
Indexing Information for Data Forensics

Michael T. Goodrich1, Mikhail J. Atallah2, and Roberto Tamassia3

1 University of California, Irvine.goodrich(at)uci.edu
2 Purdue University.mja(at)cs.purdue.edu

3 Brown University.rt(at)cs.brown.edu

Abstract. We introduce novel techniques for organizing the indexing structures
of how data is stored so that alterations from an original version can be detected
and the changed values specifically identified. We give forensic constructions for
several fundamental data structures, including arrays, linked lists, binary search
trees, skip lists, and hash tables. Some of our constructions are based on a new
reduced-randomness construction for nonadaptive combinatorial group testing.

Keywords: data forensics, data integrity, data marking, combinatorial group test-
ing, information hiding, tamper detection, data structures

1 Introduction

Computer forensics [71] deals with methods for extracting digital evidence after a com-
puter crime has been committed. Typically, such crimes involve modifying documents,
databases, and other data structures to an attacker’s advantage. Examples could include
a student changing a grade in a registrar’s database, a dishonest speculator altering on-
line financial data for a certain company, an identity thief modifying personal informa-
tion of a victim, or a computer intruder altering system logsto mask a virus infection.
It would be ideal in such cases if an investigator could identify, after the fact, which
pieces of information were changed and, in so doing, be able to implicate the attacker.
In the rest of this section, we describe our motivation, model, and related work, and
we summarize our contributions. But before doing so, we briefly give a simplified and
intuitive overview of what this paper is about.

A cryptographic one-way hash is a commonly used way of detecting unauthorized
or otherwise malicious modification of a file or other digitalobject (e.g., [5, 44, 62],
to mention a few of many examples). This is done by storing a keyed cryptographic
hash of the item and using it later as a reference for comparison. This paper is about
going beyond the yes/no afforded by this common use of cryptographic hashes: givenn
items, we now seek to store as few hashes as possible so as to enable the pinpointing of
whichof thesen items were modified (by comparing the computed hashes to the stored
hash values). Of course a hash is now applied to (a concatenation of) a subset of the
n items. Butwhich subsets, andhow manyof them, are needed so as to pinpoint the
modifications of up tod of then items ? We show that remarkably few hashes suffice.
Why it is so important to use few hashes will become apparent when we consider the
application we describe for the above-mentioned combinatorial result: the case when
then items are in the nodes of a data structure, and we seek to storethe hashes within

the topology of the data structure, i.e.,without using any additional space(and, of
course, without modifying any of then items stored in the data structure). In other
words, this forensic marking comes “for free” as far as the space of the data structure is
concerned.

Motivation. As mentioned above, in this paper we initiate an investigation into methods
for encoding information in the way data is indexed so as to identify if it has been
altered, and if so, to determine exactly the pieces of information that have changed.
Formally, we model this problem in terms of a data structureD that is stored on a semi-
trusted machine, which under normal circumstances, would useD for some desired
purpose. If there is an indication or suspicion thatD has been altered in a malicious
way, then we would like to enable a computer investigator, whom we call theauditor, to
examine the current state ofD to determine what, if anything, has changed. Of course,
a trivial solution would be for the auditor to cache a copy ofD in protected memory and
do a simple comparison of this copy ofD to the current version. This solution would
achieve the desired goal of identifying exactly the parts ofD that have changed, but it
would also require a tremendous amount of storage for the auditor, who is potentially
responsible for a large community of users and computers. Thus, we additionally restrict
solutions to use no storage at the auditor (or equivalently in protected memories), other
than possibly some small number of administrative values, such as a master key for
“unlocking” information encoded inD. We refer to this problem as that ofindexing
information for data forensics, or data forensics marking, for short.

Model. We are further interested only in solutions where marking the indexing struc-
ture of data leaves the actual data values unchanged, since changing data values could
alter the outcome of queries in unintended ways. Unlike well-known digital water-
marking techniques [18], we want to encode authentication information only in the
organizational structure of a data structureD, not in the values stored in it. We allow
ourselves the possibility of modifying non-data fields inD, but we require that any
such changes we carry out be stealthy, that is, not immediately detectable by the ad-
versary. In information-hiding terminology, we view the information hidden inD to
be steganographic rather than a watermark (which, strictlyspeaking, does not require
stealthiness, whereas steganography requires that even the presence of hidden informa-
tion be undetectable). Ideally, we want to encode information only in the topology of
D’s pointers and the ordering ofD’s memory blocks, yet we desire there to be sufficient
information so as to specifically identify any portions ofD that have been changed by
an attacker. Note that this requirement for pinpointing of the changes goes beyond the
notion of making the structure tamper-evident in the usual yes/no sense, something usu-
ally achieved using HMACs and digital signatures, but whoseyes/no outcome has too
coarse a granularity for our purposes.

Our model of the adversary is as follows. The adversary has access to the data
structureD after it has been deployed on the semi-trusted machine and can modify
the values ofD, but not the topology ofD’s pointers and the ordering ofD’s memory
blocks. This assumption is realistic in many practical applications for the following
two reasons. First, regular users typically provide data toan application through the
application’s user interface but cannot modify the application’s internal storage or the

application’s code to alter the memory arrangement of the data. Second, even if the user
were able to alter the data organization, the user may not think about doing it because
of the stealthiness of the marking.

The adversary is successful if he can modify some values ofD without such changes
being detected by the auditor. The adversary has knowledge of the algorithm the auditor
will use to perform a forensic analysis ofD. However, we do not allow the adversary to
know the cryptographic master key maintained by the auditor, nor of any keys that are
derived from such a master key. This is the usual (and preferred) “white box” security
requirement. Although in practice one may gain additional “security through obscu-
rity”, it is wiser to assume the adversary knows all but the keys. We illustrate this model
in Figure 1.

14

198

72

2215115

Original data structure, D

(not stored in protected memory)

14

198

62

2415105

Data structure, D, as stored

on semi-trusted host

Changes

values

14

198

62

2415105

investigation

Internally

consistent

portion

Applies

forensic

analysis

Auditor

Adversary

Fig. 1. An illustration of data forensics marking.

Prior Related Work. Computer forensics has been applied to software authorshipde-
tection [43, 63], the integrity of audit logs using externalprotected memories [59],
tracing IP packets during denial-of-service attacks [29, 57], and e-mail author identi-
fication [20]. We are not familiar with any previous work on data forensics marking,
however. Nevertheless, there has been considerable prior work in the theoretical com-
puter science literature on a number of related areas, including digital watermarking,
combinatorial group testing, program checking, property testing, and authenticated data
structures. We review some of this prior work here.

Digital watermarking [18] deals with methods for hiding a mark (usually identify-
ing information) in digital content in a manner that is resilient, i.e., hard to remove by

an adversary without considerably damaging the object. There are many applications of
watermarking, including inserting ownership information, inserting purchaser informa-
tion, placing caption information, etc. Most watermarkingwork has been on multimedia
content, where minor degradation of the quality of the mediais acceptable in order to
make the mark more resilient. There have been some notable exceptions, dealing with
watermarking software, semi-structures (XML), and relational databases. Collberg and
Thomborson [19, 17], Chang and Atallah [15], Horne, Matheson, Sheehan, and Tar-
jan [38] and Venkatesan, Vazirani, and Sinha [70], present schemes for watermarking
software. Qu and Potkonjak [55] propose a watermarking scheme for graph colorings.
Khanna and Zane [39] describe a scheme for encoding information in the weights of a
graph representing a map so as to preserve shortest paths. Gross-Amblard [35] studies
ways of changing values to encode identifying information in a database or XML doc-
ument so as to preserve the answers to certain queries. Marking XML structures is also
the topic of Sion et al. [60]. Database watermarking that slightly degrades the data was
proposed by Agarwal et al. [1] and Sion et al. [61]. This watermarking work is related to
data forensics marking in that it is directed at encoding information in digital content. It
differs from data forensics marking, however, in that digital watermarking allows data
values to change (in hopefully imperceptible ways) and is not interested in identifying
the specific places where content has changed.

Several researchers have studied combinatorial group testing and its applications to
cryptography and information encoding (e.g., see [16, 26]). This area is directed at per-
forming group tests on subsets of a given setS to identify defective elements inS. The
area has not to date been applied to data index integrity, butin this paper we show an
interesting connection between data forensics marking anda new reduced-randomness
construction of a nonadaptive combinatorial group testingscheme, which may be of
independent interest. As evidence for this claim, we observe that Kurosawa, Johans-
son, and Stinson [45] explore other applications of reduced-randomness constructions
in cryptography, and Stinson, van Trung, and Wei [65] explore applications of group
testing to key distribution in cryptography.

Following early work on program checking (see, e.g., [7, 66,67]), efficient schemes
have been developed for checking the results of various datastructures and algorithms
(see, e.g., [4, 8–10, 23, 24, 27, 40, 48, 49]). These schemes typically utilize linear space
with checking algorithms that run faster than the construction algorithms they are check-
ing, and they are directed at detecting if an algorithm has performed correctly or not.
We are not aware, however, of any prior work on program checking that, in addition to
detecting an error state, also identifies all the places in a program or structure that have
become invalid. Likewise, the related area of property testing is directed at determining
if a combinatorial structure satisfies a certain property oris “far” from such a structure
(e.g., see [56]), and it too does not identify all property violations.

Prior work in the area of authenticated data structures [3, 11, 13, 14, 21, 22, 28, 30–
34, 41, 42, 47, 52, 54, 68, 69] has focused on disseminating information from a single,
trusted source so that an alteration to the data structure could be detected, but not specif-
ically identified. That is, they do not provide solutions to the data forensics marking
problem. Related work on committed databases has recently been presented in [53].

Our Contributions. In this paper, we introduce the data forensics marking framework
and give several results for this model that use no additional storage at the auditor other
than a master key. The security of our methods are based on standard cryptographic as-
sumptions. Namely, we assume the existence of themessage authentication code(MAC)
cryptographic primitive, which is a key-dependent one-waycollision-resistant function
(see, e.g., [50, 58, 64]). A message authentication code canbe constructed from a stan-
dard cryptographic hash function.

We give forensic constructions for several fundamental data structures, including
arrays, linked lists, binary search trees, skip lists, and hash tables. Some of our con-
structions are based on a new reduced-randomness construction for nonadaptive com-
binatorial group testing, which is of independent interest.

All of our data forensics marking constructions involve twophases of computation.
In the first phase, we build a programP and authentication informationA for S so
thatP can detect and identify up to some number,d, of changes toS in the indexing
structureD usingA. In the second phase, we encodeP andA in the organizational and
topological structure ofD in a way that is probabilistically difficult for the adversary
to reproduce, yet it also preserves the accuracy ofP with high probability or it still
allowsP to restrict the changed values inS to a small set of candidates (which is often
sufficient for forensics). The challenge, of course, is to design the encoding ofP andA
in D so that it can survive up tod alterations of the values inS, as stored inD, that the
adversary might make.

Our contributions can be summarized as follows:

– We develop a new reduced-randomness construction for nonadaptive combinato-
rial group testing. In particular, we show how to construct at×n d-disjunct binary
matrix M encoding a nonadaptive combinatorial group test forn items that can
detect up tod defective items, witht being O(d2 log n). Our construction uses
only O(d3 log n log d) random bits and is correct with high probability, whereas
previous schemes useΘ(d2n log n) random bits and are not high-probability con-
structions. Thus, we can encode matrixM usingO(log n) bits whend is a constant,
a polylogarithmic number of bits whend is polylogarithmic, oro(n) bits whend is
o(n1/3/ log2/3 n), which is of independent interest.

– We give efficient forensic constructions of several fundamental data structures, in-
cluding binary search trees, skip lists, arrays, linked lists, and hash tables. The
number of changes we can detect and identify for a data structure D storing a
setS of n elements isO(n1/3/ log2/3 n) for balanced search trees and skip lists,
O(n1/4/ log1/4 n) for arrays and linked lists, andO(1) for hash tables.

In the next section, we describe our reduced-randomness construction of a nonadap-
tive combinatorial group test. In Section 3, we outline our two-phase constructions of
indexing structures for data forensics marking schemes. Weconclude in Section 4.

2 Blood Testing and Forensics

As mentioned above, some of our solutions utilize a reduced-randomness construction
of a nonadaptive combinatorial group testing scheme. Combinatorial group testing [26]

(or “CGT”) schemes identify “bad” members of a setS of n elements using group
tests. Agroup testconsists of selecting a test sampleT ⊂ S and performing a single
experiment to determine whether or notT contains a bad element. A testing scheme
that makes all its tests in a single round, with all test sets determined in advance, is
said to benonadaptive. Most efficient schemes are designed assuming there is an upper
bound,d, on the number of possible bad members of the input setS, where1 ≤ d < n.
Combinatorial group testing was originally formulated fortesting blood supplies during
World War II, with a group test comprising a tester extracting a few drops from each
blood sample in a test set, pooling them together, and testing the mixed sample for the
syphilis antigen [25].

Reduced-Randomness Nonadaptive Combinatorial Group Testing. For the cased =
1, it is straightforward to design a nonadaptive scheme usingO(log n) tests. For the
general case,d > 1, however, designing efficient general testing schemes is more chal-
lenging. Adaptive schemes generally make fewer total tests, in terms ofd andn, than
nonadaptive schemes. In particular, the best known general-purpose adaptive schemes
useO(d log(n/d)) tests, whereas the number of tests used by the best known general-
purpose nonadaptive schemes isO(d2 log n) [26]. Even so, adaptive schemes are not
applicable in many contexts, including DNA sequence analysis and the context of this
paper.

Our application of combinatorial group testing to data forensics marking is based
on the use of nonadaptive CGT schemes. Unfortunately, the known deterministic non-
adaptive CGT schemes are asymptotically suboptimal or not designed for most values
of d andn, and the known randomized CGT schemes, ford ≥ 2, utilize Θ(d2n log n)
random bits (e.g., see [26]). These drawbacks make existingnonadaptive combinatorial
group testing schemes infeasible for data forensics marking, where we wish to limit the
memory requirements of the auditor.

In this section, we present a simple, randomized nonadaptive combinatorial group
testing scheme, ford ≥ 2, where we reduce the needed random bits to beO(d3 log n log d).
This reduced-randomness CGT scheme is based on applying theconstruction of Alonet
al. [2] of almostk-wise independent random variables (see also [6, 51]) to therandom-
ized CGT approach of Busschbach [12], and then showing that almostk-wise indepen-
dent random variables can be used to achieve an efficient nonadaptive CGT with high
probability (which is, in fact, a stronger result than the previous algorithm achieves us-
ing fully independent variables). The main idea of this approach is to construct at × n
binary matrixM , where each column corresponds to an element ofS and each row
corresponds to a test—so thatM [i, j] = 1 if and only if elementj is included in testi.

A t × n binary matrixM is d-disjunct[26] if, for any d + 1 columns with one of
them designated, there always exists a row with a1 in the designated column and0’s in
the otherd columns. Given ad-disjunct binary matrixM , we can immediately design a
nonadaptive combinatorial group testing scheme—simply perform the test indicated by
each row ofM . With the results of these tests in hand, we can then remove each column
of M that has a1 in a row that returned a negative test result (recall that, inthe testing
framework, a negative is a good outcome). The remaining columns correspond to the
“bad” elements. The correctness of this algorithm is derived directly fromM being
d-disjunct, for if we designate a “good” column together witha group of up tod bad

columns, there must be a row (i.e., a test) that includes the good column and excludes
the bad ones. See Figure 2.

1

i

n

t

3

2

1

32 j j1 jdj2

1 0 0 0

. . .

Fig. 2. An illustration of at × n d-disjunct matrix.

Our algorithm for building ad-disjunct t × n matrix M is simply to set each
M [i, j] = 1 with probability roughly 1

d+1 , by using “almost”k-wise independent ran-
dom variables. The notion of being almostk-wise independent that we use is based on
the following definition of Alonet al. [2]:

Definition 1. A set of probability-(1/2) random bits,x1, x2, . . . , xn, is(ε, k)-independent
if, for anyk-bit vectorα andk positionsi1 < i2 < · · · < ik, we have

|Pr[xi1xi2 · · ·xik
= α] − 2−k| ≤ ε.

Alon et al. [2] establish the following important fact:

Lemma 1. LetN = 2r − 1 and letk be an odd integer. Then, using

2

(⌈

log
1

ε
+ log

(

1 +
(k − 1)r

2

)⌉)

probability-(1/2) random bits, one can construct a set ofN probability-(1/2) bits that

are(ε, k)-independent. That is, the number of needed random bits is roughly2 log
(

k log N
2ε

)

.

Given Lemma 1, we would like to sett so that thet × n random matrixM we
construct will bed-disjunct with high probability.

Theorem 1. Given integersd and n such that2 ≤ d < n, one can construct at ×
n binary matrix M that is d-disjunct with high probability, usingO(d3 log n log d)
random bits, wheret is Θ(d2 log n).

Proof. Let R be a set oftnl probability-(1/2) random bits that are(ε, (d + 1)tl)-
independent, wherel = dlog(d+1)e andt andε will be set in the analysis. Considering
these bitsl at a time, we can convert this set into a setR′ of probability-p bits, where
p = 1/2l, so that1/2(d+1) < p ≤ 1/(d+1). We use the bits inR′ to define the matrix
M so thatM [i, j] = 1 if and only if the corresponding bit inR′ is equal to1. (Note:

Azar, Motwani, and Naor [6] have an alternate, more general,approach for construct-
ing almostk-independent probability-p bits, but their construction is more complicated
than what is needed here.)

Consider now a particular columnj andd other columnsj1, j2, . . . , jd in matrixM .
For any rowi in M , had the random variables inR′ been at least(d +1)-wise indepen-
dent, then the probability thatM [i, j] = 1 andM [i, js] = 0, for s = 1, 2, . . . , d, would
bep(1 − p)d. Thus, had the variables inR′ been at least(d + 1)t-wise independent,
then the probability that no such row exists (afailure) among these columns would be

[

1 − p(1 − p)d
]t

.

Notice that this probability is actually determined by(d + 1)tl bits inR. LetF denote
the set of all vectors of values for thesek = (d + 1)tl bits xi1xi2 . . . xik

that result in
a failure event for columnj and thed other columns, and note that|F| ≤ 2k. Then, by
Lemma 1, for each vectorα in F , we have

|Pr[xi1xi2 · · ·xik
= α] − 2−k| ≤ ε.

That is, we obtain

2−k − ε ≤ Pr[xi1xi2 · · ·xik
= α] ≤ 2−k + ε.

In other words, this probability is bounded from above byε plus the value it would have
been had these bits beenk-wise independent. Therefore, we have

∑

α∈F

Pr[xi1xi2 · · ·xik
= α] ≤

[

1 − p(1 − p)d
]t

+ 2kε.

There are(d + 1)
(

n
d+1

)

ways of distinguishing a columnj andd other columns inM .
Moreover, the probability that any columnj andd others determine a failure is certainly
no more than the probability that all such groups determine afailure, which, irrespective
of any considerations about the independence of the underlying random variables, is no
more than

(d + 1)

(

n

d + 1

)

[

1 − p(1 − p)d
]t

+ (d + 1)

(

n

d + 1

)

2kε.

By the definition ofp, this probability is at most

(d + 1)

(

n

d + 1

)

[

1 −
1

2(d + 1)

(

1 −
1

d + 1

)d
]t

+ (d + 1)

(

n

d + 1

)

2kε.

Using the inequalities(1 − 1/(d + 1))d > 1/3 and(d + 1)
(

n
d+1

)

≤ nd+1, for d ≥ 2,
and substituting in the value fork, we can further simplify this probability as being at
most

nd+1

(

1 −
1

6(d + 1)

)t

+ nd+12(d+1)tlε.

For our claim to hold with high probability, we would like each of the above terms to be
at most1/n. To bound the first term by1/n, we can use the inequality− ln(1−x) ≥ x,
for 0 ≤ x < 1, and we can set

t = 6(d + 1)(d + 2)dlnne,

which isΘ(d2 log n). Given this value fort, to then bound the second term by1/n, we
can set

ε = n−(d+2)2−6(d+1)2(d+2)dlnnedlog de.

According to Lemma 1, the number of random bits needed for this construction is

2

(⌈

log
1

ε
+ log

(

1 +
(k − 1) logN

2

)⌉)

.

That is, the number of random bits needed isO(d3 log n log d).

Having a reduced-randomness construction, as specified in Theorem 1, allows us
to encode at × n d-disjunct binary matrixM simply by storing theO(d3 log n log d)
random bits used to generateM .

3 Specific Constructions for Data Forensics Marking

We use Theorem 1 in many of our data forensics marking solutions, which we briefly
outline in this section. Throughout this discussion, we assume the reader is familiar
with the fundamental data structures mentioned. In addition, throughout this section we
assume that the auditor and data structure designer share a secret keyK that is easily
derived from the auditor’s master key and the data structuredesigner’s identity. We also
assume the existence of a message authentication code (MAC)function fK(x) with
keyK. (see, e.g., [50, 58, 64]).

From Test Samples to Set Integrity Checking. Given a nonadaptive combinatorial
group test (CGT) for detecting up tod defectives in a set ofn items, we can convert
this into a test of the integrity of a collectionS of n items stored in a data structure. For
each testT specified by the CGT, compute itsauthentication valueaT defined by

aT = fK(x1 ||x2 || · · · ||xm),

wherefK is a MAC function andx1, · · ·xm are the items ofS included in testT , in
sorted order. We can then recomputeaT on an altered copy ofS to determine if this
value has changed. If so, then we know that an item inT has been modified. Thus, per-
forming all these comparisons for all the tests in the CGT would give us a determination
of which items inS have changed.

Lemma 2. We can construct a forensic scheme for a set ofn elements so as to detect
and identify which of up tod of its elements have been changed, with high probability,
usingO(d3 log2 n) bits of authentication information.

The problem, of course, is that the auditor does not have enough memory to store
an encoding of a CGT. Nevertheless, Theorem 1 gives a way of avoiding storing any-
thing at the auditor, for it implies that we can encode a nonadaptive CGT for detecting
d defective elements amongn using onlyO(d3 log n log d) bits. The number of tests
determined by these bits isO(d2 log n). For each testT defined by this CGT, we need
to store the authentication valueaT , Note thataT is determined by a message authen-
tication code based on the keyK, which is unknown to the adversary. Thus, the CGT
and its associated authentication values can be represented usingO(d3 log2 n) bits. Our
solution, then, to avoid any storage at the auditor, is to encode these bits in the data
structure itself.

Balanced Binary Search Trees. A balanced binary search tree holdingn items has
O(log n) depth. Its structure can also easily encodeO(n) bits in a simple recursive
fashion. Given a setS of comparable items, we haven/2 items that we can pick for
the root’s value (from the middle half of elements from rankn/4 to 3n/4). The exact
choice allows us to encodelog(n/2) bits at the root level, and we can then repeat this
construction recursively at each child. Since we can encodein the tree a total ofO(n)

bits we pickingd that iso(n1/3/ log2/3 n).
By Lemma 2, we obtain the following result:

Theorem 2. We can construct a forensic scheme for a balanced binary treestoringn
elements so as to detect and identify which of up toO(n1/3/ log2/3 n) of its values have
been changed, with high probability.

Skip Lists. We can use, for skip lists, a scheme similar to the one developed for binary
search trees. At each level of the skip list structure, abouthalf of the (say)m elements
of that level will survive to the next (higher) level. This allows us to encode at that level
a number of bits equal to

log

(

m

m/2

)

≥ log(2m/2) = m/2,

Hence, the overall encoding capacity in ann-element skip list isO(n) bits. Thus, just
as for the balanced binary tree case, by Lemma 2, we obtain thefollowing result:

Theorem 3. We can construct a forensic scheme for a skip list storingn elements so as
to detect and identify which of up toO(n1/3/ log2/3 n) of its values have been changed,
with high probability.

Arrays and Linked Lists. Arrays and linked lists allow up toO(n log n) bits to be
encoded in the permutation of the items stored in the list or array. But this information is
stored implicitly, since the ordering itself could be altered should the adversary change
values. Our solution in this case is to replicate the CGT and its expected valuesd +
1 times and spread these multiple encodings evenly across thebits encoded by the
permutation. By a pigeon-hole argument, even if the adversary changesd values, there
will still be a large enough contiguous run of unchanged values that encode the CGT
and its expected values so as to allow us to determine which values might have changed.

In this case we needO(d4 log2 n) bits. Therefore, by Lemma 2, we have the following
result:

Theorem 4. We can construct a forensic scheme for an array or linked liststoringn
elements so as to detect and identify which of up toO(n1/4/ log1/4 n) of its values have
been changed, with high probability.

This construction can also be applied to relational databases that use a data-independent
index number or unique ID to name records. In this case we can treat the index number
in the same way we used positions in an array or linked list.

Hash Tables. A hash table for a setS of n elements consists of a bucket arrayB
of size O(n) and a hash functionh which maps elements ofS to cells of B under
some collision-handling rule. Let us assume thath is based on a simple, standard linear
function, so thath(x) = αx + β mod p, for eachx in S, wherep is a prime on the
order ofn. There is not a lot of variability in such a hash table that we can exploit for
forensic analysis, but there is nevertheless enough for thefollowing:

Theorem 5. A hash table has a forensic construction that can detect and identify a
single value insertion or deletion and can isolate a changedvalue to a set of constant
expected size.

Proof. Our construction begins by choosingp to be a random prime on the order ofn
(for hash table efficiency, it is good thatp is slightly larger thann) such thatp mod 4 =
n mod 4. Sort the elements ofS and compute valueα defined as follows:

α = fK(x1 ||x2 || · · · ||xn || p),

wherex1, · · ·xn are the items ofS in sorted order. We then compute valueβ as follows:

β = x1 ⊕ x2 ⊕ · · · ⊕ f0(p).

We then define the hash functionh for the hash table ash(x) = αx + β mod p.
Let us consider the forensic capabilities of this structure. If an item is deleted, then

we can detect this case usingα and we can recompute the deleted value from the XOR
of β and the remaining values in the hash table. If a value is added, then we can detect
this case usingα and we can compute the complement of this value from the XOR ofβ
and the existing values in the hash table. If a value is changed, then we can detect this
case usingα andβ. For each elementx in the hash table, we can useβ to determine
what its value should have been werex the item that changed, and then recomputeα
to verify that this is the case. The expected number of valuesthat will be determined to
have possibly changed will beO(1) and the adversary cannot control this value, since
he does not knowK and is assumed to be unable to invertf .

Security. The security of our constructions is based on the fact that a successful ad-
versary will have to invert or find collisions in the message authentication functionfK

used or recover the secret keyK shared by the data structure designer and auditor. A
complete security proof will be given in the full version of the paper.

Extension. We can extend our results to a stronger adversarial model, where the ad-
versary can also modify a constant fraction of the authentication information hidden
in the data structure. For this purpose, we encode the authentication information us-
ing the cryptographic variation of the Guruswami-Sudan list decoder [36, 37] presented
in [46]. Even with this stronger model, we obtain results analogous to those given in
Theorems 2–4. Details will be given in the full version of thepaper.

4 Conclusion

We have introduced the topic of information indexing for data forensics marking, given
a new reduced-randomness construction for nonadaptive combinatorial group testing,
and applied this and other techniques to design efficient androbust constructions of
forensic schemes for several kinds of data indexing structures. We believe there is still
a considerable amount of additional work that could be done in this area. In particular,
it would be useful to have efficient forensic schemes for datathat is changing over time.
Such a solution would solve the problem of maintaining forensic data for audit logs and
dynamic databases.

Acknowledgements

The work of the first author was supported in part by NSF GrantsIIS-0325345, IIS-0219560,
IIS-0312357, and IIS-0242421, ONR Contract N00014-02-1-0364, by sponsors of the Center
for Education and Research in Information Assurance and Security, and by Purdue Discovery
Park’s e-Enterprise Center. The work of the second author was supported in part by NSF Grants
CCR-0312760, CCR-0311720, CCR-0225642, and CCR-0098068.The work of the third author
was supported in part by NSF Grants CCR-0311510, IIS-0324846 and CNS-0303577 and by a
research gift from Sun Microsystems.

References

1. R. Agrawal and J. Kiernan. Watermarking relational databases. InProceedings of the 2002
ACM SIGMOD International Conference on Management of Data,Hong Kong, pages 155–
166. ACM Press, 2002.

2. N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almostk-wise
independent random variables.Random Structures and Algorithms, 3:289–304, 1992.

3. A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated dictionaries
and their applications. InProc. Information Security Conference (ISC 2001), volume 2200
of LNCS, pages 379–393. Springer-Verlag, 2001.

4. S. Ar, M. Blum, B. Codenotti, and P. Gemmell. Checking approximate computations over
the reals. InProc. ACM Symp. on the Theory of Computing, pages 786–795, 1993.

5. W. Arbaugh, D. Farber, and J. Smith. A secure and reliable bootstrap architecture, 1997.
6. Y. Azar, R. Motwani, and J. Naor. Approximating probability distributions using small sam-

ple spaces.Combinatorica, 18(2):151–171, 1998.
7. M. Blum and S. Kannan. Designing programs that check theirwork. J. ACM, 42(1):269–291,

Jan. 1995.

8. J. D. Bright and G. Sullivan. Checking mergeable priorityqueues. InDigest of the 24th
Symposium on Fault-Tolerant Computing, pages 144–153. IEEE Computer Society Press,
1994.

9. J. D. Bright and G. Sullivan. On-line error monitoring forseveral data structures. InDigest of
the 25th Symposium on Fault-Tolerant Computing, pages 392–401. IEEE Computer Society
Press, 1995.

10. J. D. Bright, G. Sullivan, and G. M. Masson. Checking the integrity of trees. InDigest of
the 25th Symposium on Fault-Tolerant Computing, pages 402–411. IEEE Computer Society
Press, 1995.

11. A. Buldas, P. Laud, and H. Lipmaa. Eliminating counterevidence with applications to ac-
countable certificate management.Journal of Computer Security, 10(3):273–296, 2002.

12. P. Busschbach. Constructive methods to solve the problems of:s-sujectivity conflict resol-
tuion, coding in defective memories. Unpublished manuscript, cited in [26], 1984.

13. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In M. Yung, editor,Advances in Cryptology — CRYPTO
2002, volume 2442 ofLecture Notes in Computer Science, pages 61–76. Springer Verlag,
2002.

14. S. Cannella, M. Shin, C. Straub, R. Tamassia, and D. J. Polivy. Secure visualization of
authentication information: A case study. InProc. IEEE Symp. on Visual Languages and
Human-Centric Computing, 2004.

15. H. Chang and M. Atallah. Protecting software code by guards. In T. Sander, editor,Security
and Privacy in Digital Rights Management, volume 2320 ofLecture Notes in Computer
Science, pages 160–175. Springer-Verlag, 2002.

16. C. J. Colbourn, J. H. Dinitz, and D. R. Stinson. Applications of combinatorial designs to
communications, cryptography, and networking. In Walker,editor, Surveys in Combina-
torics, volume 187 ofLondon Mathematical Society Lecture Note Series, pages 37–100.
Cambridge University Press, 1993.

17. C. Collberg and C. Thomborson. On the limits of software watermarking. Technical Report
164, Department of Computer Science, The University of Auckland, Private Bag 92019,
Auckland, New Zealand, Aug. 1998.

18. C. Collberg and C. Thomborson. Software watermarking: Models and dynamic embeddings.
In ACM Symp. on Principles of Programming Languages (POPL), pages 311–324, 1999.

19. C. Collberg and C. Thomborson. Software watermarking: models and dynamic embeddings.
In ACM SIGPLAN–SIGACT POPL’99, San Antonio, Texas, USA, Jan. 1999.

20. O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content for author iden-
tification forensics.SIGMOD Record, 30(4):55–64, 2001.

21. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine. Flexible
authentication of XML documents. InProc. ACM Conf. on Computer and Communications
Security, pages 136–145, 2001.

22. P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publication over the
internet.Journal of Computer Security, 11(3):291 – 314, 2003.

23. O. Devillers, G. Liotta, F. P. Preparata, and R. Tamassia. Checking the convexity of polytopes
and the planarity of subdivisions.Comput. Geom. Theory Appl., 11:187–208, 1998.

24. G. Di Battista and G. Liotta. Upward planarity checking:“Faces are more than polygons”.
In S. H. Whitesides, editor,Graph Drawing (Proc. GD ’98), volume 1547 ofLecture Notes
Comput. Sci., pages 72–86. Springer-Verlag, 1998.

25. R. Dorfman. The detection of defective members of large populations.Ann. Math. Statist.,
14:436–440, 1943.

26. D.-Z. Du and F. K. Hwang.Combinatorial Group Testing and Its Applications. World
Scientific, 2nd edition, 2000.

27. U. Finkler and K. Mehlhorn. Checking priority queues. InProc. 10th ACM-SIAM Symp. on
Discrete Algorithms, pages S901–S902, 1999.

28. I. Gassko, P. S. Gemmell, and P. MacKenzie. Efficient and fresh certification. InInt. Work-
shop on Practice and Theory in Public Key Cryptography (PKC ’2000), volume 1751 of
LNCS, pages 342–353. Springer-Verlag, 2000.

29. M. T. Goodrich. Efficient packet marking for large-scaleIP traceback. In9th ACM Conf. on
Computer and Communications Security (CCS), pages 117–126, 2002.

30. M. T. Goodrich, M. Shin, R. Tamassia, and W. H. Winsborough. Authenticated dictionaries
for fresh attribute credentials. InProc. Trust Management Conference, volume 2692 of
LNCS, pages 332–347. Springer, 2003.

31. M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip lists
and commutative hashing. Technical report, Johns Hopkins Information Security In-
stitute, 2000. Available fromhttp://www.cs.brown.edu/cgc/stms/papers/
hashskip.pdf.

32. M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed crypto-
graphic accumulator. InProc. of Information Security Conference (ISC), volume 2433 of
LNCS, pages 372–388. Springer-Verlag, 2002.

33. M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictio-
nary with skip lists and commutative hashing. InProc. 2001 DARPA Information Survivabil-
ity Conference and Exposition, volume 2, pages 68–82, 2001.

34. M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated data structures
for graph and geometric searching. InProc. RSA Conference—Cryptographers’ Track, pages
295–313. Springer, LNCS 2612, 2003.

35. D. Gross-Amblard. Query-preserving watermarking of relational databases and XML docu-
ments. InACM Symp. on Principles of Database Systems (PODS), pages 191–201, 2003.

36. V. Guruswami.List Decoding of Error-correcting Codes. PhD thesis, Massachusetts Institute
of Technology, Boston, MA, 2001.

37. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric
codes. InIEEE Transactions on Information Theory, pages 45:1757–1767, 1999.

38. B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamicself-checking techniques for
improved tamper resistance. In T. Sander, editor,Security and Privacy in Digital Rights
Management, volume 2320 ofLecture Notes in Computer Science, pages 141–159. Springer-
Verlag, 2002.

39. S. Khanna and F. Zane. Watermarking maps: Hiding information in structured data. In
ACM/SIAM Symp. on Discrete Algorithms, pages 596–605, 2000.

40. V. King. A simpler minimum spanning tree verification algorithm. In Workshop on Algo-
rithms and Data Structures, pages 440–448, 1995.

41. P. Kocher. A quick introduction to certificate revocation trees (CRTs), 1998.
http://www.valicert.com/resources/whitepaper/bodyIntroRevocation.html.

42. P. C. Kocher. On certificate revocation and validation. In Proc. Int. Conf. on Financial
Cryptography, volume 1465 ofLNCS. Springer-Verlag, 1998.

43. I. Krsul and E. H. Spafford. Authorship analysis: Identifying the author of a program.Com-
puters and Society, 16(3):248–259, 1997.

44. M. Kuhn. The trustno1 cryptoprocessor concept. Technical Report CERIAS-1997-04-30,
Purdue University, 1997.

45. K. Kurosawa, T. Johansson, and D. R. Stinson. Almostk-wise independent sample spaces
and their cryptologic applications.Journal of Cryptology, 14:231–253, 2001.

46. A. Lysyanskaya, R. Tamassia, and N. Triandopoulos. Multicast authentication in fully ad-
versarial networks. InProceedings of IEEE Symposium on Security and Privacy, pages
241–255, May 2004.

47. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general
model for authenticated data structures.Algorithmica, 39(1):21–41, 2004.

48. K. Mehlhorn and S. Näher.LEDA: A Platform for Combinatorial and Geometric Computing.
Cambridge University Press, Cambridge, UK, 2000.

49. K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking
geometric programs or verification of geometric structures. Comput. Geom. Theory Appl.,
12(1–2):85–103, 1999.

50. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of Applied Cryptography.
CRC Press, 1997.

51. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
In ACM Symposium on Theory of Computing, pages 213–223, 1990.

52. M. Naor and K. Nissim. Certificate revocation and certificate update. InProc. 7th USENIX
Security Symposium, pages 217–228, Berkeley, 1998.

53. R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs for generalized queries
on a committed database. InProc. 31th International Colloquium on Automata, Languages
and Programming (ICALP), 2004.

54. D. J. Polivy and R. Tamassia. Authenticating distributed data using Web services and XML
signatures. InProc. ACM Workshop on XML Security, 2002.

55. G. Qu and M. Potkonjak. Analysis of watermarking techniques for graph coloring problem.
In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 190–193, 1998.

56. D. Ron. Property testing. In P. M. Pardalos, S. Rajasekaran, J. Reif, and J. D. P. Rolim,
editors,Handbook of Randomized Computing, pages 597–649. Kluwer Academic Publishers,
2001.

57. S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson. Practical network support for IP
traceback. InSIGCOMM, pages 295–306, 2000.

58. B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C. John
Wiley and Sons, Inc., New York, NY, USA, second edition, 1996.

59. B. Schneier and J. Kelsey. Secure audit logs to support computer forensics.ACM Trans. on
Information and System Security, 2(2):159–176, 1999.

60. R. Sion, M. J. Atallah, and S. K. Prabhakar. Resilient information hiding for abstract semi-
structures. InProc. of the Workshop on Digital Watermarking (IWDW), Seoul, Korea, LNCS.
Springer-Verlag, 2003.

61. R. Sion, M. J. Atallah, and S. K. Prabhakar. Rights protection for relational data. InProc.
2003 ACM International Conference on Management of Data (SIGMOD), San Diego, Cali-
fornia, pages 98–109. ACM Press, 2003.

62. E. H. Spafford and G. Kim. The design and implementation of tripwire: A file system in-
tegrity checker. In2d ACM Conf. on Computer and Communication Security (CCS), 1994.

63. E. H. Spafford and S. A. Weeber. Software forensics: Tracking code to its authors.Computers
and Society, 12(6):585–595, 1993.

64. D. R. Stinson.Cryptography: Theory and Practice, Second Edition. CRC Press Series, 2002.
65. D. R. Stinson, T. van Trung, and R. Wei. Secure frameproofcodes, key distribution patterns,

group testing algorithms and related structures.Journal of Statistical Planning and Inference,
86:595–617, 2000.

66. G. F. Sullivan and G. M. Masson. Certification trails for data structures. InDigest of the 21st
Symposium on Fault-Tolerant Computing, pages 240–247. IEEE Computer Society Press,
1991.

67. G. F. Sullivan, D. S. Wilson, and G. M. Masson. Certification of computational results.IEEE
Trans. Comput., 44(7):833–847, 1995.

68. R. Tamassia. Authenticated data structures. InProc. European Symp. on Algorithms, volume
2832 ofLecture Notes in Computer Science, pages 2–5. Springer-Verlag, 2003.

69. R. Tamassia and N. Triandopoulos. Computational boundson hierarchical data processing
with applications to information security. InProc. Int. Colloquium on Automata, Languages
and Programming (ICALP), LNCS. Springer-Verlag, 2005.

70. R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software watermark-
ing. In 4th Int. Workshop on Information Hiding, volume 2137 ofLNCS, pages 157–168.
Springer-Verlag, 2001.

71. A. Yasinsac and Y. Manzano. Policies to enhance computerand network forensics. InIEEE
Workshop on Information Assurance and Security, pages 289–295, 2001.

