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Abstract—One of the challenges for blind watermark detection
is synchronization. Synchronization is the process of identifying
the coordinates of an embedded watermark and is crucial in
successful watermark detection. If the detector’s input is water-
marked but synchronization fails, then the embedded watermark
will not be detected. In this paper, temporal synchronization for
blind video watermark detection is examined by developing new
models for watermark embedding and detection. The structure
of the watermark, and specifically its key schedule, dramatically
affects the ease of synchronization. The new embedder models
the construction of the watermark by using a state machine
key generator. The key generator can produce time-invariant,
time-independent, and time-periodic key schedules as special
cases. The watermark detector uses a queue and a state predictor
to perform a search to establish and maintain temporal synchro-
nization. These models are general and can be applied to many
symmetric blind video watermarking techniques. It is shown that
a watermark without temporal redundancy in its key schedule is
vulnerable to attacks such as frame dropping and transposition.
Using the models, a watermark more resilient against temporal
synchronization attacks is designed by adding temporal redun-
dancy in the watermark construction. Experimental results from
an implementation of the models are presented.

Index Terms—Synchronization, video, watermarking.

I. INTRODUCTION

A
WATERMARK is a signal that is securely, imperceptibly,
and indelibly embedded into original content such as an

image, video, or audio signal, producing a watermarked signal.
The watermark describes information that can protect or en-
hance the content, for example identifying the owner, origin,
or recipient of the content. Secure embedding implies that an
embedded watermark cannot be easily tampered with, forged,
or transferred from the watermarked signal to another arbitrary
signal [1]. Imperceptible embedding implies that the presence
of the watermark is unnoticeable when the watermarked signal
is displayed, even though the act of watermark embedding in-
troduces distortion into the audible or visible components of
the watermarked signal. Indelible (robust) embedding implies
that the watermark cannot be easily removed or separated from
the watermarked signal using signal processing, estimation, fil-
tering, lossy compression, or other attacks. Other types of wa-
termarks exist, such as fragile or visible watermarks, however in
this paper we shall generally use the term “watermark” to refer
to imperceptible, robust watermarks.

Content protection [2]–[4] has been the most prevalent class

of proposed applications for robust watermarking, as content
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owners are wary in an environment which permits the unau-

thorized reproduction and distribution of their copyrighted ma-

terials on a massive scale. The reader is encouraged to review

tutorial and overviews in watermarking [5]–[9] for additional

background.

There are three principal processes involved in robust wa-

termarking: watermark embedding, attack, and watermark de-

tection. In watermark embedding, a watermark is constructed

and then embedded into an original signal to produce the water-

marked signal. For security, watermark embedding usually re-

quires knowledge of a secret embedding key. In addition, some

watermarks also allow auxiliary information to be encoded in

the watermark, known as the message or payload. Once the wa-

termark has been embedded, the watermarked signal may be

subjected to attack. There are many different types of attacks,

including those which attempt to remove the watermark, make

the watermark more difficult to detect, or subvert the security of

the watermark. In watermark detection, a test signal is provided

to the watermark detector. The test signal may be watermarked

and possibly attacked, or may not have been watermarked at all.

The watermark detector examines its input signal and reports

whether the watermark is present or not, and if applicable, ex-

tracts the payload. If the watermark detector does not require ac-

cess to the original (unwatermarked) signal, the watermarking

technique is known as a blind technique.

One of the challenges in robust blind watermark detection is

that of synchronization. Synchronization is the process of iden-

tifying the correspondence between the spatial and temporal co-

ordinates of the watermarked signal and that of an embedded

watermark, or “finding the watermark.” During the watermark

embedding process, the embedder inserts the watermark into

the original signal with some chosen location, orientation, and

scale. When the watermarked signal is attacked, the location,

orientation, and scale of the embedded watermark may be al-

tered. The goal of a geometric or synchronization attack, such

as shifting, rotation, or cropping, is not to remove the watermark

directly but force the detector to confront a more difficult syn-

chronization problem [10], [11]. When the watermarked signal

is presented to the detector, the detector must determine the lo-

cation, orientation, and scale of the embedded watermark, which

is the process of synchronization. Temporal synchronization at-

tacks in video include frame dropping, insertion, transposition,

and averaging (temporal interpolation or temporal scaling).

Synchronization is critical in robust video and audio water-

mark detection, even in the absence of a malicious attacker.

In some applications, processing of a watermarked video by

users requires robust synchronization for watermark detection.

For example, aspect ratio conversion, frame rate conversion,

and cropping are common video editing operations in broadcast

video and motion picture applications. Other applications sub-
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Fig. 1. Robust blind watermark detection with synchronization.

ject the watermarked signal in conditions which may damage

parts of the signal and confuse the watermark detector. One

example of such an application is streaming video and audio,

where the watermarked signal may be damaged as it is trans-

mitted over the network [12], [13]. Network congestion may

also cause the watermarked signal to be lost for an indeterminate

time. (Even a signal loss lasting 1 s can result in many frames

being lost.) If the watermark detector loses synchronization, it

is necessary for the detector to resynchronize prior to resuming

detection. Lastly, blind watermark detectors must be able to syn-

chronize when the input signal first becomes available to the de-

tector. This process is known as initial synchronization. Initial

synchronization is complicated by the fact that any portion of

the watermarked signal may be input to the detector, not nec-

essarily the “beginning” of the signal. A robust watermark de-

tector should not rely on observing the “beginning” (or any other

specific portion) of a watermarked signal for synchronization.

A detection or synchronization scheme that relied on observing

the “beginning” part of the watermarked signal would be vul-

nerable if that portion was cropped.

In this paper, we focus on the problem of temporal synchro-

nization in the detection of video watermarks. We will describe

a general model for video watermark embedding which models

the construction of the watermark signal, and a model for water-

mark detection which generalizes the behavior of many video

watermark detectors. A framework for efficient temporal syn-

chronization is developed using the models. Spatial synchro-

nization issues are not addressed by our models.

II. BACKGROUND

An overview of robust blind watermark detection is shown

in Fig. 1. The detector input signal is examined by the syn-

chronizer, whose objective is to identify the correspondence (or

mapping) between the coordinates of the input signal and that

of an embedded watermark. The correspondence information

is provided to the watermark signal detector. For example, one

way that the watermark signal detector can make use of the syn-

chronization information is to transform the watermark to some

“normalized” coordinate system, and then perform signal detec-

tion on the normalized watermark. The synchronizer and water-

mark signal detection are not necessarily independent processes,

and may be coupled.

One general approach to synchronization is that of naive

search. In this approach, the watermark detector explicitly

searches the space of coordinate transformations (or some sub-

space thereof) to locate the watermark. The search is performed

without using any special properties of the watermark or other

side information. Two examples of the naive search approach

are the exhaustive search and the sliding correlator [14], [15].

Naive search is not practical for many applications because

the cardinality of the set of all coordinate transformations (or

subsets such as the set of affine transformations or the set of

shifts) is an obstacle for computationally efficient search. It

has also been shown that the exhaustive search is prone to

false positives, which makes this approach questionable even if

computational cost is not a constraint [16].

Another approach for synchronization is the construction of

templates in the watermarked signal. A template is a pattern

which describes the coordinates of the embedded watermark.

A coordinate transformation applied to the watermarked signal,

such as that arising from attack, will affect the template in the

same manner as the embedded watermark. When the water-

marked signal is provided to the detector, the synchronizer ex-

amines the template to determine the coordinates of the water-

mark. A template may be thought of as side information about

the structure of the watermarked signal which the detector can

use to reduce the computational search for synchronization.

Watermarking techniques have generally used three methods

for constructing synchronization templates. The first method is

the explicit embedding of an auxiliary synchronization signal

into the watermarked signal, in addition to the watermark.

Video watermarking techniques using explicit template em-

bedding include [17]–[19], as well as the “helper watermarks”

in [15] and the orthogonal sequences used for temporal syn-

chronization in [20]. Disadvantages of this method are that the

overall distortion in the watermarked signal is increased by the

embedding of the synchronization signal, and the synchroniza-

tion signal itself may be prone to estimation and attack [21].

Another method for constructing a template is to apply con-

straints on the structure of the watermark signal to generate the

synchronization pattern, such as constructing a watermark with

a tiled or periodic structure [22]. The structure of the watermark

itself provides the template and no auxiliary synchronization

signal is embedded. Unfortunately, the same constraints placed

on the watermark signal to create the template reduces the ca-

pacity and security of the watermark. A second example of

this method is [23]. The third method for obtaining a synchro-

nization template is to use features of the original video signal

[24]–[27] as the basis for synchronization. This method re-

quires the synchronizer to reliably detect salient features from

the original signal, and in contrast with the preceding methods,

neither an explicit synchronization signal nor the watermark

itself is used as the template.

Some watermarking techniques embed the watermark with in-

variance properties under transformations [19], [28], [29]. How-

ever, it may be difficult to find a transformation with invariance

under some forms of attack, such as nonuniform scaling and

spatial and temporal cropping. A similar approach is to design

the watermark to be less sensitive to synchronization [30].

While spatial synchronization, particularly under affine

transformations [31], has been explored for still image wa-

termarks, temporal synchronization is a relatively unexplored

area. The temporal dimension is unique from the spatial

dimensions in video watermarking. First, there is often a high
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Fig. 2. Classical model of watermarking.

degree of temporal redundancy in successive frames of a video

sequence, which can be a vulnerability. For example, if the

embedded watermark in successive frames are uncorrelated,

frame averaging may eliminate the watermark [32]. It was

also demonstrated in [32] that embedding the same (fixed)

watermark for all frames of the video can leave the watermark

vulnerable to estimation attacks. Second, in some video water-

marking applications, the detector has access only to a small

portion of the video (a single frame, or a small number of

frames) at any given time and may not be able to buffer entire

video sequences or scenes. However, spatial synchronization

techniques typically rely on having a large portion of the

watermarked signal available for analysis.

III. TEMPORAL SYNCHRONIZATION FRAMEWORK

In this section, the foundation to define and examine issues

in the temporal synchronization problem is developed, begin-

ning from the classical model for watermarking. The classical

model, shown in Fig. 2, is an elementary model for video wa-

termark embedding and detection. First, a watermark is created

and inserted into an original video sequence to produce the wa-

termarked video. The watermarked video may be subjected to

attack. Finally, the watermarked, and possibly attacked video is

provided to the watermark detector.

The watermark embedder is provided three inputs:

1) the original video ; 2) the embedding key ; and

3) payload . The original video is an ordered sequence

,1 with corre-

sponding to the frame displayed at time . For convenience,

is discrete and expressed in units of frames, so can also be

referred to as the frame index. The first frame of the video is

indexed by , the second frame by , and so on, with

increasing indices corresponding to video

frames that are displayed later in time. The embedding key

is the secret information that is needed to create and embed the

watermark signal. Embedding the watermark without knowl-

edge of should be very difficult. This provides security,

as only users who know will be able to embed the wa-

termark. The payload is auxiliary data that is encoded in

the watermark signal. The detector, if it successfully detects

1In this text, the notation h�i is used to denote an ordered sequence and f�g is
used to denote set membership.X = hx ; x ; x i is the ordered sequence x

followed by x , followed by x . X = fx ; x ; x g is a set with members x ,
x , and x .

the watermark, can extract the payload and provide it to the

application. Not all watermarking techniques use a payload.

Watermark embedding is a two-step process. First, the wa-

termark signal is constructed by the watermark signal gener-

ator. The watermark signal generator is provided with and

, and produces , which is the watermark signal that will

be inserted into the video. Some watermarking techniques also

provide the original video to the watermark signal gen-

erator for more effective watermark embedding. Providing the

original video allows signal-adaptive or perceptual-based water-

mark embedding to reduce watermark visibility [1]. Watermark

robustness can also be improved by considering the character-

istics of the original video, which is the concept of informed

embedding [6], [33]. Once the watermark signal is constructed,

is inserted into the original video frame to produce

the watermarked video frame . The specific methods by

which the watermark is constructed and embedded is dependent

on the watermarking technique. The output of the embedder is

the watermarked video .

After the watermark has been embedded, the watermarked

video may be attacked. There are many different types of at-

tacks. Any process which causes the watermarked video to be al-

tered is considered an attack, as altering the watermarked video

may remove the embedded watermark or make the watermark

more difficult to detect. Such attacks include filtering, lossy

compression, addition of noise, and geometric attacks. Some

other attacks, such as protocol attacks, attempt to subvert the

security of the watermark and do not directly impact watermark

detection. The primary focus of this discussion will be on tem-

poral synchronization attacks, such as frame dropping, insertion

of arbitrary frames, frame transposition, and frame averaging.

These attacks alter the temporal structure of the watermarked

video, which can confuse the watermark detector.

Let denote the water-

marked and possibly attacked video that is provided to the

detector. If the video has not been attacked, then is identical

to and for all . If the video is attacked then it is

not necessarily true that for any . For example, a

frame-dropping attack obtains by removing frames from ,

whereas a frame-insertion attack obtains by inserting new,

arbitrary frames into .

The watermark detector examines its input video and deter-

mines if the watermark is present. The detector is also pro-

vided with the appropriate detection key for detecting the

watermark. For a symmetric (private key) watermark, the em-

bedding key and its corresponding detection key are identical

. Asymmetric (public key) watermarks [34] use

distinct but related embedding and detection keys, similar in

concept to public key cryptography [35]. Without the appro-

priate detection key, the watermark detector will not be able to

detect the embedded watermark. Blind robust watermark detec-

tion was described in Section II. Fig. 2 shows the watermarked

video as the input to the watermark detector, however in the

general case any video could be provided to the watermark de-

tector. It is not necessary that the video examined by the detector

is watermarked.

The classical model is a general model that is useful for an

overview of watermarking, however, it does not provide insight
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into the temporal synchronization problem because the structure

of the watermark signal is not considered. We will now extend

the discussion from the classical model, leading to new models

for watermark embedding and detection. For the remainder of

the discussion, it will be assumed that the watermarking tech-

nique is symmetric, or .

When a watermark is embedded in a video sequence, one

of the parameters that determines its structure is the em-

bedding key . In video watermarking, it is assumed that

is used to create a key schedule or key sequence

, which is the ordered sequence

of subkeys used for generating the watermark embedded in

the individual frames of . Specifically, is the subkey

used for generating the watermark signal embedded in frame

. and are assumed to be members of the key

space whose cardinality (denoted by ) is very large.

For security reasons, is assumed to be sufficiently large

that a computational (exhaustive) search over is infeasible,

preventing an exhaustive search to find or . These

assumptions hold for many video watermarking techniques,

including [14], [19], [22], [32], [36]. For example, it is not

uncommon for a watermarking technique to use as the

seed of a pseudorandom number generator which produces the

watermark signal. For these techniques, corresponds to

the internal state of the random number generator when frame

is watermarked. Some other watermarking techniques

embed the same watermark signal in each frame of video, and

for these techniques for all .

Let the ordered sequence

denote the keys used to produce the watermark signals em-

bedded in the frames of , where is the key used to gen-

erate the watermark in frame . If the watermarked video has

not been attacked, then and thus for

all . However, attacks such as frame dropping, insertion, and

transposition alter the sequence of frames in the video, causing

changes to . Under these temporal synchronization attacks,

it is not necessary that . Signal processing attacks

that do not affect the temporal structure of the watermarked

signal, such as spatial filtering, affect but not . is not

defined if is an arbitrary, unwatermarked frame that has

been inserted into the video.

The objective for the watermark detector is to determine

when frame is examined. (A blind detector does not have

access to .) If the detector can determine , temporal

synchronization is achieved. If the detector cannot determine

, temporal synchronization is lost. The process of finding

when frame is examined by the detector is temporal

synchronization. However, if an attacker can determine for

any frame , he will have effectively deduced the structure

of the watermark and the watermark security is broken. Unlike

the watermark detector, it is assumed that the attacker does not

have prior knowledge of .

The key schedule can have a dramatic effect on the ease of

synchronization and the security of the watermark. To illustrate

the effects of the key schedule on synchronization and security,

three classes of watermarks with special key sequences are dis-

cussed: the time-invariant key, time-independent key, and peri-

odic key watermarks.

A time-invariant key watermark uses the same key to con-

struct and embed the watermark into each frame of the video.

For these watermarks, temporal synchronization is a simple

matter because it is known that for any

watermarked frame No search is need to determine .

However, time-invariant key watermarks may be vulnerable to

estimation attack [32], and an attacker that successfully obtains

the watermark key for a single frame of the video breaks the

security of the watermark.

In a time-independent key watermark, the keys used to

construct and embed the watermark signal in successive video

frames are nearly independent. Strictly speaking, the watermark

keys and , , are not truly independent be-

cause a single key is used to produce all the watermarking

keys in the key schedule. The keys in the time-independent key

schedule, however, do not repeat or repeat with an extremely

long period. Such a key schedule may be produced by using a

pseudorandom number generator to create the watermark signal

for each frame, whose internal state is never reset after seeding

with . Knowledge of the key used to embed the watermark

in one frame yields little information about the key used to

embed the watermark in other frames, however, the detector

must generally search to find when synchronization is

lost. Watermark robustness may also be an issue [32].

In a time-periodic key watermark, the keys of the key

schedule form a repeating sequence (with relatively short pe-

riod). In such a key schedule, every (and thus every )

is a member of a small set of keys (with )

that are repeated. A search may not be infeasible. Moreover,

resynchronization is possible by looking for any single key

because will eventually appear in the key schedule

in some future frame. However, the security of a periodic key

schedule is not as strong as a time-independent key schedule.

For example, the attacker can obtain the key sequence for the

entire watermarked video by obtaining the key sequence over a

single period. Estimating the period of the watermark key se-

quence may be possible by correlation, and vector quantization

or clustering techniques may be used to estimate the embedded

watermark from .

The time-invariant key, independent key, and periodic key

sequences differ in the amount of temporal redundancy in the

key schedule. Temporal redundancy in the key schedule refers to

the degree of “randomness” of the keys in the key schedule. The

sequence of keys appearing in a key schedule with low temporal

redundancy(suchas the time-independentkeyschedule) ishighly

random and recovering synchronization may require a search

over . A key schedule with greater temporal redundancy allows

the detector to reduce the search needed for synchronization. For

example, the detector may be able to predict likely values for an

unknown , based on the past keys .

However, there is a security tradeoff in that greater temporal

redundancy in the key schedule can make deducing or

estimating the embedded watermark easier for an attacker. Tem-

poral redundancy shall be revisited in the design of key schedules

that are resistant to frame dropping and transposition attacks in

Section V. In Section IV, a model for watermarking is introduced

which encompasses the time-invariant key, time-independent

key, and periodic key watermarks as special cases.
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Fig. 3. Watermark embedding model.

IV. WATERMARK EMBEDDING AND DETECTION MODELS

A. Model for Watermark Embedding

To model the construction of the key schedule, the classical

watermark embedder is extended as shown in Fig. 3. (The at-

tack and watermark detector are omitted.) The function of the

watermark signal generator and watermark signal embedder are

identical to that of the classical model. Any watermark construc-

tion and embedding techniques may be used, subject to the as-

sumptions stated in the preceding discussion. The key generator

and the feature extraction are new components, and will be de-

scribed in detail below.

The overall steps for watermark embedding are as follows,

for each frame of the video.

Watermark Embedding Procedure (WEP)

1) The key generator provides , the key used to water-

mark the current frame, to the watermark signal generator.

2) The watermark signal generator uses to produce

, the watermark signal to be embedded into the cur-

rent frame. For example, may be used to seed a pseu-

dorandom number generator which produces . Like

the classical model, the watermark signal may be depen-

dent on the payload , as well as the current video frame

.

3) The watermark embedder embeds into the orig-

inal video frame to produce the watermarked video

frame .

4) The feature extractor examines the watermarked video

frame and produces a feature vector .2

5) The key generator generates the watermark key for the

next frame, . To generate , the key

generator uses and . Return to step 1 for the next

frame of the video.

The purpose of the key generator is to produce the water-

marking key for each frame of the video, and thus, produce

the key schedule for the watermark. The key generator is mod-

eled as a state machine (SM) which accepts and as

inputs. The SM is a general computational model for systems

that possess memory (state) [37]. SMs have been used in a va-

riety of applications, including character string recognition and

regular-expression matching [38], [39], theoretical computing

2Strictly speaking, F (t) is a vector. However, it is a vector obtained from
observing a single frame, Y (t). F (t) is not written as F(t) to avoid confusion

with X, Y, Ŷ, and other symbols whose elements form an ordered sequence
across time (i.e., over multiple frames of video).

(such as Turing Machines) [40], [41], and simple “artificial in-

telligence” engines used in computer entertainment [42].

A SM is defined by the tuple , where is

the set of states, is the set of initial states, is the input

domain, is the output range, is the state transition func-

tion, and is the output function. is

the nonempty, countable set of states in the SM. A “state” is a

representation of memory, and allows the output and behavior

of the SM to depend on current and past inputs. At any given

time the state of the machine, known as the current state

, is one of the members of .3 The current state of the SM

can change in response to the SM input in accordance to the

state transition function. is the set of initial states, and is a

nonempty subset of . The current state of the SM is initial-

ized to a member of when the machine is started, such that

. For the time being, it is assumed that is a set with

only one element, deferring the discussion when . is

the input domain, which is the set of all possible inputs to the

SM, and is the output range, which is the set of all possible

outputs of the SM. The state transition function

describes the state transitions of the SM. If the current state of

the SM is , and the current input is , then the

next state will be . The output function

is a mapping from each state to an output value. The

output of the SM is , which is a function of only

the current state . The output function of some SMs (known

as Mealy Machines [37]) are more general, in that is also a

function of the current input ; however, it is

sufficient for the output to depend only on herein. A SM

is often represented using a directed graph, where the vertices

corresponds to the states and the edges correspond to the state

transition function .

When a SM is used as a key generator, it accepts fixed and

frame-dependent feature vector as inputs and produces a

key value as output. Thus, the input domain will generally be

the Cartesian product of the key space and the range of all pos-

sible feature vectors from the feature extractor. The output range

is the key space . The starting state may depend on .

In step 1 of the WEP, the SM outputs . State transitions

occur in step 5, where . After the

state transition, the key is obtained by .

The output mapping function of a key generator must also

be one-to-one.

The feature extractor examines each watermarked video frame

and produces a feature vector . The feature vector is

then provided to the key generator, which allows the key se-

quence to be video-dependent. A video-dependent key schedule

can increase the difficulty of inverting the watermark and provide

some benefit against ownership [43] and copy [44] attacks. How-

ever, the disadvantage of using features is that the dependence

of the key schedule on the features imply that temporal synchro-

nization can be destroyed by performing attacks that change the

feature vectors. Feature extraction may be omitted if the key

generator does not use . For robust video watermarking,

the features should be chosen such that changes in value

3Note the difference between the notation s and s(t). s refers to a specific
member of S (the ith state) and is independent of time. s(t) is the current state
of the SM at time t.
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Fig. 4. Example key generators.

only when significant alterations are made to the watermarked

frame . Ideally, the features should be sufficiently robust

so that such an attack is successful only when the attacked

video no longer has any value in the application. For security,

the features should be dependent on an auxiliary key. Lastly,

features should also be computationally efficient to obtain.

Before describing the watermark detector, examples of the

time-invariant key, time-independent key, and time-periodic

key watermark embedders are shown to illustrate these key

sequences as special cases of the model. These examples are

not unique, and there are other key generator configurations

which can produce these special key schedules. None of the

watermark embedders for these three key schedules use feature

extraction. Assume the key space is

and the embedding key is . With the exception of

the state transition function, the SMs for these examples are

common: , , ,

, and .

The key generator for a time-invariant key watermark has the

state transition function

(1)

For a time-independent key watermark, the key generator has

state transition function

.
(2)

For a periodic key watermark with period frames, the

key generator has state transition function

otherwise
(3)

for .4 The graph representation of

these SMs is shown in Fig. 4.

4The state transition function for K 2 fjKj � T + 1; . . . ; jKj � 1g is
conceptually similar to (3), but requires the indices of the states in the period to
“wrap-around.” There is no state s in S , so the next state after s is s .

Fig. 5. Watermark detection model.

Nondeterministic Key Generators: The key generator may

also be modeled using a nondeterministic SM. A nondeter-

ministic SM may have one or both of the following: Multiple

starting states, and nondeterministic state transitions. A SM with

multiple starting states has . When the SM is initialized

at , a random member of is chosen as the starting state. A

SM with nondeterministic state transitions has a state transition

function which returns a nonempty set of possible next

states. When a state transition occurs, the current state of the

SM transitions to a randomly chosen member of that set.

B. Model for Watermark Detection

This section describes a model for symmetric

blind video watermark detection. The detector model is shown

in Fig. 5. The inputs to the detector are the video sequence to

be examined and the detection key. It was assumed that the

watermarking technique is symmetric, so the detection key is

. The major components of the detector model are the wa-

termark signal detector, feature extractor, state predictor, de-

tector control, and the queue. The detector has knowledge of

the embedder’s key generator and feature

extraction.

The watermark signal detector is identical to that of the clas-

sical model. It is the watermark detector corresponding to the

technique used to embed the watermark signal. The watermark

signal detector is given and a detection key, and determines

whether or not the watermark was detected in the frame using

the key. The detection key is obtained from the detector control.

The watermark signal detector may be invoked multiple times

for a single frame of video.

The feature extraction is identical to that of the embedder. The

detector’s feature extractor examines the input frame and

produces a feature vector , which is provided to the state

predictor.

The state predictor and the queue are the significant com-

ponents for watermark detection and synchronization. At this

time, the structure of the the state predictor and the queue are

described. The underlying synchronization mechanism will be

discussed later. The state predictor accepts a state input , the

embedding key , and feature input and outputs ,

the predicted state for . The prediction function is iden-

tical to the state transition function of the watermark embedder:

. The state predictor is not a SM.
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The queue serves as the detector’s memory. A queue is an

array of elements , where

each element may contain some data. The queue size is the

number of elements present in the queue and the queue capacity

is the maximum size of the queue. The element is known as

the head, and is known as the tail. When new data is

inserted into the queue, all of the data in the queue shift one el-

ement and the new data is placed at the head of the queue. If the

queue was full prior to the insertion, then any data that resided

at the tail of the queue is lost. This type of queuing behavior is

known as a first-in-first-out (FIFO) queue. In addition to the in-

sertion of new data, the queue supports moving or “promoting”

any data present in the queue to the head of the queue. When

data in a specific queue element is promoted, all the other data in

the queue are moved—preserving their relative order—to make

room at the head of the queue and the promoted data is placed

into the head. For the watermark detector, the data stored in the

queue will be members of . Prior to receiving the first frame

of video, the watermark detector queue is empty.

The detector control component manages the operation of all

the components of the watermark detector, performing the steps

of the watermark detection procedure (WDP), for each frame

.

Watermark Detection Procedure (WDP)

1) The input frame is provided to the watermark signal de-

tector and the feature extractor. The feature extractor ex-

amines and obtains .

2) For each state , the detector sends the key

to the watermark signal detector. If the detector

finds the watermark using , let and

continue to step 5. If the detector fails to find the water-

mark using the keys of all states in , continue to the next

step.

3) For each state , the detector sends the key

to the watermark signal detector. If the detector finds the

watermark using , let , promote to the head

of the queue, and continue to step 5. If the detector fails

to find the watermark using the keys of all states in the

queue, continue to the next step.

4) At this step, either is not watermarked or temporal

synchronization failed for the current frame. Return to

step 1, and try synchronizing with the next frame,

.

5) At this step, was found and temporal synchronization

is achieved for the current frame. is the state which

maps to under . Use the state predictor to predict

the state . If the predicted

is already in the queue, promote it to the head.

Otherwise, insert the predicted into the queue.

Then return to step 1 for the next frame of video. If

returns a set of states, then this step is repeated for every

member of , before returning to step 1.

A glance at the WDP shows that the queue is used to perform

a limited search to find the appropriate detection key for each

frame of the video. The queue stores the states which produced

recently detected keys, and their next states. The next states are

obtained by using the state predictor. A more detailed analysis

of the synchronization mechanism is presented in Section IV-C.

The watermark detection model generalizes the behavior of

symmetric (private key) video watermark detectors, analogous

to the watermark embedding model described in Section IV-A

generalizing video watermark embedders. Many video water-

mark detectors perform the steps of the WDP in principle. It

is known that the detector possesses side-information regarding

the watermark embedding process. This side-information gener-

ally allows the detector to generate the watermark signal (step 3

of the WDP) and then detect for the presence of the watermark

signal in the input video frame. If the detector discovers that

was the correct key to watermark frame , it assumes

(i.e., predicts) by using this side-information (step 5 of

the WDP) and searches for this key in subsequent frames of the

video. Watermark detection continues in such a manner until the

detector becomes confused by a synchronization attack. When

the detector loses synchronization, and for initial synchroniza-

tion, the detector searches for a particular key to resynchronize

(step 2 of the WDP).

C. Analysis

The function of the embedder and detector models are exam-

ined in this section. It is shown that the detector will detect the

watermark embedded in every frame of the watermarked video

if it has not been attacked and that the insertion of arbitrary (un-

watermarked) frames will not desynchronize the detector. The

vulnerability of the watermark detector in the presence of frame

dropping or transposition attack is also shown.

The objective of the detector is to determine when

frame is examined. However, for a watermark pro-

duced by the watermark embedder discussed in Section IV-A,

, where is the underlying state of the

key generator which produced . The function is

one-to-one, and is only a function of the state. Thus, the

objective of the detector can be restated as to determine

when frame is examined. The analysis will focus on the

states, specifically the states of the embedder’s key generator to

produce the watermark and the states in the detector’s queue.

It is assumed that the watermark signal detector is always cor-

rect for any key and input video frame (no false positives and no

misses). Also, the analysis shall assume that the key generator

of the watermark embedder uses a deterministic SM. This is to

simplify the presentation; a similar analysis can be performed

for nondeterministic SMs, which would be complicated by

returning a set of states, as opposed to a single state.

Some lemmas about the properties of the embedder and de-

tector models are listed below. Their proofs are in the Appendix.

Lemma 1 (Fundamental Watermark Structure): Let and

be any two successive frames of the watermarked

video. Assume that produced the watermark

signal embedded in and produced

the watermark signal embedded in . Assume that

is obtained from the feature extractor from , and is con-

stant. Then, .

Lemma 2: Suppose and are two successive

watermarked frames of the detector’s input video and neither

frame is attacked or involved in an attack. Assume that

produced the watermark signal embedded in and
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produced the watermark signal em-

bedded in . Assume that is obtained from the de-

tector’s feature extractor at time , and is constant. Then,

.

Lemma 3 (Detector Behavior): Let be the frame of the

video examined by the detector. Then, temporal synchronization

is achieved if and only if is watermarked, and is either

a member of or in the queue at time , where is the state

which produced .

Lemma 4 (Initial Synchronization): Let be the frame

of the video examined by the detector, watermarked by

and . Temporal synchronization will

be achieved.

Lemma 5 (Queue Lemma I): Let be the watermarked

frame examined by the detector, where pro-

duced the watermark embedded in the frame. Suppose temporal

synchronization is achieved. Then, for frame , the state

at (the head of the queue) is , and if

, the state at is .

Lemma 6 (Queue Lemma II): Let be the frame of the

video examined by the detector. Suppose temporal synchroniza-

tion is not achieved. Then the queue is unchanged.

Theorem 1 (Correctness of Watermark Detector With no At-

tacks): Let be the watermarked video provided to the de-

tector. Suppose no attacks are performed on . Then the water-

mark detector will achieve synchronization and detect the wa-

termark in every frame of the video.

Proof: The proof will be by induction on . Base Case:

is the first frame of the video. There are no attacks, so

, which was watermarked by the key generated by

state . By Lemma 4, temporal synchronization will be

achieved.

Inductive Case: Suppose temporal synchronization is

achieved for frame . By Lemma 5, will

be at the head of the queue. By Lemma 2, the state for the next

frame is . Thus, by Lemma 3,

temporal synchronization will succeed for frame .

Theorem 2 (Ineffectiveness of Frame Insertion At-

tack): Suppose and are consecutive frames

of the watermarked video, and ,

, , and all frames , are

arbitrary, unwatermarked frames inserted as an attack, and tem-

poral synchronization is achieved for frame .Then, temporal

synchronization will be achieved for frame .

Proof: implies , ,

and . implies

, . Lemma 1 applies

to and , thus . And

thus, .

Temporal synchronization on frame is achieved, so by

Lemma 5, the state will be at the head of the

queue. The next (inserted) frames of after are all

unwatermarked, which implies that temporal synchronization

will not succeed for those frames (Lemma 3). By Lemma 6,

however, the queue is not changed during the processing of any

of the frames and will remain at the head

of the queue. Thus, by Lemma 3, temporal synchronization will

be achieved for frame .

Theorem 3 (Vulnerability to Frame Dropping): Suppose

, , and are consecutive frames of the

watermarked video, watermarked using keys ,

, and ,

respectively. Also assume , and

. Suppose , but the next frame is

dropped so that . Suppose is

not in the detector’s queue at time . Then, temporal synchro-

nization will not succeed for frame , even if temporal

synchronization succeeded for frame .

Proof: implies and

. Likewise, implies

and . If temporal synchronization is not

achieved for frame , by Lemma 6, the queue will not change

when the detector examines frame . Since was not

in the queue at time , then will not be in the queue

when is examined. Furthermore, since ,

by Lemma 3 temporal synchronization will not be achieved for

frame .

Suppose temporal synchronization succeeded for frame .

Then by Lemma 5, state and possibly

state will be in the queue. However neither nor

is equal to since

. It was assumed that state was not

in the queue at time , thus when the detector examines frame

, the state will not be in the queue. Since

, by Lemma 3 temporal synchronization

will not be achieved for frame .

From the proof of Theorem 1, it can be seen that the

function induces a “chain of states” that is created by the em-

bedder (through the state transitions in the key generator) and

traced by the detector (using the queue and state predictor). The

frame-dropping attack severs the chain, causing the watermark

detector to be unable to discover the state sequence used by the

embedder. A frame transposition attack can affect the state se-

quence similarly. In Section V, watermark detection in the pres-

ence of frame dropping and transposition attack shall be ad-

dressed by adding temporal redundancy into the key schedule.

When the detector loses temporal synchronization, Lemma 3

shows why recovering synchronization is relatively simple for

time-invariant key and time-periodic key watermarks, and diffi-

cult for time-independent key watermarks. For a time-invariant

key watermark, the state of the key generator for all time is

. Thus, synchronization will always

succeed for any watermarked frame in a time-invariant key wa-

termark, even without a queue. For a periodic key watermark,

the state sequence includes in each period. If the

detector loses synchronization, it will be able to recover syn-

chronization at a frame which , or a frame which

in a future period. However, the situation is much

different for a time-independent key watermark. If the detector

loses synchronization, a frame that is watermarked by the state

or a state in the detector’s queue may not appear until

nearly frames in the future. Resynchronization for a time-in-

dependent key watermark by search alone may not be practical,

and synchronization may require embedding additional infor-

mation into the watermarked signal (such as an explicit synchro-

nization signal) to describe .
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V. TEMPORAL REDUNDANCY AND SYNCHRONIZATION

It was shown in Section IV-C that the watermark detector

may be vulnerable to frame dropping and transposition attacks.

However, the resilience of the watermark detector against these

attacks may be increased by adding temporal redundancy into

the key schedule. Temporal redundancy adds robustness into the

key schedule, permitting some frames to be dropped or re-or-

dered without adversely affecting temporal synchronization. A

modified embedder is described which adds temporal redun-

dancy by watermarking multiple frames of the video with an

identical key.

One strategy for increasing the robustness of the watermark

is to limit the effect of synchronization loss to as few frames

as possible. If the detector can recover synchronization quickly,

then the effect of losing synchronization is not severe. An ex-

ample of this strategy is the time-periodic key watermark. If the

detector loses synchronization, then a frame that allows the de-

tector to recover synchronization should be examined by the de-

tector in the near future.

The embedder’s key generator can be modified to produce a

key schedule that is similar to, but not necessarily identical to

a time-periodic key watermark. The modification entails “reset-

ting” the key generator after consecutive frames of the video

have been watermarked. When the key generator is reset, its

current state is set to a member of , similar to the initializa-

tion which occurs before . The parameter is the period,

although the name is somewhat a misnomer because the wa-

termark state sequence is not necessarily strictly periodic. The

larger , the less often the key generator is reset and the key

schedule produced by the key generator has less temporal re-

dundancy. It is also possible to reset the key generator at random

intervals, where is the expected number of frames between

resets. This change does not require any modification to the wa-

termark detector, nor is it necessary to provide to the detector

as side-information because temporal synchronization will suc-

ceed when a frame is watermarked with a state . A

frame watermarked when the key generator state is a member of

is known as a resynchronization frame, because these frames

allow the detector to recover synchronization if it is desynchro-

nized as well as initial synchronization.

Theorem 3 shows that the loss of a single state (frame) can

cause the detector to lose synchronization, indicating the frag-

ileness of the state sequence. Another strategy for increasing

the robustness of the watermark is to find a means for pro-

tecting the state sequence so that the loss of individual states

can be tolerated without synchronization loss. Consider a mod-

ified embedder in which the key generator does not change its

state after every frame of the video is watermarked. In the mod-

ified embedder, the current state of the key generator changes

to only after consecutive frames are water-

marked, using the feature vector of the last frame to determine

the next state. The current state of the SM remains unchanged

and the feature vector is ignored for all other frames during step

5 of the WEP. The parameter is known as the repeat param-

eter. The resulting state sequence resembles that of Fig. 6.

It will now be shown that having consecutive frames water-

marked using the same key generator state will not destroy tem-

poral synchronization at the detector. Because of this property,

Fig. 6. State sequence of modified embedder. Arrows indicate frames where
state transitions in the key generator occur.

Fig. 7. State sequence in a frame-dropping attack.

it is not necessary to modify the watermark detector to accom-

modate the change made to the embedder, or to provide to

the detector as side-information. Also, if the feature vectors are

identical over those frames, the detector’s queue will not change

over those frames (proofs are in the Appendix.)

Lemma 7 (Queue Lemma III): Suppose and

are two consecutive frames watermarked using the same key

and thus, same state .

Suppose temporal synchronization is achieved for frame .

Then, temporal synchronization will be achieved for frame

. Furthermore, if , then the detector

queue after examining frame is identical to that after

examining .

Lemma 8 (Corollary): Suppose ,

are consecutive frames watermarked using the same state

for , and that temporal

synchronization is achieved for frame . Then temporal syn-

chronization will be achieved for frames

. Furthermore, if ,

then the queue after the detector examines frame

is identical to the queue after the detector examines frame .

Theorem 4 (Temporal Redundancy and Resilience Against

Frame Dropping): (See Fig. 7 for a diagram showing the as-

sumptions of this theorem, as the hypothesis is lengthy.) Sup-

pose are consecutive frames

of the watermarked video produced by the modified embedder

such that

• frame is watermarked by key

;

• frame is watermarked by key

;

• all frames , denoted set , are

watermarked by the key

;
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• feature value does not change for the frames in set , or

;

• the state transitions of the key generator occur after wa-

termarking frames and . Thus,

and

.

The watermarked video is provided to the detector, where

frames and , fixed

, are not attacked. However, one or more frames in set

may be dropped. Let the set

be the set of frames from that remain after the frame drop

attack. Assume there are no other attacks on , and temporal

synchronization is achieved for frame . Then, if there

is at least one frame in , then temporal synchronization will

be achieved for all the frames in , as well as frame .

Proof: Temporal synchronization is successful for

frame . Thus, the queue shall contain the state

(Lemma 5). Since is nonempty and no other attacks have

been performed in , there exists a frame, . For

any frame in , the state of the key generator used to water-

mark the frame is and the feature vector extracted from

the frame is . Since is in the queue, temporal syn-

chronization will be achieved for frame (Lemma 3).

After examining , the head of the queue will be the state

(Lemma 5). If there is more than one frame in , temporal

synchronization will be achieved for every frame in and

the queue will remain unchanged (Lemma 8). Thus, when the

detector examines frame , the state will be in

the queue and by Lemma 5, temporal synchronization will be

achieved for .

Theorem 4 shows that the watermark produced by mod-

ified embedder, in which sets of consecutive frames are

watermarked by the same state of the key generator, will be

resilient against frame-dropping attacks unless all frames in

a set are dropped (assuming feature vectors are constant over

each set, or if feature extraction is not used). By performing

state transitions every frames instead of at every frame as

described in Section IV-A, redundant copies of each state are

created prior to a state transition. These redundant copies will

not confuse the detector (Lemma 8), and the detector only

needs to observe each state once to maintain temporal syn-

chronization (Theorem 4). Any frame-dropping attack which

drops less than consecutive frames will fail to desynchronize

the detector.

Both the strategies described above require the watermark

embedder to be modified from Section IV-A, by the insertion of

a temporal redundancy control [45], [46]. The new embedder

is shown in Fig. 8. The temporal redundancy control interfaces

with the WEP, as follows.

1) Initialization: Set counters and . The key

generator is reset, by setting the current state to a member

of .

2) During step 1 of the WEP, the temporal redundancy con-

trol provides to the watermark signal generator,

where is the current state of the key generator.

Fig. 8. Modified embedder with temporal redundancy control.

3) During step 5 of the WEP, the temporal redundancy con-

trol increments and . Then:

a) if , then the key generator and the temporal

redundancy control are reset for the next frame of

the video. Return to step 1 for the next frame of the

video.

b) otherwise, if , then the key generator performs

a state transition. Set , and then return to step

2 for the next frame of the video.

c) otherwise, return to step 2 for the next frame of the

video, without changing the current state of the key

generator.

Selecting and produces a watermark key

schedule identical to that of Section IV-A.

A. Adaptive State Transitions

The temporal redundancy control described above uses two
parameters to produce key sequences of varying degrees of tem-
poral redundancy. The period is the number of frames wa-
termarked before the key generator is reset, which corresponds
to the interval between resynchronization frames. The repeat

is the number of consecutive frames watermarked with the
same key before the key generator is used to produce a new key.
Generally, decreasing and increasing increases the amount
of temporal redundancy in the key sequence and provides in-
creased robustness against attack. However, using a fixed for
the temporal redundancy control can sometimes cause a dra-
matic loss in temporal redundancy when feature vectors change.

A key assumption in Theorem 4 is that feature vectors remain
constant over each set of frames watermarked with the same
state. However, the actual state transition of the embedder’s key
generator uses only the feature vector of the last frame in a set.
If feature vectors change within a set of frames, then tem-
poral redundancy is reduced. An example is illustrated in Fig. 9.
Frames are watermarked with the same
state , and have the same feature vector

. Assume that , which is some state in the
SM. However, suppose that the feature vector changes value for
frame , and that

. Then, the frames will not pro-
vide the detector queue with the state , even if temporal
synchronization is successful for those frames. Because of the
change in the feature value, the loss of frame would
be catastrophic for temporal synchronization at the detector.
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Fig. 9. Example of changing feature values reducing temporal redundancy.

An alternate strategy is to perform state transitions in the key
generator based on when the feature values change, instead of
a fixed interval of frames. That is, the key generator changes
its current state only after 1) feature values have been constant
for consecutive frames and 2) at least frames have been
watermarked with the same state. This strategy adapts the key
generator state transitions to the characteristics of the video to
increase the temporal redundancy of the key sequence and im-
prove the robustness of the watermark.

B. Security

Temporal redundancy is an advantage for temporal synchro-

nization of the watermark detector, however it is a disadvan-

tage for security. A watermark whose key sequence has more

redundancy is less random and is more vulnerable to estimation

attacks. It is beneficial to make the state transitions appear as

random as possible, which increases the difficulty for an attacker

to predict the key schedule (or equivalently, the state sequence).

One method for increasing the degree of randomness in the

key schedule is to use a nondeterministic SM for the key gen-

erator. The key schedule produced by a deterministic key gen-

erator is dependent only on the embedding key and the feature

vectors obtained from the video. The state transitions and initial

states in a nondeterministic SM introduce randomness into the

key sequence. Even a small degree of randomness for each state

transition can have a large effect on the state sequence because

each state transition affects not just the next state of the SM, but

potentially all future states of the SM.

Another method for increasing the randomness in the key

schedule is to define the state transition function by using cryp-

tographic hash functions. A cryptographic hash function, or a

one-way hash function is a function that accepts as input

an arbitrary length binary string message (in this context,

is not related to the watermark payload) and produces a fixed

length bit string output of size bits, known as a digest or hash

value [35], [47]. The notation is used to indicate

the -bit digest produced by when the concatenation of the

binary representation of the values is provided as the

message input. Given a message , it is very easy to obtain di-

gest . However, given the digest, one cannot easily con-

struct a message that hashes to that digest. Cryptographic hash

functions are typically used for constructing message authenti-

cation codes.

An example state transition function is

(4)

where the set of states is with car-

dinality . The properties of the hash function make

it difficult to predict the state sequence without knowledge of

, and obtaining from observation of the state sequence

is difficult. An example state transition function for a nondeter-

ministic SM is

(5)

where is a randomly selected member of the set

, a fixed positive integer. Because

the detector must insert into the queue and search all pos-

sible values of , is usually chosen to be a small number.

The major security concern lies in the resynchronization

frames. These frames may occur frequently over the video,

which presents an opportunity for estimation attacks similar

in spirit to those attacking a time-periodic key watermark.

The frequency of resynchronization frames (parameter ) is

a tradeoff between the ease of synchronization and security.

To improve security, resynchronization frames must be more

difficult to identify and estimate. One method to do this is to

use image-dependent watermarking [32], [48]. Another method

is to use the feature vector of the previous frame to determine

the key for the resynchronization frame. That is, if the key

generator is reset for watermarking frame , is not

set to a member of , but to a state which is dependent on

, , and possibly . The WDP (step 2) would

be modified accordingly. These methods generate different

watermark patterns for the resynchronization frames and make

them more difficult to identify and estimate. Neither of these

methods are used in our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness of adding temporal redundancy

on temporal synchronization, the watermark embedding and de-

tection models have been implemented for uncompressed video

sequences. The watermark signal generator is a pseudorandom

number generator which is seeded by for each frame, pro-

ducing a zero-mean Gaussian watermark signal. The watermark

embedder adds the watermark to the original video in the spatial

domain (luminance only). The watermark detector applies a spa-

tial de-correlating filter to reduce host-signal interference, fol-

lowed by a correlation detector and comparison with a threshold

value. The detector queue capacity for all experiments is fixed

to ten entries.

Watermark embedders using three different key generators

are examined. All three key generators include the temporal

redundancy control shown in Fig. 8 and the state transition

functions are cryptographic hash functions as described in

Section V-B. SHA-1 [49] is used as the hash function, which

produces a message digest of bits in size. The key

generators also share in common ,

, , and .

The first key generator (“Features Only”) uses feature ex-

traction and a deterministic SM (4). The feature extraction pro-

duces a feature vector by partitioning the watermarked frame

into nonoverlapping regions, calculating the average luminance

value of each region, and then quantizing these values (by using



3018 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 10, OCTOBER 2004

Fig. 10. Detection rate under frame-dropping attack.

a uniform scalar quantizer). These features are selected because

they are straightforward to implement and computationally ef-

ficient to obtain, and not because they are optimal in any sense

(including robustness and security). The second key generator

(“Random Only”) uses the nondeterministic key generator with

the state transition function of (5), with . The “Random

Only” embedder does not perform feature extraction. The third

key generator (“Adaptive”) uses a nondeterministic key gener-

ator with the state transition function of (5), with , the

same features as the “Features Only” key generator, and the

adaptive state transitions described in Section V-A.

The results show the mean performance of the detector after

ten trials of each of the Akiyo, Foreman, and Bus sequences

(352 288 CIF, 3 frames/s). A randomly-generated was

used for each trial. Performance is measured by the percentage

of the watermarked frames that are detected in the attacked

video as the temporal redundancy is varied. A detection rate of

100% indicates that the watermark detector detects the water-

marks embedded in every frame of the attacked video and the

attack is ineffective. A detection rate of 0% indicates that the

detector is unable to detect the watermark in the attacked video.

Temporal redundancy is expressed in terms of (period) and

(repeat) parameters.

Fig. 10 shows the watermark detection performance after

frame-dropping attack, where each frame of the watermarked

video is dropped with probability and 0.5. For

fixed , the detections improve for all the embedders as is

increased, showing that robustness improves with increasing

temporal redundancy (Theorem 4). When there is little temporal

redundancy , the performance of all the embedders is

poor, in agreement with Theorem 3. However, the performance

of the embedders improve significantly with added temporal

redundancy ( ), particularly for the “Random Only”

and “Adaptive” embedders. For fixed , the performance im-

proves with decreasing . When the detector loses temporal

synchronization, it will not recover synchronization until it

discovers a frame watermarked with a state or in the

queue. When is decreased, frames are watermarked from a

state in more frequently, allowing the detector to recover

synchronization.

To show that the loss of temporal synchronization occurs

when consecutive frames are dropped, the detection rate

was examined after temporal decimation attack. The results

are shown in Fig. 11. Decimation by a factor of retains the

first frame out of every consecutive frames, and filtering

was not performed prior to decimation. Choosing to retain the

first frame of every frames provides the most advantageous

situation with respect to the watermark detector (and not the

attacker). This shows Theorem 4 most vividly, as it is our

intention to show that the detection rates drop significantly

when the decimation factor exceeds , even in the best case. If

the decimation attack retained the last frame of every frames,

initial synchronization will fail when exceeds .

The effect of changing feature values on temporal redundancy

(described in Section V-A) is dramatic, resulting in the poor per-

formance of the “Features Only” embedder. For the “Random

Only” and “Adaptive” embedders, the watermark detection rate

is 100% when the decimation factor is equal to or below ,

demonstrating that the loss of frames will not destroy

temporal synchronization. The detection rate decreases signifi-

cantly when the decimation factor exceeds . There is one ex-

ception, in which the detection rate of these embedders when

and remains good even after the watermarked

video is decimated by factor of six. This arises because the key

generator is reset so often that the watermark detector discovers

a frame watermarked by a state in before the decimation at-

tack can affect detection.

The insertion of unwatermarked frames into the video does

not affect watermark detection, in agreement with Theorem 2.

The observed detection rate is 100% for all embedders and tem-

poral redundancy parameters. In this attack, an arbitrary number

of frames from the original video are inserted between consec-

utive frames of the watermarked video. Failure to detect the

watermark in the inserted frames does not penalize the perfor-

mance of the detector because the inserted frames are not wa-

termarked.

Frame transposition has a similar effect to frame dropping on

disrupting the “chain of states” induced by , with the dif-

ference being that the attack displaces the video frames in time

instead of removing frames from the video. The implementation

of this attack is as follows: The watermarked video is scanned

from beginning to end, with each frame having a fixed proba-

bility ( and 0.5) of being interchanged with another

(target) frame in the local neighborhood of the candidate frame.
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Fig. 11. Detection rate under frame decimation attack.

The target frame is selected by generating a Gaussian random

number , dropping fractions, and treating the number

as a relative time index where 0 is the current frame, is one

frame in the past, is one frame in the future, and so on.

Fig. 12. Detection rate under frame transposition attack.

Because transposing a frame with itself does not accomplish

anything, another random number is chosen if the relative time

index is zero or out of range of the video. The performance of the

watermark detection under frame transposition attack, shown in

Fig. 12, shows similar trends to frame dropping.

Temporal frame averaging was also investigated, using sev-

eral moving averaging window sizes. Fig. 13 shows the detec-

tion rate of the watermark after frame averaging using window

sizes of 3 and 4. The detection rates using a window size of 2 are

superior to those shown in Fig. 13 and are not shown. Frame av-

eraging does not change the sequence of frames appearing in the

video, but the averaging may affect the feature values and cause

the detector to obtain different feature values than those used by

the embedder to generate the key schedule. When this occurs,

the detector’s state prediction will fail and the detector will lose

synchronization. The “Random Only” embedder, which does

not use feature extraction, is not affected by frame averaging

attack until degradation of the embedded watermark signal it-

self causes the watermark detector to miss. The performance of

the “Features Only” and “Adaptive” embedders decreases under

frame averaging attack. The “Adaptive” embedder often shows

much better detection rate than “Features Only.” For fixed and

, state transitions do not occur as frequently for the “Adaptive”

embedder compared with the “Features Only” embedder. Be-

cause less state transitions occur for the “Adaptive” embedder,

there is less opportunity for the detector to lose synchronization.
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Fig. 13. Detection rate under frame averaging attack.

Comparing the three embedders, the “Features Only” em-

bedder often shows worse performance than the “Random

Only” and the “Adaptive” embedders, whose performance is

often similar. This vividly shows the effect of changing feature

values on the temporal redundancy of the watermark described

in Section V-A, as the “Features Only” and “Adaptive” em-

bedders use the same feature extractor but the performance of

“Adaptive” is better than “Features Only.” Adaptive state tran-

sitions significantly improve the performance of the watermark

when feature extraction is used.

The inserted watermark is generally not noticeable (the em-

bedding in these experiments is such that the peak signal-to-noise

ratio between the watermarked and original videos is dB);

however, the attacks performed in these experiments reduce the

quality of the attacked video. The frame-dropping attack is gen-

erally unnoticeable when approximately 5%–10% of the frames

are dropped; however, higher drop rates make the video appear

“jerky.” Decimation reduces the frame rate, which is noticeable

even when the decimation factor is 2. The frame transposition

attack produces “jerky” video like the frame-dropping attack,

and frame averaging noticeably blurs the video.

VII. CONCLUSIONS

Temporal synchronization was examined using new models

for video watermark embedding and detection. These models

can be extended in further investigation. The graph structure

of the key generator affects temporal redundancy. For example,

a key generator using a SM with a strongly connected graph

representation may be more robust or secure. Instead of water-

marking multiple frames with the same key, temporal redun-

dancy may be inserted into the key schedule by altering or ex-

ploiting the structure of the graph. Another extension is to ex-

tend the state prediction from predicting the next state

to predicting multiple states in time .

Feature extraction, while offering a means for creating a video

dependent key schedule, is relatively unexplored. Also, the em-

bedder model uses feature extraction for each frame to affect the

watermark structure of future frames. This can be compared, in

terms of robustness, security, and invisibility, to frame-depen-

dent techniques (where features of the video frame are used to

affect the watermark structure of that frame).

The adaptive state transition model described in this paper

is simple, but has the shortcoming that state transitions occur

when the video is relatively static. This can introduce flicker

when the watermarked video is viewed. Flicker was not ob-

served in the experiments because the power of the embedded

watermark was sufficiently small, but flicker may be an issue

when the embedding power is increased. A more sophisticated

adaptive model would would also consider the video before de-

ciding a state transition. For example, the state transition may be

deferred until the next frame when feature values change, after

the feature values have been constant for at least consecutive

frames.

The examination of synchronization in watermark detection

has often focused on designing templates, either by embedding

an explicit synchronization signal, organizing the watermark to

produce such a signal, or by using salient features of the video

for synchronization. However, there has been relatively little

work in modeling the watermark embedding and detection pro-

cesses for synchronization. Such models can be used to show

why some watermarks (such as time-invariant key watermarks

for temporal synchronization and tiled watermarks for spatial

synchronization) are “easier” to synchronize than others, even

when the watermark embedding does not take advantage of any

special transform or invariance properties.

APPENDIX

The proofs for the lemmas are shown here.

Lemma 1:

Proof: This follows from the WEP. In particular, exactly

one state transition occurs for every pair of successive frames,

and for any state transition .

Lemma 2:

Proof: Because neither nor is attacked,

there must be a pair of frames and , such that

and . (The time indices

and are not necessarily identical because it is possible

that frames were dropped or inserted into outside the time

interval and .) From , it follows that

and . The feature extraction will

also produce identical feature vectors . From

, it follows that and

. Lemma 1 holds for and , so
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. Then,

.

Lemma 3:

Proof: Suppose temporal synchronization is achieved.

This implies that the detector found some key and state

, such that produced the watermark signal

embedded in frame . To establish synchronization, the

WDP searches the keys corresponding to the states in (during

step 2) and the queue (during step 3), and no other states. Thus,

it must be the case that is either in or the queue. Suppose

that is watermarked with key , and is

either a member of or is in the queue at time . Because the

WDP attempts to detect the watermark using all of the states in

and in the queue, the watermark detector will try and

temporal synchronization is achieved.

Lemma 4:

Proof: This follows immediately from Lemma 3. The sig-

nificant statement of this Lemma is that synchronization will be

achieved regardless of the contents of the queue.

Lemma 5:

Proof: By Lemma 3, if temporal synchronization is

achieved then must either be in or the queue. The

remainder of the proof follows by inspecting the queue after

step 5 of the WDP.

Lemma 6:

Proof: If temporal synchronization fails, then either

is not watermarked or the state that produces the key which gen-

erated the watermark signal embedded in is not in or

the queue. In this case, none of the steps in the WDP affect the

queue.

Lemma 7:

Proof: Suppose . Then , so

by Lemma 4, temporal synchronization will succeed for frame

. By Lemma 5, the head of the queue will be

after examining frame . If

, then ,

which is already at the head of the queue and no new state will be

added to the queue during step 5 of the WDP for frame .

Thus, the queue after examining frame is identical to

that after examining .

Now suppose . By Lemma 5, successful temporal

synchronization for frame implies that after examining

, the queue has and .

Consider the WDP when frame is examined by the

detector. State is in the queue, so temporal

synchronization will succeed in step 3 of the WDP. During this

step, the state will be promoted and thus

and . But if then

, which is al-

ready in the queue, so during step 5 of the WDP, that state shall

be promoted to the head and and

. No other states in the queue are affected by the

WDP. Thus, if , then the queue is not changed

when is examined.

Lemma 8:

Proof: Apply Lemma 7 to every pair of frames and

, and , and and

.
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