
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CERIAS Tech Report 2004-22 
 

PRIVATE COLLABORATIVE FORECASTING AND BENCHMARKING 
 

by Mikhail Atallah, Marina Bykova, Jiangtao Li, Mercan Karahan 
 

Center for Education and Research in  
Information Assurance and Security, 

Purdue University, West Lafayette, IN 47907-2086 
 



Private Collaborative Forecasting and Benchmarking∗

Mikhail Atallah Marina Bykova Jiangtao Li Mercan Karahan

Computer Sciences Department and CERIAS

Purdue University

{mja,mbykova,jtli,mkarahan}@cs.purdue.edu

Abstract

Suppose a number of hospitals in a geographic area want to learn how their own heart-surgery
unit is doing compared with the others in terms of mortality rates, subsequent complications,
or any other quality metric. Similarly, a number of small businesses might want to use their
recent point-of-sales data to cooperatively forecast future demand and thus make more informed
decisions about inventory, capacity, employment, etc. These are simple examples of cooperative
benchmarking and (respectively) forecasting that would benefit all participants as well as the
public at large, as they would make it possible for participants to avail themselves of more
precise and reliable data collected from many sources, to assess their own local performance in
comparison to global trends, and to avoid many of the inefficiencies that currently arise because
of having less information available for their decision-making. And yet, in spite of all these
advantages, cooperative benchmarking and forecasting typically do not take place, because of
the participants’ unwillingness to share their information with others. Their reluctance to share
is quite rational, and is due to fears of embarrassment, lawsuits, weakening their negotiating
position (e.g., in case of over-capacity), revealing corporate performance and strategies, etc. The
development and deployment of private benchmarking and forecasting technologies would allow
such collaborations to take place without revealing any participant’s data to the others, reaping
the benefits of collaboration while avoiding the drawbacks. Moreover, this kind of technology
would empower smaller organizations who could then cooperatively base their decisions on a
much broader information base, in a way that is today restricted to only the largest corporations.
This paper is a step towards this goal, as it gives protocols for forecasting and benchmarking
that reveal to the participants the desired answers yet do not reveal to any participant any other
participant’s private data. We consider several forecasting methods, including linear regression
and time series techniques such as moving average and exponential smoothing. One of the
novel parts of this work, that further distinguishes it from previous work in secure multi-party
computation, is that it involves floating point arithmetic, in particular it provides protocols to
securely and efficiently perform division.

1 Introduction

One drawback that smaller entities (e.g., individuals, charities, small businesses, etc) have in com-
peting with large entities (giant corporations and multi-nationals) is that the latter’s size and
resources enable them to make decisions using more accurate information (e.g., about future de-
mand). This better forecasting ability can, over time, drive the smaller players out and leave the

∗Portions of this work were supported by Grants IIS-0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from

the National Science Foundation, Contract N00014-02-1-0364 from the Office of Naval Research, by sponsors of

the Center for Education and Research in Information Assurance and Security, and by Purdue Discovery Park’s

e-enterprise Center.

1



field under the control of the largest entities. Privacy-preserving cooperative computation, which
is of obvious benefit to the privacy of individuals, is also a valuable technology for giving smaller
entities a fighting chance by enabling them to cooperate and make as high-quality decisions as
larger entities (decisions about planning, production, management decisions, quality control, etc).
This paper’s focus is on the two specific areas of forecasting of customer demand and secure bench-
marking, which are described below (each in turn). Before we do so, we remind the reader that the
broad framework for this work is the usual privacy-preserving computation model, in which two or
more parties engage in a collaborative computation in order to produce results that are significant
to both parties without revealing the private information of any of the parties, even though the
jointly-computed results depend on the information of all the parties.

The first problem we are exploring is secure collaborative forecasting, in which a number of
retailers join their efforts to generate more accurate forecasts of customer demand in a secure
fashion. We assume that each of the participants has its own proprietary data gathered over some
period of time in the past and can produce a local forecast. They decide to participate in joint
computation to obtain more reliable results.

In [11], forecasting is likened to driving a car blindfolded while taking directions from someone
in the back who is looking in the rearview mirror. What we want to do by secure collaborative
forecasting is joining view angles of more rearview mirrors. In this metaphor rearview mirrors
are used to say that most of the quantitative forecasting methods use historical data to produce
forecasts. Such historical data is private for every company and should not be shared with its
competitors. Consider the following business scenarios:

• A number of small retailers in the area which sell similar products cannot compete with giant
stores in their forecasting capabilities. Thus they decide to collaborate with each other in
order to better estimate future consumer demand. Revealing data about the past volumes of
sales is unacceptable to any of them, as they are competing in the same market. The retailers,
however, are willing to share the data in a secure fashion if all that any party learns from the
collaboration is the general trend in the customer demand (i.e., increase or decrease in the
sales and by what amount). After participating in the protocol, each retailer can compare its
own locally generated forecast with a large scale trend, draw its own conclusions about the
accuracy of the local forecast and the differences, if any, in the behavior of the sales function
at the local and global scopes.

• Another situation when the same kind of collaboration is useful is the cases where no single
retailer can accurately estimate the future demand. If some (even very large) retailers attempt
to predict consumer demand for a new product, it is possible that no single forecast will be
very accurate. This happens when the retailers target different groups of customers, for which
shopping patterns and adaptability to new products differ. Then it is beneficial for all of such
stores to engage in joint forecasting, while still preserving the privacy of the data on which
the forecast is built.

• We can as well model a scenario where there is one supplier and many retailers, and the
cycle of production is very long. For example, in order for an overseas clothes company to
manufacture clothing, it may need to start seven months in advance including shipping time.
The supplier wants to know the customer demands, i.e., the size of the market. Each retailer
is reluctant to provide its own historical data. However, it may benefit the whole supply
chain, if the retailers together can collaboratively provide a forecast on customer demands
to the supplier. Or, as an alternative, the supplier might provide a discount to all retailers

2



who participate in the joint computation of customer demand, and uses the results of the
computations for manufacturing more precise quantities.

All of the above scenarios are for producing forecasts based on time series. Another type of
forecasting that we also explore in this work is based on regression techniques. A motivating
business model can be as follows. A hospital performs a certain kind of surgeries that result in
a rather high mortality rate compared to other kinds of surgeries. The hospital would like to
investigate correlation of the mortality rate to the age of the patients, their health conditions,
and possibly other parameters to be able to exclude the riskiest category of patients from being
considered for this type of surgery. The hospital, however, does not have enough such cases to
draw reliable correlation between the mortality rate and other parameters. The hospital would like
to engage in collaboration with other similar institutions to be able to draw conclusions on the
aggregate data, but for obvious reasons cannot share its data with other parties. The solution in
this case is to use secure multi-party computation techniques that apply regression to aggregate
data and distribute the results to all participating parties. Having the results, the hospital then can
learn the overall correlation on the large scale, as well as make conclusions about its performance
compared to other hospitals.

As mentioned above, we consider two types of forecasting methods: based on time series (mov-
ing average, weighted moving average, and exponential smoothing) and regression-based (linear
regression). Since the functions we are computing are linear, some companies might decide to
participate only if the number of parties involved in the protocol is large. This is because if there
are only a few players (e.g., two), then the players might consider the output to be revealing too
much information about the players’ private data. Thus, we solve the problems for a general case
of m players.

In this work, we present efficient protocols for conducting secure collaborative forecasting and
benchmarking for all of the above-mentioned statistical methods. Before providing the final proto-
cols, we give sub-protocols, or building blocks, which make the final protocols more flexible and their
presentation crisper. In some cases, we give more than one protocol for performing the same task
where such protocols differ in their complexity, communication overhead, and robustness against
colluding players.

A novel part of this work is that we introduce floating point computation into the realm of SMC.
We present several division protocols that form the core of our forecasting and benchmarking solu-
tions. These protocols significantly simplify privacy-preserving business forecasting, and can also
be applied to other forecasting methods and other secure business and non-business applications.

A summary of our results is given in table 1. For each protocol described in this work, we
list its number of communication rounds, total communication measured in messages exchanged
between the players, and total computational complexity (summed over all players). In the table,
m refers to the number of players, k is the security parameter described in section 4.1 such that
1 ≤ k ≤ m − 1, and g is the number of groups in which the m players are divided. All of these
protocols are later evaluated with respect to the main model of the adversary used in this paper:
That of colluding players, i.e., they exhibit the behavior of semi-honest players but can also collude
together in order to discover some additional information about other players’ data (more on this
later). We analyze the collusion-resistance characteristics of each protocol immediately following
its description.

The rest of this paper is organized as the following: Section 2 reviews related work. In section 3
we briefly provide the background information such as different forecasting methods and then
provide a more precise definition of our protocols. Section 4 describes building blocks that we
developed to aid in designing our main forecasting protocols. The building blocks include secure

3



Protocol
Communication Total Total

Rounds Communication Computation

Split O(1) O(km) O(km)

Division with External Server O(1) O(km) O(km)

Division with Groups O(g) O(kgm) O(kgm)

Division with an Appointee O(1) O(km) O(km)

Single-key Homomorphic
O(1) O(m) O(m) encryptions

Encryption Division

m-key Homomorphic Encryp-
O(1) O(m2) O(m2) encryptions

tion Division

Weak Summation O(1) O(m) O(m)

Robust Summation O(1) O(m2) O(m2)

Comparison O(1) O(m) O(m)

Moving Average with Division same as division same as division same as division

Moving Average with Binary
same as comparison same as comparison same as comparison

Search

Exponential Smoothing same as division same as division same as division

Linear Regression summation + division summation + division summation + division

Table 1: Summary of protocols.

algorithms for blinding individual private inputs, summation of a number of elements, comparison
of elements, and — the most difficult — secure division protocol. Sections 5 and 6 describe our
main protocols, where section 5 covers forecasting based on time series and section 6 contains
regression-based forecasting. Lastly, section 7 concludes the paper and provides directions for
future work.

2 Related Work

Forecasting is increasingly being applied to the procedure of business decision making. Many fore-
casting methods (for example, see [9, 21]) have been developed, such as time-series techniques
and regression techniques. Collaborative forecasting is to conduct business forecasting jointly by
many entities, each contributes its own forecast data. As pointed out in [1], collaborative forecast-
ing, compares to traditional forecasting, gives better productivity and profitability throughout the
supply chain. Collaborative forecasting has been extensively studied by many companies [20, 16],
organizations [5], and academia [10]. Most of the solutions either assume existence of a central plan-
ner who has all the information about the system, or assume each participant of the collaborative
forecasting shares all his information to the others. However, these solutions are problematic when
the information is sensitive, and the participants are reluctant to share their private, proprietary
information. Our solution to collaborative forecasting is conducted in a privacy-preserving manner,
therefore overcoming the above concerns.

The problem of secure forecasting and benchmarking is closely related to secure multi-party
computation [23]. The SMC problem was introduced by Yao [23] and extended by Goldreich,
Micali, Wigderson [14] and others ([18, 15], to list a few). Goldreich states in [13] that although
the general SMC problem is solvable in theory, using the solutions derived by these general results
for special cases can be impractical. In other words, efficiency dictates the development of special
solutions for special cases for efficiency reasons. In particular, many other examples of cooperative

4



privacy-preserving computations have been considered in the literature: electronic auction [4], card
playing [14], digital certified mail, data mining [17], etc.

Du and Atallah recently have developed efficient protocols for many secure two-party compu-
tation problems [6], including scientific computation [7], geometric computation [2], and statistics
analysis [8]. Atallah et al. have proposed Secure Supply-Chain Collaboration (SSCC) problem,
and developed SSCC protocols for simple e-Auction scenarios and simple capacity-allocation prob-
lem [3]. Our secure collaborative forecasting and benchmarking can be viewed as a branch of the
SSCC problem. In this paper, we propose novel protocols for computing a ratio in floating point
numbers securely, an important component in many forecasting techniques. To the best of our
knowledge, no one has studied it before.

3 Problem Description

3.1 Background

Before presenting our results, we briefly review several forecasting methods (see [9, 21]) that are
the basis of our protocols.

• Time-Series Techniques. A time series is a time-ordered sequence of observations taken
at regular intervals over a period of time (daily, weekly, monthly, annually, etc). An example
of such data is monthly estimate of customer demand. Let us here consider a single user
environment, where only a local forecast is generated. We use i to denote ith time period,
and di to denote data in time period i. Let t be the current time period. Using this notation,
the three methods that we consider are as follows:

1. Moving Average: Let n denote the number of periods used in calculation of the average.
For time period t ≥ n, the moving average forecast is:

Ft =
(

n−1
∑

i=0

dt−i

)

/n

where Ft indicates the forecasted value for time interval t + 1.

2. Weighted Moving Average: Let ~w = {w0, w1, . . . , wn−1} be a weight vector such that
n−1
∑

i=0
wi = 1. For time period t ≥ n, the weighted moving average forecast is:

Ft =

n−1
∑

i=0

widt−i

3. Exponential Smoothing: Let Fi be the forecasted value in time period i, and α be a
smoothing constant. For time period t, the exponential smoothing technique computes:

Ft = Ft−1 + α(dt−1 − Ft−1)

where Ft is similarly the predicted value for the next time period.

• Regression Techniques. As was mentioned above, our regression solutions are built on the
most widely used regression method — linear regression. It can be formulated as the following:
Given two variables with linear correlation, the goal is to compute a linear function such that

5



the sum of the deviations of all the points from the function is minimized. Consider a linear
function y = ax + b where all data points x are known. If there are historical data about x–y
pairs, then after applying regression to them, we will be able to estimate the coefficients a
and b. The coefficients a and b can be computed using the following equations:

a =
n(

∑

xy) − (
∑

x)(
∑

y)

n(
∑

x2) − (
∑

x)2
, b =

∑

y − a
∑

x

n
. (1)

3.2 Protocol Definition

Now we define the interfaces of our forecasting protocols. In the definitions below and in the rest
of the paper we use the following notation. We assume that there are m players P1, P2, . . ., Pm

engaged in the computation, where m ≥ 2. Any item superscripted with (j) is held by and known
only to player Pj . The same item without a superscript mark corresponds to the sum of the items
held by all players, which is assumed to be additively split among the players. For example, if we

have that player Pj has x(j), then x is equal to
m
∑

j=1
x(j).

In the first two protocols, which are based on time series, it might be undesirable to learn the
absolute result: Ft may be revealing too much information because a player can learn his share of
the value and possibly some additional information about other players’ data. Therefore, instead
of providing its absolute value, we output only the slope Ft−dt

dt
, i.e., how much the value is expected

to increase or decrease in the next time interval. Definition 1 corresponds to forecasting based on
moving average techniques, and definition 2 is for exponential smoothing forecasts. The protocols
themselves are given in section 5.

Definition 1 Secure Collaborative Forecasting Using Moving Average Techniques

Input Player Pj , 1 ≤ j ≤ m, provides input data d
(j)
t−i for n time intervals , where 0 ≤ i ≤ n − 1.

In the case of computing the weighted moving average, the weight vector ~w is public.

Output Player Pj , 1 ≤ j ≤ m, learns Ft−dt

dt
, where Ft is computed using the moving average or

the weighted moving average technique.

Definition 2 Secure Collaborative Forecasting Using Smoothing Techniques

Input Player Pj , 1 ≤ j ≤ m, supplies d
(j)
t−1, d

(j)
t , and F

(j)
t−1, where the value of Ft−1 from the

previous time interval computation is kept additively split among all players. The value of α
is public.

Output Player Pj , 1 ≤ j ≤ m, learns Ft−dt

dt
, where Ft is computed using the exponential smoothing

technique.

For the linear regression protocols, we assume that the x-axis is public, and the set of possible
x values is finite. We use x1, x2, . . . , xn to denote n possible x-values. In our model, each player
supplies the y-axis data and they jointly compute the result in the normalized form. This means
that the data, for instance, is given as the average number of accidents per customer in case of
car insurance data, or as the mortality rate for surgical cases. In this case each data point yi is
given as two integer numbers ci and di where yi = ci/di. The aggregate values for each data point

6



computed during the execution of the protocol is then found as yi =
m
∑

j=1
c
(j)
i /

m
∑

j=1
d
(j)
i . The protocol

itself for the definition below is provided in section 6.

Definition 3 Secure Collaborative Benchmarking Using Linear Regression Techniques

Input Player Pj , 1 ≤ j ≤ m, provides data points y
(j)
i , where 1 ≤ i ≤ n and each y

(j)
i is supplied

in the form of (c
(j)
i , d

(j)
i ). If Pj does not have data for xi, then he sets both c

(j)
i and d

(j)
i to 0.

Output Player Pj , 1 ≤ j ≤ m, learns the coefficients a and b, such that ~y = a~x + b.

4 Building Blocks

Giving the full-developed protocols would make them too long and rather hard to comprehend. This
section aims at making the later presentation of the protocols much crisper by presenting parts of
our solutions and building blocks for them ahead of time. The building blocks that we describe
in this section are an important part of this work because they lay the ground for solving the
forecasting problems in a secure fashion and make our final protocols much more straightforward.
In particular, this section presents division protocols which operate on floating point numbers
and thus are new to SMC. Other protocols given in this section are blinding, summation, and
comparison.

We consider three different types of players with respect to malicious behavior:

1. Semi-honest players: Semi-honest players (also known as “honest but curious”) will follow
the protocol as prescribed, but might also attempt to discover more information based on the
data they receive at various steps of the protocol.

2. Colluding players: Colluding players exhibit the behavior of semi-honest players but can also
collude together in order to discover some additional information about other players’ data.

3. Malicious players: In this case, players may arbitrarily misbehave: they can collude against
other players and can deviate from the correct steps of the protocol. Different types of
deviation from the protocol include supplying incorrect data, modifying data at intermediate
steps of the protocol (possibly in collaboration with other malicious players), prematurely
quitting the protocol, or performing incorrect computations at certain steps of the protocol.

In our protocols we focus on the first two types of players. Considering only the first type of
players is not sufficient because players in our case can be competing businesses, which does not
allow us to exclude colluding behavior. We, however, do not consider the third type of misbehaving
players on the assumption that all players are interested in the outcome of the computation and
will not attempt to disrupt it. Some of our solutions can be tuned to provide a trade-off between
complexity and robustness against colluding behavior. In other words, if during the computation it
is not expected that a large number of players will collude, the protocol can be made more efficient
by setting the security parameter low.

4.1 Secure split protocol

The first protocol that we present is a secure split protocol that is used as a building block in many
protocols throughout this paper, including other building blocks. Prior to the execution of the
split protocol all players additively share an item but the individual shares are private information.

7



The goal of this protocol is to blind individual shares in such a way that no share reveals private
information, but the total sum of all shares stay the same as before. At the end of the protocol
each player holds a large random number, which hides the initial private input.

Protocol 1 Secure Split Protocol

Input Player Pj , 1 ≤ j ≤ m, provides private input x(j).

Output Player Pj , 1 ≤ j ≤ m, obtains y(j) such that
m
∑

j=1
x(j) =

m
∑

j=1
y(j).

Interaction The steps of the protocol are as given below:

1. All players jointly agree on a security parameter k, such that 1 ≤ k ≤ m − 1.

2. Each player Pj splits x(j) between all k + 1 players in the following way: Player Pj

generates k large random values r
(j)
1 , . . . , r

(j)
k (both positive and negative) and sends

them to randomly chosen k players from the remaining m − 1 players. Player Pj then

sets his share of x(j) to be r
(j)
0 = x(j) − r

(j)
1 − . . . − r

(j)
k .

3. After receiving k′ messages from other players (on average k ′ = k), each player Pj

computes y(j) = r
(j)
0 +

∑

i6=j r
(i)
l such that player Pi sent r

(i)
l to Pj for some 1 ≤ l ≤ k.

Analysis This method of hiding data is secure in practice, but not in the information-theoretic
sense. As can be seen from the protocol, a single private input is distributed among k + 1
players. When this protocol is used as a part of another protocol, individual shares y (j)’s
are revealed. In order for an individual x(j) to be revealed, however, all of the k players to
whom player Pj sends messages in step (2) and all players who send messages to player Pj

in step (3) must collude. Assume that m′ < m is the number of players that collude against
player Pj . Then the probability of compromising x(j) is 0 when m′ < k. Then m′ ≥ k, the
probability of compromise is less than:

( m′

m − 1

)k(

1 −
k

m − 1

)m−m′−1

which exponentially decreases as k increases. For instance, when the number of colluders is
less than a half and m is even, the probability of a successful compromise is less than:

2−k
(

1 −
k

m − 1

)
m
2

which is upper-bounded by 2−k. If we use k = c log m, where c is a constant, the probability
is upper-bounded by m−c. This means that a sub-linear security parameter k results in a per-
formance that is probabilistically collusion-resistant against a linear number of participants.

The protocol is even better with respect to collusive behavior than this probability analysis
implies, because the colluders have no way of knowing whether they succeeded or not. Even
if the colluders know from step (2) that all of the k messages that player Pj sent went to
the colluding players, they still do not know whether some non-colluding player in step (3)
chose player Pj to be a recipient one of his messages. Thus the colluders have no knowledge
of telling whether they succeeded in the compromise or not.

This protocol is performed in 1 round; the total communication is O(km) messages; and
computational complexity at each player is O(k). When k takes the highest value available k =

8



m−1, any number of colluders less then m−1 have zero probability of success. Communication
complexity in this case is, however, O(m2).

4.2 Secure division protocols

We have developed different protocols to handle secure multi-party division, which operate on
floating point numbers. The difference between the protocols is in the number of players used, their
computational complexity, and robustness against colluding players. The first protocol provided
here uses an external untrusted party to aid in computation, while other protocols do not require
any additional servers.

4.2.1 Division protocol using an untrusted external server

This protocol achieves efficiency at the cost of requiring an untrusted third party, to whom we refer
as Ursula.

Protocol 2 Secure Division Protocol with Ursula

Input Player Pj , 1 ≤ j ≤ m, supplies two data items x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Interaction This protocol has the following steps:

1. Each player Pj splits his value of x(j) into two parts in the following manner: player Pj

generates a random number r(j). He sets x
(j)
1 = r(j) and x

(j)
2 = x(j) − r(j).

2. All players engage in the secure split protocol three times providing 0 as their private

input. Each player Pj stores his output from the first two protocol invocations as r
(j)
x1

and r
(j)
x2 , respectively, and the output from the last round as r

(j)
y .

3. All players jointly choose three random floating point numbers α1, α2, and β.

4. Each player Pj sends 〈a
(j)
1 = α1(x

(j)
1 + r

(j)
x1 ), a

(j)
2 = α2(x

(j)
2 + r

(j)
x2 ), b(j) = β(y(j) + r

(j)
y )〉

to Ursula. Observe that
m
∑

j=1
a

(j)
1 = α1

m
∑

j=1
x

(j)
1 ,

m
∑

i=1
a

(j)
2 = α2

m
∑

i=1
x

(j)
2 , and

m
∑

j=1
b(j) = βy.

5. Ursula receives 〈a
(j)
1 , a

(j)
2 , b(j)〉 from each player and computes a1 =

m
∑

j=1
a

(j)
1 , a2 =

m
∑

j=1
a

(j)
2 ,

and b =
m
∑

i=1
b(j).

6. Ursula computes δ1 = a1
b

and δ2 = a2
b

, and sends δ1 and δ2 to all players. If Ursula
detects that b = 0, it sends all players a special symbol which indicates that the value is
undefined.

7. Each player computes β( δ1
α1

+ δ2
α2

) and recovers the value of x
y
.

Analysis Everything that Ursula learns during the execution of this protocol is whether y =
0. This, however, cannot be prevented from happening because in order to perform the
computation correctly, Ursula needs to know whether division is possible or not. Notice that
Ursula does not learn anything about the value of x because it is split into two parts, which
are protected by two different random values α1 and α2. Even if one of a1 and a2 happens
to have the value of 0, this information does not reveal anything about the actual value of x.

9



This protocol is also secure against collusions as long as no player P1 through Pm colludes
with Ursula, even if m − 1 players collude against the other player. If, on the other hand, a
collusion between the players and Ursula is possible, then some information can be leaked.
In particular, if a player colludes with Ursula, the values of x and y can be revealed. But in
order to reveal the value of a single x(j) or y(j), a collusion of Ursula and a sufficient number
of players is necessary to make the probability of success in protocol 1 feasible (see analysis
in protocol 1 for more information).

The protocol is carried out in two rounds. Total communication requirements are O(km)
messages, where k is the security parameter used in the split protocol; and computational
complexity at each player is O(k).

The above division protocol announces x
y

to all players. However, in some situations, we want to
keep the result x

y
split between m players. Note that the above protocol can be easily converted

into a division protocol with the result being split as follows: In Step (6) of the protocol, instead

of sending δ1 and δ2 to every player, Ursula chooses δ
(1)
1 , . . . , δ

(m)
1 such that δ1 =

m
∑

j=1
δ
(j)
1 , and

δ
(1)
2 , . . . , δ

(m)
2 such that δ2 =

m
∑

j=1
δ
(j)
2 . Ursula then sends δ

(j)
1 and δ

(j)
2 to each player Pj . Each player

Pj computes sy(
δ
(j)
1
α1

+
δ
(j)
2
α2

), which results in x
y

being distributed among m players.

4.2.2 Division protocols without external servers

All division protocols given in this section do not use any external (untrusted) servers but perform
all computation inside the group of m players. They, however, differ in their complexity and
robustness against colluding behavior.

The next protocol we provide is similar to the one used to perform division with Ursula in the
previous section. The difference is that one of the participating players is selected to perform the
same functionality as Ursula in the fist division protocol.

Protocol 3 Secure Division Protocol without External Parties 1

Input Player Pj , 1 ≤ j ≤ m, provides two data items x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Interaction The protocol proceeds in the following steps:

1. All players randomly select one player among all of them who will perform division.
Without loss of generality, assume that player Pm is chosen.

2. Player Pm splits his values of x(m) and y(m) into m − 1 random numbers each, i.e.,

x(m) =
m−1
∑

j=1
r
(j)
x and y(m) =

m−1
∑

j=1
r
(j)
y . Player Pm sends the values of r

(j)
x and r

(j)
y to player

Pj , where 1 ≤ j ≤ m − 1.

3. Player Pj , 1 ≤ j ≤ m − 1, receives two numbers r
(j)
x and r

(j)
y from player Pm and adds

them to his value of x(j) and y(j), respectively. This results in new values x(j) = x(j)+r
(j)
x

and y(j) = y(j) + r
(j)
y being held by player Pj .

4. Players P1 through Pm−1 engage in the secure split protocol two times providing 0 as

their input. Player Pj stores the results of the protocol invocations as r
(j)
1 and r

(j)
2 ,

respectively.

10



5. Players P1 through Pm−1 jointly agree on two random floating point numbers α and β.

6. Player Pj , 1 ≤ j ≤ m − 1, computes a pair of values 〈a(j) = α(x(j) + r
(j)
1 ), b(j) =

β(y(j) + r
(j)
2 )〉 and sends it to player Pm.

7. Player Pm receives m − 1 pairs of values 〈a(j), b(j)〉, and computes a =
m−1
∑

j=1
a(j), b =

m−1
∑

j=1
b(j), and then δ = a

b
. Player Pm sends δ to players P1 through Pm−1.

8. Player Pj , 1 ≤ j ≤ m − 1, computes the value of x
y

by computing β
α
δ. The value of x

y
is

also sent to player Pm.

Analysis In order to have the result split among all parties at the end of the protocol, player Pm

splits the result δ into m − 1 random floating point numbers δ(j) and sends each of them to
the corresponding player Pj . Player Pj , 1 ≤ j ≤ m−1, then recovers the result by computing
β
α
δ(j), and splits it into two random parts, one of which is kept locally, while the second one

is sent to player Pm.

This protocol works when the total number of players m ≥ 3. The protocol is robust against
collusions if the player who performs division does not collude with other players. However,
if that player colludes with another player, the aggregate x and y can be revealed. The
probability of learning individual x(j) or y(j) depends on the security parameter k used in the
split protocol (see analysis of protocol 1 for more information) and is further lowered by the
fact that the player who performs the division must be among the colluding players.

Notice that the player who performs division learns whether x = 0 earlier than all others. If
that player is not trusted to return the result of the computation to all other players (i.e., he
may quit prematurely), this protocol can be modified to split all x(j)’s into two parts, similar
to Protocol 2. There is no information leakage during the execution of this protocol when
x = 0, because all players learn this information at the end of the protocol.

This protocol can be performed in 4 rounds, with total communication of O(km), where k is
the security parameter for the split protocol. Computational complexity at the player who
performs division is O(m), and it is O(k) at any other player.

The next protocol that we provide also delegates internal players to perform division, but now all

players are divided into two groups for that purpose. All players jointly compute
(

α1α2

m
∑

j=1
x(j)

)

/

(

β1β2

m
∑

j=1
y(j)

)

, where α1 and β1 are known to the first group, and α2 and β2 are known to the

members of the second group. The data is kept split during the intermediate steps so that no
individual can learn extra information from the execution of the protocol.

Protocol 4 Secure Division Protocol without External Parties 2

Input Player Pj , 1 ≤ j ≤ m, provides two data items x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Interaction The protocol’s steps are as the following:

11



1. The m players are divided into two groups 1 and 2 of m′ = m
2 members each1. Without

loss of generality, assume that players P1 through Pm
2

become the members of the first
group, while players P m

2
+1 through Pm become the members of the second group.

2. Group 1 agree on a floating point random number α1 and engage in the secure split
protocol. Each group member Pj provides α1x

(j) as his input to the protocol and stores

the output as a
(j)
1 . This results in α1(x

(1) + x(2) + . . . + x(m′)) being split among all
members of the group.

Group 2 performs the same steps, which results in α2(x
(m′+1) + x(m′+2) + . . . + x(m))

being distributed among m′ players in the form of a
(j)
2 .

3. Groups 1 and 2 repeat the same process for y. This results in β1(y
(1) + y(2) + . . . +

y(m′)) being distributed among the members of the first group in the form of b
(j)
1 ; and

β2(y
(m′+1) + y(m′+2) + . . . + y(m)) among the members of the second group in the form

of b
(j)
2 .

4. All members of group 1 engage in the secure split protocol providing 0 as their input.

Group 1 member Pj stores his output as r
(j)
1x . Notice that this gives us

m′

∑

j=1
r
(j)
1x =

0, such that no individual r
(j)
1x ’s are known to other players. Group 2 performs the

same computation, which results in r
(j)
2x being stored at group 2 member Pj , where

m
∑

j=m′+1

r
(j)
2x = 0.

5. All members of groups 1 and 2 jointly agree on a mapping between a single member of
group 1 and a single member of group 2.

6. Each member Pj of the first group sends his share a
(j)
1 to the corresponding member

of the second group; assume this is player Pm′+j . Member Pm′+j computes c
(j)
1 =

α2a
(j)
1 + r

(m′+j)
2x and sends it back to Pj .

This action is also performed in the other direction. More precisely, each member of

the second group Pm′+j sends his share a
(m′+j)
2 to the corresponding member of the first

group (assume Pj) and receives back c
(m′+j)
2 = α1a

(m′+j)
2 + r

(j)
1x .

7. The previous step is repeated with the values of b. A set of new random numbers r (j)’s is

generated within each group, i.e., randoms
m′

∑

j=1
r
(j)
1y = 0 and

m
∑

j=m′+1

r
(j)
2y = 0 are selected

by and known to the members of the first and second group, respectively. Each member

Pj of the first group sends b
(j)
1 to member Pm′+j of the second group and receives back

d
(j)
1 = β2b

(j)
1 +r

(m′+j)
2y . Each member Pm′+j of the second group sends b

(m′+j)
2 to member

Pj of the first group and receives back d
(m′+j)
2 = β1b

(m′+j)
2 + r

(j)
1y .

8. Two members Pj and Pm′+j from the first and the second groups, respectively, compute

d
(j)
1 + d

(m′+j)
2 and publish the sum. Then each member from either group collects all

published values and computes D =
m′

∑

j=1
d
(j)
1 +

m
∑

j=m′+1

d
(j)
2 .

1This can also be handled for odd m’s. For instance, one randomly chosen player can split his input among all

other m− 1 players, and they proceed with the protocol as the number of players was even.

12



9. Each member Pj of groups 1 and 2 computes e
(j)
1 = c

(j)
1 /D and e

(j)
2 = c

(j)
2 /D, respec-

tively. Now they have the results of
(

α1α2

m
∑

j=1
x(j)

)

/
(

β1β2

m
∑

j=1
y(j)

)

additively split be-

tween m players. To recover the output, they sum all e
(j)
1 ’s and e

(j)
2 ’s together, announce

the values of β1

α1
and β2

α2
, and multiply the sum by β1β2

α1α2
.

Analysis This protocol requires at least two players per group, i.e., the number of players
m ≥ 4, in order to be secure against non-colluding players. But if a player from group 1
colludes with a player from group 2, the protocol can leak partial information. More precisely,
if all values of α’s and β’s are exchanged by colluding players, the total values of x and y can
be computed. However, in order to learn an individual value x(j) or y(j), it is necessary to
have a coalition of a significant number of members (defined based on the security parameter
k, see analysis in protocol 1 for more information) of the group to which player Pj belongs
and the corresponding player from the other group (i.e., in the description above, Pm′+j if
j ≤ m′, and Pj−m′ if j > m′).

We can make this protocol more robust with respect to colluding behavior by using more
groups. Then in order to obtain aggregate x or y, a malicious player will need to collude
with a member of each group. In this case, however, the complexity of the protocol will be
increased. That is, if we have g groups, then the players will need to compute:

α1α2· · ·αg

m
∑

j=1
x(j)

β1β2· · ·βg

m
∑

j=1
y(j)

The protocol proceeds in O(g) rounds, and its total communication is O(kgm) messages,
where k is the security parameter for the secure split protocol and g is the number of groups.
Computational complexity at each player is O(kg).

Next, we present another division protocol that uses homomorphic encryption and works when the
number of players m is as low as two. In this and the next protocol, both of which use homomorphic
encryption, assume that all players prior to protocol initiation agree on a range of possible values.
That is, they define MAXINT to be a large number, such that all possible (aggregate) values of x
and y and randomly generated numbers will not exceed MAXINT . Also, we consider 1/MAXINT
to be a negligible error.

Another assumption that we make in these protocols is that both x and y are non-negative
numbers, which is a minor limitation because all forecasting methods that we solve operate positive
quantities. Lastly, all encryption arithmetic is integer-based. If players want to provide their inputs
as floating point numbers, they need to convert them to integer representation by ignoring decimal
points up to a certain precision.

Protocol 5 Secure Division Protocol without External Parties 3

Input Player Pj , 1 ≤ j ≤ m, provides two data items x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Interaction The protocol is conducted through the following steps:

13



1. All players randomly chose two players among them to carry computation on behalf of
the group. Without loss of generality, assume that players P1 and Pm are chosen.

2. Player P1 generates a (private, public) key pair in a homomorphic semantically secure
encryption system where arithmetic is modulo N , with N ≥ 2 · MAXINT 2 (Recall that
in such a system E(a) ·E(b) = E(a+ b), and nothing can be learned about c from E(c).)

3. Player P1 creates a list of all players and crosses out his name from it. P1 sends the public
key (i.e., E(.), which includes N) to a randomly chosen player from the list (say P2 is
chosen), together with E(x(1)), E(y(1)) and the list. Player P2 crosses out his name from
the list, computes E(x(1)) ·E(x(2)) = E(x(1) +x(2)) and E(y(1)) ·E(y(2)) = E(y(1) +y(2)),
and forwards the list, the results of computation, as well as the encryption key to another
randomly chosen player from the list. The next player and all other players in the chain
perform the same computation until the list contains no players. At the end, E(x) and
E(y) are sent to Pm.

4. Player Pm computes:

p1 = E(x)α1 mod N = E(α1 · x)
q1 = E(y)β1 mod N = E(β1 · y)
p2 = E(x)α2 mod N = E(α2 · x)
q2 = E(y)β2 mod N = E(β2 · y)

where α1, α2, β1, and β2 are randoms less than MAXINT . Player Pm then computes
v = p1 · q1 = E(α1x + β1y) and w = p2 · q2 = E(α2x + β2y) and sends them to player
P1. Note that what is inside the encryption is less than N so there is no “wraparound”
due to the modulo N arithmetic.

5. Player P1 decrypts v and w and gets D(v) = α1x+β1y and D(w) = α2x+β2y. He then
computes their (floating point) ratio δ = (α1x + β1y)/(α2x + β2y) and sends it to Pm.

6. Player Pm computes the ratio x
y

as (β1 − δ · β2)/(δ ·α2 −α1) and forwards the answer to
all other players.

Analysis This protocol is the natural choice when the number of players is 2, because the previous
division protocols apply constraints to the smallest number of players. This protocol, however,
has a limitation: when x = 0, the protocol reveals β1y and β2y to player P1. Player P1 then
can determine possible values of y (using a gcd computation, etc). Thus, this protocol should
not be used when x can take the value of 0, or, alternatively, the coefficients β1 and β2 should
be carefully constructed to minimize the probability of success. Instead of using large prime
β1 and β2 or values composed of a few prime numbers, we compose the coefficients as a
product of a possibly large number of integers in the range of expected y. In other words, we
compute β1 =

∏k
i=1 ŷi for some k such that β1 < MAXINT and where each ŷi is close to the

expected value of y and is possibly present in both β1 and β2. In this case, even if player P1

is successful in factoring the numbers, he will not be able to determine what the actual value
of y is.

When the number of players is larger than 2, correctness of the protocol depends on two
players. If those two players collude, they can obtain x and y (but not individual x(j) or
y(j)’s). Individual values x(j) and y(j) can also be revealed if the player who has the decryption
key and two players in the chain before and after Pj collude. The random nature of routing
at step (3) and assignment of roles at step (1) significantly lowers the probability of revealing
individual inputs, but is still possible when the number of players who may collude is large.
Also, the player who possesses the decryption key has more power than any other player.

14



Therefore this protocol should be used when m = 2 or when the probability of collusion by
many player is low.

The protocol consists of two rounds, during which all players exchange O(m) messages. Each
player needs only to perform two encryptions in modular arithmetics. Player P1 additionally
creates a key pair and performs two decrypt operations. Player Pm also performs a small
(constant) number of multiplication and exponentiation operations in modular arithmetics.

Lastly, we give a protocol that is secure against collusions of up to m − 1 players and no partial
information about x and y is leaked. In what follows, the multiplicative coefficients α and β are
implicitly constructed as a product of individual αj ’s and βj ’s, i.e., α =

∏m
j=1 αj and β =

∏m
j=1 βj

where αj and βj are known only to player Pj.

Protocol 6 Secure Division Protocol without External Parties 4

Input Player Pj , 1 ≤ j ≤ m, provides two data items x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, learns x
y
.

Interaction The protocol is carried out as described below:

1. Each player Pj generates a (public, private) key pair Ej and Dj in a homomorphic
semantically secure system modulo Nj with Nj ≥ MAXINT m+1. Pj sends to P1 the
public key Ej and the items pj = Ej(x

(j)) and qj = Ej(y
(j)).

2. For i = 1, . . ., m in turn, the following steps are repeated:

(a) In this step player Pi updates the pj and qj other than his own (i.e., with j 6= i).
He does so as follows. First, Pi creates two random numbers αi and βi in the range
[MAXINT/2,MAXINT ]. Next, player Pi generates m − 1 pairs of randoms (one
pair ai,j, bi,j for each other Pj), where each such random is less than MAXINT m+1.
For each pj and qj, j 6= i, Pi then computes:

pj = pαi

j · Ej(ai,j) = Ej(x
(j)αi) · Ej(ai,j) = Ej(x

(j)αi + ai,j)

qj = qβi

j · Ej(bi,j) = Ej(y
(j)βi) · Ej(bi,j) = Ej(y

(j) betai + bi,j).

(b) Player Pi now updates his own pi and qi by doing

pi = Ei(αi · Di(pi) −
∑

j 6=i ai,j)

qi = Ei(βi · Di(qi) −
∑

j 6=i bi,j).

Note that the above decryption and re-encryption of pi are not necessary and the
computation could have been performed on encrypted items, but we chose to do the
arithmetic on unencrypted values for efficiency reasons.

(c) If i < m then player Pi sends all of the pj and qj (including his own pi and qi), as
well as all encryption keys Ej , to Pi+1. If i = m then Pm sends every pj , qj pair to
the corresponding player Pj who then decrypts them with his private key Dj and
obtains his final x(j), y(j), that is, x(j) = Dj(pj) and y(j) = Dj(qj).

At the end of the kth iteration of (a)–(e) the sum of the m items x(j) is (α1 · · ·αkx) and
the sum of the m items y(j) is (β1 · · · βky). Therefore at the end of step (1) the sum of
the m resulting x(j) is αx. Similarly, the sum of the m resulting y(j) is βy. Note that
no player knows (and no one will ever know) α or β.

15



3. Every player Pj generates two random numbers r
(j)
x and r

(j)
y less than (MAXINT m−1)/(2m−1m),

and sets x(j) = x(j)+r
(j)
x and y(j) = y(j)+r

(j)
y . Now the sum of all x(j)’s will give αx+rx

and the sum of y(j)’s βy + ry, where rx and ry are negligible compared to αx and βy
(more discussion of this follows).

4. A secure summation protocol (see section 4.3) computes (and lets everyone know) the
sum of the y(j)’s. That is, everyone now knows βy + ry, and each player Pj computes
δ(j) = x(j)/(βy + ry).

5. Every player Pj reveals to all the others the ratio tj = βj/αj .

6. Every player Pj computes δ(j)t1t2 · · · tm, which results in the approximation of x
y

being
split among m players. To recover the value, they run a secure summation protocol, and
each player learns x

y
with the precision required.

Analysis The aggregate randoms rx and ry are added to αx and βy to minimize the possibility
of factoring αx and βy. For instance, in step (3) all players receive the sum of y (j)’s, and
without protecting βy with ry some players might attempt to factor the value. While it is
very computationally expensive to factor this number and furthermore, given its factors, not
possible to deterministically differentiate between factors of β and y, we still would like to
lower the possibility of success as much as possible. Thus, we require that αj and βj are at
least as large as MAXINT/2, which gives us αx/rx ≥ MAXINT and βy/ry ≥ MAXINT and
is acceptable (recall that we consider 1/MAXINT to be a negligible error). Furthermore, we
compute:

αx + rx

βy + ry
=

αx

βy

(

1 + rx/αx

1 + ry/βy

)

=
αx

βy

(

1 +
rx

αx

)(

1

1 − (−ry/βy)

)

≈

≈
αx

βy

(

1 +
rx

αx

)(

1 −
ry

βy

)

≈
αx

βy

(

1 +
rx

αx
−

ry

βy

)

which converges to αx/βy when rx � αx, ry � βy, and rx and ry are random. Now in order
to successfully factor βy, an attacker must try all possible ry, which is a prohibitively large
number on the order of MAXINT m−1.

To further minimize the probability of successful computation of x or y, we might decide to
compose single αi’s and βi’s from a set of factors close in the range to the expected values of
x and y, respectively, similar to the technique described in analysis of protocol 5.

This protocol does not scale well to large m’s because the length of the numbers that players
operate is linear in the number of players. It is conducted in 2 rounds, with the total com-
munication of O(m2) items (or O(m) messages). Computational complexity at each player is
bounded by key creation and O(m) encryptions.

4.3 Secure summation protocols

In this section, we present two secure summation protocols. Assuming that each player has his own
private input, the goal of the summation protocols is to find the sum of the players’ input data.
We first present a protocol that works in the presence of semi-honest players, then we give a robust
but more expensive protocol that works even when players may collude.

Protocol 7 Secure Summation Protocol 1

Input Player Pj , 1 ≤ j ≤ m, has private input x(j).

16



Output Player Pj , 1 ≤ j ≤ m, learns x.

Interaction This protocol has following steps:

1. All players engage in Protocol 1 with security parameter k = 1. Each player Pj provides
x(j) as his input and stores the output as y(j).

2. All players jointly and randomly select a player who will begin the summation. Without
loss of generality, assume that player P1 is selected.

3. Player P1 creates a list of all players, crosses out his name from the list and sends y (1)

to a randomly chosen player Pi from the list; assume player P2 is chosen. P2 crosses out
his name from the list, computes a sum of the received and his own values y (1) + y(2),
and sends it to another randomly chosen player from the list. The protocol proceeds in
this fashion until every player Pj participates and sends the result of its computation to
another available player. At the end, the last player on the chain distributes the result
of the m-way summation y to all players.

Analysis This protocols exhibits information asymmetry with respect to different players, i.e., the
first player sends his value of y(1), while in all subsequent computations y(j) is always a part of
the value being sent. This means that in order to retrieve more information about player P1’s
input data, a collusion of the next player on the chain and the player with whom P1 shares
his input is sufficient. Contrast this with learning about input of another player in the chain
where collusion of a large number of players is required. Consequently, this model should
be used where we can assume primarily non-colluding players. Randomness of the protocol,
however, makes collusions probabilistically more difficult to succeed because it is not known
in advance with whom players are going to share their inputs and what the summation chain
will be.

This protocol proceeds in two rounds, with total communication of O(m) messages. Compu-
tational complexity at each player is O(1).

Next, we provide a more robust version of this protocol. No information about the individual inputs
can be learned as long as the number of colluding players is less than m − 1.

Protocol 8 Secure Summation Protocol 2

Input Player Pj , 1 ≤ j ≤ m, has a private input x(j).

Output Player Pj , 1 ≤ j ≤ m, learns x.

Interaction This protocol has the following steps:

1. All players engage in Protocol 1 with security parameter k = m − 1. Each player Pj

provides x(j) as his input, stores the result as y(j), and then sends y(j) to all other players.

2. Upon receiving the values of y(j) from everyone, each player computes x =
m
∑

j=1
y(j).

Analysis This protocol is resistant to colluding behavior, as long as the number of colluding
players is less than m− 1. The protocol requires two rounds of communication and the total
of O(m2) message exchanges. Its computational complexity at each player is O(m).

17



4.4 Secure comparison protocol

This section contains description of a secure comparison protocol, the goal of which is to compare
two split items in a secure way without revealing any information about the values being com-
pared. The idea behind our protocol is to convert an m-party comparison problem to a two-party
comparison problem. Two-party comparison can be solved using Yao’s millionaire protocol [23].

Protocol 9 Secure Comparison Protocol

Input Player Pj , 1 ≤ j ≤ m, supplies two values x(j) and y(j).

Output Player Pj , 1 ≤ j ≤ m, receives true if x ≥ y, and false otherwise.

Interaction This protocol has the following steps:

1. All players randomly and jointly select two among of them to conduct the Yao’s com-
parison. Without loss of generality, assume that players P1 and P2 are selected.

2. Player Pj , 3 ≤ j ≤ m, generates a random number a(j).

3. Players P3 through Pm engage in a secure split protocol twice, providing their values

a(j) as input. At the end of the protocols, player Pj holds two new values r
(j)
x and r

(j)
y ,

such that
m
∑

j=3
r
(j)
x =

m
∑

j=3
r
(j)
y =

m
∑

j=3
a(j).

4. Player Pj , 3 ≤ j ≤ m, sends x(j) + r
(j)
x to player P1, and y(j) + r

(j)
y to player P2.

5. Player P1 sets x1 = x(1) + x(3) + r
(3)
x + x(4) + r

(4)
x + . . . + x(m) + r

(m)
x and y1 = y(1).

Player P2 sets x2 = x(2) and y2 = y(2) + y(3) + r
(3)
y + y(4) + r

(4)
y + . . . + y(m) + r

(m)
y .

6. Players P1 and P2 engage in Yao’s protocol to jointly and securely compare values
(x1 − y1) and (y2 − x2) (which works since x1 + x2 ≥ y1 + y2 ⇐⇒ x1 − y1 ≥ y2 − x2).

7. Players P1 and P2 distribute the result of the computation to players P3 through Pm.

Analysis Even though in this protocol we add random numbers to the actual input data, it works
because the same number is added to both the sum of x(j)’s and y(j)’s. This protocol is also
secure against colluding players with respect to revealing individual shares, as long as the
number of colluding players is less than m− 1. It leaks partial information if the players who
conduct the comparison collude: those players can discover the difference between x and y
but no other information.

Yao’s comparison protocol can be efficiently performed in a constant number of rounds and a
linear (in the number of bits of the compared numbers) amount of communication and local
computation using circuit simulation: first create a circuit for comparison and then use the
constant-round circuit simulation technique first described in [22] and further reviewed and
developed in [12]. Consequently, the overall protocol is conducted in O(1) rounds, with the
total of O(m) message exchanges. Computational complexity at each player who does not
conduct the comparison is O(1), and O(m) otherwise.

5 Secure Time-Series Forecasting

This section gives final protocols for performing collaborative forecasting based on time series. We
start with protocols for moving average, then proceed with weighted moving average, and lastly
present our protocol for exponential smoothing.

18



5.1 Moving average

In the case of moving average forecasts, the goal is to find the behavior of the function at time t+1
relative to the current time t. The value can be computed as in the following:

x =
Ft − dt

dt
=

(

n−1
∑

i=0
dt−i

)

/n − dt

dt
=

dt−n+1 + . . . + dt−1 − (n − 1)dt

ndt
(2)

We provide two approaches to the moving average problem. One is to use a secure division protocol,
and another is to use binary search in combination with the secure comparison protocol, both of
which we present next.

Protocol 10 Secure Moving Average Protocol Using Division

Input Player Pj , 1 ≤ j ≤ m, has input data d
(j)
t−i for n time intervals, where 0 ≤ i ≤ n − 1.

Output Player Pj , 1 ≤ j ≤ m, learns Ft−dt

dt
, Ft is computed as the moving average.

Interaction The moving average forecast can be performed easily if we utilize one of the division
protocols. The protocol steps are then as the following:

1. Each player Pj sets x(j) = d
(j)
t−n+1 + . . . + d

(j)
t−1 − (n − 1)d

(j)
t and y(j) = nd

(j)
t .

2. All m players jointly conduct a secure division protocol, with each player Pj providing
input x(j) and y(j). The output of the division protocol is the output of this protocol,
i.e., Ft−dt

dt
.

Analysis Both complexity and robustness of this protocol depends on the underlying secure divi-
sion protocol. Communication and complexity requirements are outweighted by any division
protocol because the first step of this protocol does not involve communication and adds O(1)
computation (n is constant).

We now present an alternative solution. Due to difficulties of handling floating point numbers, let
us assume that we are going to compute only a fixed number k of digits of x after the point. In
other words, we can compute x′ = 10kx, where x′ is integer and k is a non-negative integer that
specifies precision of the calculation. Using the same notation as above, we have:

m
∑

j=1

10k
(

d
(j)
t−n+1 + . . . + d

(j)
t−1 − (n − 1)d

(j)
t

)

= x′
m

∑

j=1

nd
(j)
t (3)

Here we can use a binary search on x′ to find its value in such a way that all players jointly compute
the value without revealing their individual inputs.

Protocol 11 Secure Moving Average Protocol Using Binary Search

Input Player Pj , 1 ≤ j ≤ m, has input data d
(j)
t−i for n time intervals, where 0 ≤ i ≤ n − 1.

Output Player Pj , 1 ≤ j ≤ m, learns Ft−dt

dt
.

Interaction This protocol proceeds in the following steps:

1. Each player Pj computes a(j) = 10k
(

d
(j)
t−n+1 + . . . + d

(j)
t−1 − (n − 1)d

(j)
t

)

and b(j) = nd
(j)
t .

19



2. All players agree on the value of x′ (which initially could be 0, the middle of the interval
[−10k, 10k]).

3. All players conduct a comparison protocol (protocol 9), where each player Pj supplies
a(j) and x′b(j). If the result is true, they agree on a larger x′; if the result is false, they
pick a smaller value of x′.

4. Repeat steps (2)–(3) until x′ is determined.

Analysis Using binary search, this protocol results in at most O(log (2 · 10k)) = O(1) rounds. The
overall communication complexity for all players and computational complexity at each player
is the same as for the comparison protocol, since the comparison protocol introduces most
complexity and is invoked a constant number of times. This protocol is also as resistant to
colluding behavior as the underlying comparison protocol. We can make it to be more robust
if the players who perform comparison are chosen randomly in every round. This strategy
will minimize the amount of information that attackers might learn.

As an alternative, in order to decrease the number of rounds of the protocol, one might
consider a model with only one round but higher communication and computational costs.
In this case, each player computes his values and follows the protocol for all possible values
of x′, and by doing this determines the closest value of x′ to the true one.

5.2 Weighted moving average

Computation of the weighted moving average is very similar to the previous case of the moving aver-
age computation. The difference is that all players agree on a weight vector ~w = {w0, w1, . . . , wn−1},
which is public. According to the formula for computing the weighted moving average, equation
(2) in this case becomes:

x =
Ft − dt

dt

=

(

n−1
∑

i=0
widt−i

)

− dt

dt

=
w0dt−n+1 + . . . + wn−2dt−1 − (1 − wn−1)dt

dt

Similarly to the previous case, we provide two different algorithms for computing the value: one
which uses division, and another that uses binary search.

Protocol 12 Secure Weighted Moving Average Protocol Using Division

Input Player Pj , 1 ≤ j ≤ m, supplies n data points d
(j)
t−i, where 0 ≤ i ≤ n − 1.

Output Player Pj , 1 ≤ j ≤ m, obtains Ft−dt

dt
, where Ft corresponds to joint computation of the

weighted moving average.

Interaction The steps of the protocol are as below:

1. Each player Pj sets x(j) = w0d
(j)
t−n+1 + . . . + wn−2d

(j)
t−1 − (1 − wn−1)d

(j)
t and y(j) = d

(j)
t .

2. All m players jointly conduct a secure division protocol, where each player Pj supplies
input x(j) and y(j). The computation results in the desired value.

Analysis See analysis of protocol 10.

20



For the binary search protocol, equation (3) can be re-written in this case as:

m
∑

j=1

10k
(

w0d
(j)
t−n+1 + . . . + wn−2d

(j)
t−1 − (1 − wn−1)d

(j)
t

)

= x′
m

∑

j=1

d
(j)
t

The protocol for computing the weighted moving average using binary search is also similar to the
same protocol for computing the moving average.

Protocol 13 Secure Weighted Moving Average Protocol Using Binary Search

Input Player Pj , 1 ≤ j ≤ m, supplies n data points d
(j)
t−i, where 0 ≤ i ≤ n − 1.

Output Player Pj , 1 ≤ j ≤ m, obtains Ft−dt

dt
, where Ft corresponds to joint computation of the

weighted moving average.

Interaction The protocol is performed as follows:

1. Each player Pj computes a(j) = 10k
(

w0d
(j)
t−n+1 + . . . + wn−2d

(j)
t−1 − (1 − wn−1)d

(j)
t

)

and

b(j) = d
(j)
t .

2. Steps (2)–(4) are the same as in protocol 11.

Analysis See analysis of protocol 11.

5.3 Exponential Smoothing

To simplify joint computation of exponential smoothing, we rewrite the formula as:

x =
Ft − dt

dt
=

Ft−1 + α(dt−1 − Ft−1) − dt

dt
=

(1 − α)Ft−1 + αdt−1 − dt

dt

Assume α is public, Ft−1 is calculated during the previous execution of the protocol, and is addi-
tively split between m players.

Protocol 14 Secure Exponential Smoothing Protocol Using Division Protocol

Input Player Pj , 1 ≤ j ≤ m, provides input data d
(j)
t−1 and d

(j)
t , as well as the result of the previous

execution of the protocol F
(j)
t−1.

Output Player Pj , 1 ≤ j ≤ m, learns Ft−dt

dt
, where Ft is the result of exponential smoothing

computation, and also gets a share F
(j)
t of Ft.

Interaction The protocol can be conducted through the following steps:

1. Each player Pj sets x(j) = (1 − α)F
(j)
t−1 + αd

(j)
t−1 − d

(j)
t and y(j) = d

(j)
t .

2. All players jointly execute a secure division protocol, where each player Pj provides x(j)

and y(j) as his input. The output of the division protocol is the output of this protocol.

3. Each player Pj sets F
(j)
t as (1 − α)F

(j)
t−1 + αd

(j)
t−1.

Analysis The core of this protocol is the underlying division protocol, therefore all complexity
and communication analysis, as well as robustness against colluding players is the same as
for the division protocol used.

21



6 Secure Linear Regression Benchmarking

As was mentioned earlier, we apply the linear regression technique to a set of xi, yi values, where
the number of points n is set in advance. Then each yi is given in the form of two numbers ci and
di, where yi = ci/di to make it possible to operate on normalized values and guarantee more precise
outcome. We consider this scenario to be more general than the one where each player provides
only his yi’s values. This is because every protocol that solves a problem with yi values provided
in the form of ci and di values, can also be used to solve that problem where yi is provided as a
single value. In our case, if players decide that division is not necessary, then they can solve it in
one of the two ways:

(a) They can agree on values of d(j), such that
m
∑

j=1
d(j) = 1.

(b) They can omit the step of the protocol where the value of y’s is computed using the division
protocol and use their original values of y’s instead.

Another assumption that we make in this model is that all values of xi are known to all players
and are agreed upon prior to protocol initiation. This means that all of the xi’s values will be
used in computation of the regression coefficients even if a player does not have data for all of
the points. If, however, none of the players have data for a specific value of xi, that point must
be excluded from the computation. This means that the players learn what data point is being
excluded, which is viewed as some additional information about other players’ input that should
be kept secret. Changing the protocols so that it can handle cases where no data is available
for a certain point and no player learns this information will result in significantly more complex
solutions in terms of both computational power and communication. Therefore, we decide to solve
this issue in the following way. The protocol starts as usual, and for each data point we compute

yi =
(

m
∑

j=1
c
(j)
i

)

/
(

m
∑

j=1
d
(j)
i

)

. If it is detected that this division is not possible to perform because all

c
(j)
i , d

(j)
i pairs for a specific data point xi have the value of zero, then the execution is suspended.

Each player will be notified that this computation cannot be carried out, and they have two options:
they can either abort the protocol or continue its execution, but in which case information about
the missing values will be revealed to all players. If all of the players decide to continue, that the
value of xi that caused the problem is excluded from the set of possible points and the protocol is
restarted. If at least one of the players decides to abort, execution terminates.

To compute the regression coefficients themselves, we use the formulas given in equation (1).
Here the value of

∑n
i=1 xi is public and can be computed by each player. Then the equations can

be rewritten as:

a = A
(

n
n

∑

i=1

xiyi −
(

n
∑

i=1

xi

)

n
∑

i=1

yi

)

, b =
(

n
∑

i=1

yi/n
)

− B

where the values of A and B are known to all players and can be precomputed, such that A =

1/
(

n
(

n
∑

i=1
x2

i

)

−
(

n
∑

i=1
xi

)2
)

and B =
(

a
n
∑

i=1
xi

)

/n (notice that the value of B can be computed only

after a is known as a result of joint computation).

Protocol 15 Secure Linear Regression Protocol

Input Player Pj , 1 ≤ j ≤ m, provides a set of pairs c
(j)
i , d

(j)
i , where i corresponds to n data points

x1, x2, . . . , xn.

22



Output Player Pj, 1 ≤ j ≤ m, learns the coefficients a and b such that the deviation of the points
in ~y = a~x + b is minimized.

Interaction The protocol proceeds in the following steps:

1. All players engage in a secure division protocol n times to compute the values of yi for
1 ≤ i ≤ n, where the yi values remain additively split among all players.

2. Each player Pj locally computes a(j) = A
(

n
n
∑

i=1
xiy

(j)
i −

(

n
∑

i=1
xi

)

n
∑

i=1
y

(j)
i

)

.

3. All players engage in a secure summation protocol to compute a =
m
∑

j=1
a(j).

4. Each player Pj locally computes b(j) =
n
∑

i=1
(y

(j)
i /n).

5. All players engage in a secure summation protocol to compute b =
m
∑

j=1
b(j) − B, where

the sum can be computed through the protocol itself but the value of B can be later
subtracted by each player.

Analysis This protocol is as secure against colluding players as its underlying blocks are (namely,
the division and summation protocols). Communication and computational complexity of
the protocol is the higher of the division and summation protocols used because both of them
are invoked a constant number of times (the number of points n is constant).

7 Conclusions and Future Work

In this work, we provide privacy-preserving solutions to collaborative forecasting and benchmarking,
which can be used to increase reliability of local forecasts, perform evaluation of the local and
global trends, and obtain more precise correlation of data that might be essential to the business.
We provide both building blocks and fully developed protocols to perform a number of different
forecasting methods based on time-series as well as regression techniques.

The building blocks are general enough to be used in other protocols for forecasting and bench-
marking, as well as other applications. In particular, the division protocols presented in this work,
to the best of our knowledge, are the first attempt to perform division in secure multi-party com-
putation as well as perform computation on floating point numbers.

This work can be extended in a number of ways. Future directions include:

• The number of time-series forecasting methods covered can be extended to other forecasting
techniques.

• Among with providing short-range forecasting, we would like to be able to perform long-range
forecasts. Long-range forecasting takes into account seasonal changes and other long-term
patterns.

• We also would like to design protocols to cover other types of regression techniques for bench-
marking collaboration. This will allow us to draw reliable conclusions for different types of
data distributions.

• A number of protocols provided in this paper can be made more robust against other types
of malicious behavior.

23



References

[1] K. Allan, M. Stemper, and O. Tucker. “Collaborative Forecasting,” available at
http://e-business.pwcglobal.com/pdf/CollaborativeForecasting.pdf

[2] M. Atallah and W. Du. “Secure multi-party computational geometry,” in WADS2001: 7th
International Workshop on Algorithms and Data Structures, pp. 165–179, 2001.

[3] M. Atallah, H. Elmongui, V. Deshpande, and L. Schwarz. “Secure Supply-Chain Protocols,”
In IEEE International Conference on Electronic Commerce, pp. 293-302, 2003.

[4] O. Baudron and J. Stern. “Non-interactive Private Auctions,” in Financial Crypto’01,
Springer-Verlag, 2001.

[5] Collaborative Planning, Forecasting, and Replenishment (CPFR),
http://www.cpfr.org/Members.html.

[6] W. Du. “A Study of Several Specific Secure Two-party Computation Problems,” PhD thesis,
Purdue University, West Lafayette, Indiana, 2001.

[7] W. Du and M. Atallah. “Privacy-preserving cooperative scientific computations,” in 14th IEEE
Computer Security Foundations Workshop, pp. 273–282, 2001.

[8] W. Du and M. Atallah. “Privacy-preserving statistical analysis,” in Proceedings of the 17th
Annual Computer Security Applications Conference, pp. 102–110, 2001.

[9] J. Evans. “Applied production and operations management” (4th Edition), West Publishing
Company, 1993.

[10] G. Fliedner. “Collaborative planning, forecasting, and replenishment in the retail supply
chain,” Decision and Information Sciences Department, Oakland University, Rochester, MI.

[11] E. Frazelle. “Supply chain strategy: the logistics of supply chain management,” McGraw-Hill,
2002.

[12] O. Goldreich. “Cryptography and cryptographic protocols,” Distributed Computing, 16(2–3),
pp. 177–199, 2003.

[13] O. Goldreich. “Secure Multi-party Computation” (working draft), available at
http://www.wisdom.weizmann.ac.il/home/oded/public html/pp.html (2001).

[14] O. Goldreich, S. Micali, and A. Wigderson. “How to play any mental game,” in Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229, 1987.

[15] S. Goldwasser. “Multi-party computations: Past and present,” in Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed Computing, Santa Barbara, CA USA,
August 21-24, 1997.

[16] John Galt Solution, Inc. http://www.johngalt.com/

[17] Y. Lindell and B. Pinkas. “Privacy preserving data mining,” in Advances in Cryptology -
CRYPTO 2000, pp. 36–54, 2000.

24



[18] T. Rabin and M. Ben-Or. “Verifiable secret sharing and multiparty protocols with honest
majority” (extended abstract), in Proceedings of the Twenty First Annual ACM Symposium
on Theory of Computing, pp. 73–85, 1989.

[19] B. Schneier. “Applied cryptography: protocols, algorithms, and source code in C” (2nd Edi-
tion), John Wiley & Sons, Inc., 1995.

[20] H. Singh. “Collaborative Forecasting,” available at
http://www.supplychain.com/docs/collaborativeforecasting.pdf, 2002.

[21] W. Stevenson. “Production/Operations Management” (4th edition), Richard D. Irwin, Inc.,
1993.

[22] A.C. Yao. “How to generate and exchange secrets,” in Proceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science, pp. 162–167, 1986.

[23] A. Yao. “Protocols for secure computations,” in Proceedings of the 23rd Annual IEEE Sympo-
sium on Foundations of Computer Science, 1982.

25


