baseline. The task assignments were made without any intervening state advertise-

ment, so the results represent the performance of a scheduling policy in the absence

of fresh data. This data point gives an insight into the lower bound of expected

performance of scheduling algorithms using MESSIAHS, provided that complete and

accurate information is initially provided. No conclusions can be drawn about the per-

formance of scheduling algorithms in the presence of insu�cient or widely inaccurate

information.

6.4 Summary

This chapter presented the results of experiments run using three algorithms over

the MESSIAHS mechanisms. The algorithms represented three di�erent classes from

the taxonomy presented in section 2.3. The implementation of three di�erent algo-

rithms demonstrates the feasibility and generality of the mechanisms.

The results indicate, but do not prove, that the overhead incurred by use of the

prototype is minor, typically less than 10% for dynamic algorithms and less than 40%

for static algorithms. The 40% slowdown for a static algorithm may be acceptable

in some environments, because the MESSIAHS version of the algorithm works in an

environment the original static algorithm could not.

In addition, it appears that the MESSIAHS mechanisms perform better as the

ratio of inter-task delay to update frequency increases. This increased ratio means

that update information travels farther within the distributed system between task

arrivals, and thus the scheduling modules are working with more up-to-date informa-

tion.
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7. CONCLUSIONS AND FUTURE WORK

This dissertation has described the formulation, design, and implementation of

scheduling support mechanisms for autonomous, heterogeneous, distributed systems.

This chapter reviews the work presented in this dissertation, highlights the contribu-

tions made by this work, and projects directions for future research.

7.1 Design

The mechanisms presented in this dissertation provide automated support for

task placement in distributed systems, while accommodating scalability, autonomy,

e�ciency, and extensibility. The centerpoint of the design is the virtual system.

Virtual systems represent a subset of the capabilities of one or more real ma-

chines. Distributed systems can be constructed by collecting virtual systems into

encapsulating virtual systems, yielding a hierarchical overall structure. This struc-

ture corresponds to the organizational structure observed in existing administrative

domains for computer systems. Each virtual system is implemented with a schedul-

ing module that is responsible for local task management, communication with other

virtual systems, and implementing the local scheduling policy.

Each host within the distributed system reserves the authority to make all policy

decisions locally. No host is compelled to execute remote tasks. Each virtual system

may have a distinct scheduling policy, which may operate in cooperation or in conict

with other policies. Parameters that a�ect system behavior, such as timeout peri-

ods, are set by the local administrator. This freedom to set local policy also allows

administrators to use the mechanisms poorly.
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The hierarchical nature of virtual systems localizes message tra�c and allow the

condensation of multiple system descriptions into a constant size. Decentralized in-

formation storage and control eliminates most single points of failure or bottlenecks

that limit scalability.

To participate in the scheduling system, modules sacri�ce some communication

autonomy and exchange messages according to the communications protocols de�ned

in chapter 3. To keep interference low, the mechanisms provide for either polled

or timed updates. The information condensation mechanisms coalesce description

vectors for the systems that comprise a virtual system into a single vector describing

the encapsulating system, thus decreasing network tra�c and message processing

time. The update vectors include an extension feature that allows them to be tailored

to new or speci�c scheduling algorithms.

As part of their support for generality, the mechanisms support heterogeneous

systems. This support for heterogeneity includes the use of an external data rep-

resentation, the ability to describe disparate architectures in a system description

vector, and the ability to execute tasks best-suited to di�erent architectures on the

most appropriate machine.

Chapter 4 de�ned the concept of completeness and correctness for update vectors

in distributed systems. Chapter 4 also contains proofs of correctness and completeness

for information dissemination mechanisms in three di�erent classes of distributed

system architectures. The information dissemination mechanisms ensure that, in

the absence of policy restrictions, a description of every host reaches every other

host within the distributed system, and also precludes overestimation of available

resources. Administrators can supply false information to the mechanisms, but cannot

corrupt the mechanisms themselves.

7.2 Implementation

As part of the work presented here, we constructed the MESSIAHS prototype

implementation of the scheduling support mechanisms.
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7.2.1 Interface Layers

MESSIAHS includes a scheduling language, called the MESSIAHS Interface Lan-

guage, which provides for rapid prototyping of new scheduling algorithms. A draw-

back of MIL is the computational overhead of the prototype implementation of the

interpreter.

An alternative vehicle providing access to the underlying mechanisms is a library

of high-level language functions called a scheduler's toolkit. MESSIAHS includes a

toolkit that is more complex than MIL but yields policies with less run-time over-

head. The toolkit is accessible from several high-level languages, and can be used by

application programs to schedule tasks through the scheduling modules.

Both of these interface layers signi�cantly ease the implementation of new schedul-

ing policies. As shown in chapter 5, the time required to prototype new algorithms

using MESSIAHS can be as little as a few minutes.

7.2.2 Experimental Results

Experimental implementations of three algorithms from the literature show that

the prototype can yield e�cient schedulers and e�cient schedules. The e�cient sched-

uler has low overhead, typically consuming less than 0.5% of the CPU resources of a

machine. The resulting scheduler produces schedules that typically have a total run-

ning time of within 10% of the running time of a schedule produced with complete,

up-to-date information.

The results from chapter 6 indicate that the overhead caused by MESSIAHS is

acceptable for both static and dynamic algorithms. The MESSIAHS mechanisms

perform better as the ratio of inter-task delay to update frequency increases, with

a typical slowdown of less than ten percent. This means that MESSIAHS is useful

in situations where the update frequency can be set to exceed the task submission

frequency.
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7.3 Contributions

The work described in this dissertation makes several contributions to scheduling

support for distributed computing systems. These contributions were detailed in

previous sections, and are recapitulated here.

� a general design and hierarchical architecture for scheduling support in dis-

tributed, autonomous systems

� support for existing scheduling algorithms

� extensible, exible mechanisms to support future scheduling algorithms

� a prototype implementation of the mechanisms

� an abstract language for rapid prototyping and implementation of scheduling

policies

� a exible toolkit for constructing detailed scheduling algorithms

� performance data verifying the feasibility of this approach

� provably correct state dissemination methods for distributed systems

7.4 Future Work

Several areas of future work remain in the area of scheduling support. Some are

extensions and completions of current MESSIAHS mechanisms, and others embody

new directions for this research.

7.4.1 Extensions to MIL

At present, MIL does not allow the programmer to record history, so that adap-

tive algorithms cannot be written in MIL. Possible extensions to the MIL mechanisms

include information persistence (history) and aggregate data types (records and ar-

rays). In addition, substantial performance advantages could result from tuning of
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the interpreter to eliminate the excessive symbol table manipulation present in the

current version.

As an alternative to MIL, other interface languages could be implemented. PERL

[WS90] and Python [vR92] are interpreted languages with e�cient implementations.

Both are intended for combining traditional imperative programming languages, such

as C [KR90], with command-line interpreters, such as the Bourne Shell [Bou]. Tcl

[Ous93] is a command language that supplies a library of parsing functions that could

be integrated into the MESSIAHS scheduling module in place of MIL. A PERL,

Python, or Tcl interface language would allow information persistence and aggregate

data types while retaining MIL's advantages of rapid prototyping and ease of use.

7.4.2 Dynamic Aspects

Although support for dynamic system structure exists as a basic element in the

MESSIAHS mechanisms, the current implementation uses static con�gurations. Dy-

namic con�guration permits administrators to specify scheduling policies that remove

a host from the pool of available processors, and to rejoin at a later time. In the case

of heavy loads, the system could recon�gure itself to better serve the application mix.

Dynamic system con�guration could be extended to support fault tolerance, so that

the communications graph is rebuilt around a faulty node.

7.4.3 Task Migration

Checkpointing features and one of the task migration mechanisms described in

chapter 2.1.2 will be incorporated into the MESSIAHS mechanisms.

7.4.4 Multi-Architecture Programs

To further support heterogeneity, some form of multi-architecture program bina-

ries or architecture-independent program representation will be investigated.
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7.4.5 Extensions to the Task Scheduling Mechanism

The prototype task scheduling mechanism schedules only one task at a time. The

BOS experiment demonstrated the drawback of this approach for static schedulers,

which have an entire task force available for scheduling at the same time. A future

extension to the task scheduling mechanism will include the ability to group sets of

tasks so that the entire group is scheduled simultaneously.

7.4.6 Security

The autonomy support present in MESSIAHS forms the basis for security mech-

anisms. A host can o�er resources for consumption within the distributed system

without revealing private con�guration information. The autonomy support in the

mechanisms enhances availability of resources and prevents denial-of-service attacks.

Further exploration is planned in the areas of secure information advertisement, user

and host authentication, and execution environment protection.

7.5 Summary

This dissertation examined new mechanisms for scheduling support in distributed

systems. These mechanisms provide hierarchical structuring of computer systems

and allow the conglomeration of disparate computers into a single distributed system.

The system uses a decentralized architecture that supports autonomy in an e�cient

manner. A provably correct model of information dissemination provides a sound

basis for part of the mechanisms, and ensures that complete and correct information

reaches all hosts within the system.

The work presented here supports the thesis that e�cient, extensible scheduling

support mechanisms can be constructed for autonomous, heterogeneous, distributed

systems. MESSIAHS incorporates these mechanisms into a prototype implementation

that provides a scheduler's toolkit and a scheduling language. Implementation of



125

existing scheduling policies using the toolkit shows that the mechanisms have low

overhead and can facilitate the derivation of e�cient schedules.
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