

CERIAS Tech Report 2004-21

ON MUTUALLY-EXCLUSIVE ROLES AND SEPARATION OF DUTY

by Ninghui Li, Ziad Bizri, and Mahesh V. Tripunitara

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

On Mutually-Exclusive Roles and Separation of Duty

Ninghui Li Ziad El Bizri Mahesh V. Tripunitara
Center for Education and Research in Information Assurance and Security

and Department of Computer Sciences
Purdue University

656 Oval Drive, West Lafayette, IN 47907
{ninghui, zelbizri, mtripuni}@cs.purdue.edu

Abstract

Separation of Duty (SoD) is widely considered to be a fundamental principle in computer security.
A Static SoD (SSoD) policy states that in order to have all permissions necessary to complete a sensitive
task, the cooperation of at least a certain number of users isrequired. In Role-Based Access Control
(RBAC), Statically Mutually Exclusive Roles (SMER) constraints are used to enforce SSoD policies.
In this paper, we pose and answer fundamental questions related to the use of SMER constraints to
enforce SSoD policies. We show that directly enforcing SSoDpolicies is intractable (coNP-complete),
while checking whether an RBAC state satisfies a set of SMER constraints is efficient. Also, we show
that verifying whether a given set of SMER constraints enforces an SSoD policy is intractable (coNP-
complete) and discuss why this intractability result should not lead us to conclude that SMER constraints
are not an appropriate mechanism for enforcing SSoD policies. We also show how to generate SMER
constraints that are as accurate as possible for enforcing an SSoD policy.

1 Introduction

Separation of Duty(SoD) is widely considered to be a fundamental principle in computer security[1, 2, 12].
In its simplest form, the principle states that if two steps are needed to performa sensitive task, then two
different users should each perform one of the two steps. More generally, whenn steps are needed to
perform a sensitive task, an SoD policy requires the cooperation of at leastk (for somek ≤ n) different
users to complete the task.

Consider the following example of buying and paying for goods. The stepsto perform such a task (taken
from [2]) are: (1) ordering the goods and recording the details of the order; (2) recording the arrival of the
invoice and verifying that the details on the invoice match the details of the order; (3) verifying that the
goods have been received, and the features of the goods match the details on the invoice; and (4) authorizing
the payment to the supplier against the invoice. We would want to ensure thatthe payment is not released on
an order that was never placed and that the received goods match thosein the order and those in the invoice.
A policy that requires a different user to perform each step may be too restrictive. It may be permissible, for
instance, that the user who places the order also records the arrival of the invoice. One may require that (a)
at least three users are required to perform all four steps, and (b) two different users are required to perform
steps (1) and (4) (i.e., no single user can order a good and authorize payment for it).

An SoD policy may be enforced either statically or dynamically. In dynamic enforcement, the system
maintains a history of each task instance (e.g., a particular order). The history includes information on who

1

performed each step. Before a user performs a step on the instance, thesystem checks to ensure that the
SoD policy is not violated. This is referred to as Dynamic SoD in the literature [13, 10].1 In Dynamic SoD,
a user may be able to perform any particular step in a task instance; however, the user cannot also perform
other steps in that instance.

In static enforcement, Static SoD (SSoD) policies are used. Each SSoD policy states that nok − 1 users
together have all permissions to complete a sensitive task. Such an SSoD policy can be enforced by carefully
assigning permissions to users, without maintaining a history for every task instance. It may seem that if an
SSoD policy is satisfied, then the corresponding SoD policy is also satisfied.However, care must be taken
to ensure this. Consider the example described above. Suppose that initiallya user Bob has the permission
to order goods. After placing an order, Bob’s order permission is revoked and then Bob is assigned to have
the permission to authorize payments. Now Bob can authorize a payment against the order he placed earlier.
The SoD policy is violated even though Bob never has the order permission and payment permission at the
same time. Such situations can be avoided, for example, by requiring that a user is not participating in any
active task instance while being assigned a permission, or by treating such task instances specially (e.g., by
maintaining a history for them).

Separation of Duty has been studied extensively in Role-Based Access Control (RBAC) [6, 7, 14]. As
Ferraiolo et al. [6] state, “one of RBAC’s great advantages is that SoDrules can be implemented in a natural
and efficient way.” A purpose of this paper is to examine this statement in detail. In RBAC, permissions
are associated with roles, and users are granted membership in appropriate roles, thereby acquiring the
roles’ permissions. RBAC uses mutual exclusion constraints to implement SoD policies. The most common
kind of mutual exclusion constraint is Statically Mutually Exclusive Roles (SMER). For example, a SMER
constraint could be “no user is allowed to be a member of bothr1 and r2”. More generally, a SMER
constraint requires that no user is a member oft or more roles in a set ofm roles{r1, r2, · · · , rm}. SMER
constraints are used in most RBAC models, including the RBAC96 models by Sandhu et al. [14] and the
proposed NIST standard for RBAC [7]. Literature in RBAC also studies dynamic mutually exclusive roles
(DMER) constraints. With such a constraint, a user is prevented from activating mutually exclusive roles
simultaneously in a session. SMER and DMER constraints are the only types ofconstraints included in the
proposed NIST standard for RBAC [7]. The rationale provided in that work is that such constraints are the
only ones prevalent in commercial RBAC products.

As we discuss in Section 2, DMER constraints are not suitable for enforcing SoD policies, either stat-
ically or dynamically. On the other hand, SMER constraints enforce SoD policies statically. In this paper,
we examine the use of SMER constraints to enforce SoD policies.

SSoD policies areobjectivesthat need to be achieved. They exist independent of whether RBAC is
used to manage the access permissions. Each SSoD policy specifies the minimumnumber of users that can
perform a sensitive task. On the other hand, SMER constraints aremechanismsintroduced to achieve SSoD
policies. These constraints are specific to RBAC. Each constraint limits the role memberships any user may
have.

In the literature, this distinction between objectives and mechanisms is sometimes not clearly made.
This is evident in the way these constraints are referred to in the literature. SMER constraints are often
called Static SoD constraints, and DMER are called Dynamic SoD constraints.

When we make a clear distinction between objectives (SSoD policies) and mechanisms (SMER con-
straints), several interesting problems arise. For example, theverificationproblem is whether a set of SMER
constraints indeed enforces an SSoD policy, and thegenerationproblem is how do we generate a set of con-

1Nash and Poland [10] refer to this as object SoD and consider it as one kind of Dynamic SoD.

2

straints that is adequate to enforce an SSoD policy. Although the use of SMER constraints to support SoD
has been studied for over a decade, surprisingly these problems have not been examined in the literature as
such, to the best of our knowledge.

1.1 Contributions and organization

Our contributions in this paper are as follows.

• We provide precise definitions for SSoD policies and SMER constraints, and for the verification and
generation problems.

• We show that directly enforcing SSoD policies in RBAC is intractable (coNP-complete), while en-
forcing SMER constraints is efficient.

• We show that the verification problem is intractable (coNP-complete), even for a basic subcase of the
problem, but reduces naturally to the satisfiability problem (SAT) [3], for which there exist algorithms
that have been proven to work well in practice [3]. We discuss the implications of these results.

• We define what it means for a set of SMER constraints to precisely enforce an SSoD policy, charac-
terize the policies for which such constraints exist, and show how they are generated. For other SSoD
policies, we present an efficient algorithm that generates sets of SMER constraints that minimally
enforce the policies.

The results reported here are fundamental to understand the effectiveness of using SMER constraints
to enforce SoD in RBAC. The verification and generation algorithms are alsoof practical significance in
RBAC systems that use SMER constraints to enforce SSoD policies.

The remainder of the paper is organized as follows. We discuss related work in the next section. In
Section 3, we give definitions of SSoD policies and SMER constraints, as well as the computational com-
plexities for enforcing them. In Section 4, we study the verification problem. In Section 5, we study the
generation problem. We conclude with Section 6. Proofs not included in the main body are in Appendix A.

2 Related Work

To our knowledge, in the literature the notion of SoD first appeared in Saltzer and Schroeder [12] under the
name “separation of privilege.” They introduced this as one of the eight design principles for the protection
of information in computer systems. They credited Roger Needham with making the following observation
in 1973: a protection mechanism that requires two keys to unlock it is more robust and flexible than one that
requires only a single key. No single accident, deception, or breach of trust is sufficient to compromise the
protected information.

Clark and Wilson’s commercial security policy for integrity [2] identified SoD along with well-formed
transactions as two major mechanisms of fraud and error control. The use of well-formed transactions
ensures that information within the computer system is internally consistent. Separation of duty ensures that
the objects in the physical world are consistent with the information about these objects in the computer
system.

Sandhu [13] presented a history-based mechanism for dynamically enforcing SoD policies. Nash and
Poland [10] emphasized the difference between dynamic and static enforcement of SoD policies. In the
former, a user may perform any step in a sensitive task provided that the user does not also perform another
step on that data item. In the latter, users are constrained a-priori from performing certain steps.

3

In one of the earliest paper on RBAC, Ferraiolo and Kuhn [4] used the terms Static and Dynamic SoD
to refer to static and dynamic enforcement of SoD. In a subsequent paper, Ferraiolo et al. [5] defined Static
SoD as: “A user is authorized as a member of a role only if that role is not mutually exclusive with any of
the other roles for which the user already possesses membership”. Observe that this is the requirement of
SMER constraints. Similarly, Dynamic SoD was defined as forbidding a user from activating roles that are
mutually exclusive. We call these DMER constraints. We believe that the terminology in [5] is confusing as
it blurs the distinction between objectives and mechanisms. The same terminologyis later used by several
authors and is adopted in the NIST proposed standard for RBAC [7].

DMER constraints are introduced in [5] under the name DSoD constraints. This may be because they are
the “dynamic” version of SMER constraints, which are referred to as SSoD constraints in [5]. However, as
we now discuss, DMER constraints do not seem to enforce SoD policies. ADMER constraint prevents a user
from simultaneously activating mutually exclusive roles in a session. In RBAC, each session has only one
user. Thus, a sensitive task cannot be finished in one session; different sessions are required. Consider the
example discussed in Section 1. Suppose that the order permission and the payment permission are assigned
to two roles that are mutually exclusive according to a DMER constraint. Bob can start a session, activating
the role having the order permission, create an order, end the session, start another session, activating the
role having the payment permission, and authorize a payment against the order. This violates the SoD policy.

Kuhn [9] discussed mutual exclusion of roles for separation of duty andproposes a safety condition:
that no one user should possess the privilege to execute every step of atask, thereby being able to execute
the task. We observe that our definition for safety in Section 3.1 is a generalization of Kuhn’s definition [9]:
settingk to 2 gives us Kuhn’s definition. Kuhn [9] did not discuss either the verification problem or the
generation problem.

3 Static Separation of Duty and Mutually Exclusive Roles

In this section, we give precise definitions for Static Separation of Duty policies, RBAC, and SMER con-
straints.Users(often referred to assubjectsin the literature) andpermissionsare at the core of any access
control system. The state of the access control system specifies the set of permissions each user has. In this
paper, we treat permissions as if they were opaque, i.e., we do not consider the internal structure of permis-
sions. We also assume that permissions are not related, e.g., the possession of one or more permissions does
not imply the possession of another permission.

3.1 Static Separation of Duty (SSoD) policies

Definition 1 (SSoD policies)A k-n SSoD (k-out-of-n Static Separation of Duty) policy is expressed as

ssod〈{p1, . . . , pn} , k〉

where eachpi is a permission andn andk are integers such that1 < k ≤ n. This policy means that there
should not exist a set of fewer thank users that together have all these permissions. In other words, at least
k users are required to perform a task that requires all the permissions in{p1, . . . , pn}.

Intuitively, the permissions in ak-n SSoD policy are the permissions needed to carry out a sensitive task,
and the policy guarantees that at leastk users are needed to successfully execute it. The specification of an
SSoD policy involves identifying a sensitive task, the permissions needed to complete it, and the minimum
number of collaborating users authorized to complete it.

4

We assume a basic level of familiarity with RBAC; readers are referred to [7, 14] for an introduction to
RBAC. We assume that there are three countably infinite sets:U (the set of all possible users),R (the set of
all possible roles), andP (the set of all possible permissions).

Definition 2 (RBAC States) An RBAC stateγ is a 3-tuple〈UA,PA,RH 〉, in which the user assignment
relationUA ⊂ U×R associates users with roles, the permission assignment relationPA ⊂ R×P associates
roles with permissions, and the role hierarchy relationRH ⊂ R × R is a partial order among roles inR.
When(r1, r2) ∈ RH , we say thatr1 is senior tor2, which means that every user who is a member ofr1 is
also a member ofr2, and every permission that is associated withr2 is also associated withr1.

An RBAC stateγ = 〈UA,PA,RH 〉 determines the set of roles a user is a member of and the set of
permissions a user possesses. Formally,γ determines two functions,rolesγ : U → 2R andpermsγ : U →

2P , where2R is the powerset ofR. The two functions are defined as follows:

rolesγ [u] = { r ∈ R | ∃r1 ∈ R [(u, r1) ∈ UA ∧ (r1, r) ∈ RH] }
permsγ [u] = { p ∈ P | ∃r1, r2 ∈ R [(u, r1) ∈ UA ∧ (r1, r2) ∈ RH ∧ (r2, p) ∈ PA] }

Definition 3 (SSoD Safety and the SC-SSoD problem)We say that an RBAC stateγ is safewith respect
to an SSoD policyssod〈{p1, . . . , pn} , k〉 if in stateγ nok− 1 users together have all the permissions in the
policy. More precisely,

∀u1 · · ·uk−1 ∈ U

((

k−1
⋃

i=1

permsγ [ui]

)

6⊇ {p1, . . . , pn}

)

.

An RBAC stateγ is safewith respect to a setE of SSoD policies if it is safe with respect to every policy in
the set, and we write it assafeE(γ). SC-SSOD (the Safety Checking problem for SSoD policies) is defined
as follows: Given an RBAC stateγ and a setE of SSoD policies, determine ifsafeE(γ) is true.

Observe that if nok − 1 users together have all the permissions in the policy, then no set of fewer thank

users together have all the permissions.

Example 1 Consider the task of ordering and paying for goods discussed in Section1. We have a permis-
sion corresponding to each step in the task; these permissions areporder , pinvoice , pgoods , andppayment . We
have the following set of SSoD policies:

E1 = {e1, e2}
e1 = ssod〈{porder , pinvoice , pgoods , ppayment} , 3〉
e2 = ssod〈{porder , ppayment} , 2〉

Consider the following RBAC stateγ1 = 〈UA1,PA1,RH 1〉, where

UA1 = { (Alice, Warehouse), (Alice, Finance), (Bob, Accounting), (Bob, Quality) },

andPA1 andRH 1 are given in Figure 1. The stateγ1 is not safe with respect toe1, a3-4 SSoD policy, as
the 2 usersAlice andBob together possess all 4 permissions ine1.

Given a setE of SSoD policies, suppose an RBAC system starts at a state that is safe with respect toE.
Each time one is about to make a change to the system that may affect the safety, one checks whether the
RBAC state resulted from the proposed change is safe and makes the change only then. Such a change may
be adding a new user-role assignment toUA, adding a new role-permission assignment toPA, or adding a
new pair toRH . This approach to ensuring that an RBAC system is safe requires solvingSC-SSOD, which
turns out to be intractable.

5

Employee

Engineering Quality Warehouse Accounting Finance

order goods invoice payment

�
�

�
�

H
H

H
H

XXXXXXXXXXXXXXXXX

H
H

H
H

H
H

H
HH

�
�

�
�

�
�

�
��

�����������������

RH 1 = { (Engineering, Employee), (Quality, Employee), (Warehouse, Employee),
(Accounting, Employee), (Finance, Employee) }.

PA1 = { (Engineering, porder), (Quality, porder), (Warehouse, pgoods),
(Accounting, pinvoice), (Finance, ppayment) }.

Figure 1:A sample role hierarchy and permission assignment. Roles are shown in solid boxes, and permissions in
dashed boxes. A line segment represents either a role-role relationship, or the assignment of a permission to a role.

Theorem 1 SC-SSOD is coNP-complete.

See Appendix A for the proof. (The proofs of all theorems and lemmas notfound in the main body
are in Appendix A.) The proof ofcoNP-hardness is done by reducing the set covering problem to the
complement of SC-SSOD. In that reduction, each permission is assigned to one role and the role hierarchy
relation is empty; thus the problem remainscoNP-complete even when we restrict to the case of flat RBAC
(i.e., RBAC without role hierarchy). The fact that SC-SSOD is intractable suggests that enforcing SSoD
policies directly can be computationally expensive.

With the following reasoning, we observe that even if we have to check whether an SSoD policy is
violated only when adding a new user-to-role assignment, the check can beinefficient. Given an SSoD
policy e = ssod〈{p1, . . . , pn}, k〉 and an RBAC stateγ that is safe with respect toe, suppose we want to
check whether the stateγ′ resulted from adding a new user-role assignment(u, r) is safe with respect to
e. Let i = |permsγ′ [u] ∩ {p1, . . . , pn}| be the number of permissions ine that u would have inγ′, then
we are left with checking whetherγ′ is safe with respect to a(k−1)-(n−i) SSoD policy, which remains
coNP-complete by the above theorem.

Efficient algorithms for SC-SSOD exist when all the SSoD policies inE have smallk. For example,
when checking whetherγ is safe with respect to a2-n SSoD policy, one only needs to compute the per-
missions of every single user and check whether it is a superset of the permissions in the policy. This has
worst-case time complexityO(Nu(Nu + Nr + Np)), whereNu is the number of users inγ, Nr the number
of roles, andNp the number of permissions.

3.2 Statically Mutually Exclusive Role (SMER) constraints

In RBAC, constraints such as mutually exclusive roles are introduced to enforce SSoD policies. In the most
basic form, two roles may be declared to be mutually exclusive in the sense thatno user is allowed to be a
member of both roles. Below we present a generalized form of such constraints.

6

Definition 4 (SMER Constraints) A t-m SMER (t-out-of-m Statically Mutually Exclusive Roles) con-
straint is expressed as

smer〈{r1, . . . , rm} , t〉

where eachri is a role, andm andt are integers such that1 < t ≤ m. This constraint forbids any user from
being a member oft or more roles in{r1, . . . , rm}.

A t-m SMER constraint is said to becanonicalof cardinality t whent = m.

Definition 5 (Satisfying SMER constraints and the SC-SMER problem)We say that an RBAC stateγ
satisfiesa SMER constraintsmer〈{r1, . . . , rm} , t〉 when

∀u ∈ U (| rolesγ [u] ∩ {r1, . . . , rm} | < t) .

Otherwise, we say thatγ violatesthe SMER constraint. An RBAC statesatisfiesa setC of SMER constraints
if it satisfies every constraint in the set, and we write it assatisfiesC(γ). SC-SMER (the Satisfaction
Checking problem for SMER constraints) is defined as follows: Given anRBAC stateγ and a setC of
SMER constraints, determine whetherγ satisfiesC.

Observe that each SMER constraint restricts only the role memberships ofa singleuser, in contrary to a
k-n SSoD policy, which restricts the permissions possessed by a set ofk − 1 users. Because of this, there is
an efficient algorithm to check whether an RBAC stateγ satisfies a setE of SMER constraints.

Theorem 2 SC-SMERis in P.

Proof. The algorithm is as follows. For eacht-m SMER constraint inC and for each user inγ, one first
computes the set of all roles the user is a member of, then counts how many roles in this set also appear in
the set of roles in the SMER constraint, and finally compare this number witht. This algorithm has a time
complexity ofO(NuNrM), whereN is the number of users inγ, Nr the number of roles inγ, andM is the
number of constraints.

Further observe that when a user-role assignment is about to be addedto UA, one only needs to check
the role memberships of that user, which can be done in timeO(NrM).

4 The Enforcement Verification problem

The facts that SC-SSOD is intractable and that an efficient algorithm exists for SC-SMER provide ajus-
tification for using SMER constraints to enforce SSoD policies. This justification is new to the best of our
knowledge, as the computational complexity of SC-SSOD was not studied in the literature.

When using SMER constraints to enforce SSoD policies, a natural questionto ask is whether a set of
SMER constraints is adequate to enforce a set of SSoD policies. Clearly, the answer to this question also
depends on the permission assignmentPA and the role hierarchyRH . For instance, if all permissions in an
SSoD policy are assigned to one role, then no set of SMER constraints enforces that policy.

Definition 6 (Enforcement and theEV problem) GivenPA ⊂ P ×R, RH ⊂ R ×R, a setE of SSoD
policies, and a setC of SMER constraints. We sayC enforcesE (underPA andRH) when

∀UA ⊂ U ×R [satisfiesC(〈PA,RH ,UA〉) ⇒ safeE(〈PA,RH ,UA〉)]

EV (the Enforcement Verification problem) is defined as follows: GivenPA,RH , a setE of SSoD policies,
and a setC of SMER constraints, determine whetherC enforcesE (underPA andRH).

7

Example 2 Continuing from Example 1, we consider the following set of SMER constraints

C1 = {c1, c2, c3}
c1 = smer〈{Warehouse, Accounting, Finance}, 2〉
c2 = smer〈{Engineering, Finance}, 2〉
c3 = smer〈{Quality, Finance}, 2〉

The constraintc1 ensures that three users are required to have role memberships inWarehouse, Accounting,
andFinance, which are needed to have the permissionspgoods , pinvoice , andppayment . This ensures safety
with respect to the SSoD policye1. The constraintsc2 andc3 together ensure the safety with respect toe2.
ThusC1 enforcesE1 underPA1 andRH 1.

In Example 1, we observed that the stateγ1 is not safe with respect toE1; therefore, it does not satisfy
C1. In particular,γ1 violates the constraintc1 because Alice is assigned to bothWarehouse andAccounting.

We now establish an upper bound on the computational complexity of EV.

Lemma 3 EV is in coNP.

4.1 Simplifying the EV problem

We show that every set of SMER constraints can be equivalently represented using a set of canonical (t-t)
SMER constraints.

Definition 7 (SMER Equivalence) Let C1 andC2 be two sets of SMER constraints. We say thatC1 and
C2 areequivalentwhen for every RBAC stateγ, γ satisfiesC1 if and only if γ satisfiesC2.

Clearly, if C1 andC2 are equivalent, thenC1 enforcesE underPA andRH if and only if C2 enforces
E underPA andRH ; thus one can replaceC1 in an EV problem instance withC2 and vice versa.

Lemma 4 For everyt-m SMER constraintc, there exists a setC ′ of canonical SMER constraints of cardi-
nality t such thatC ′ and{c} are equivalent.

Proof. Given at-m SMER constraintc = 〈{r1, . . . , rm} , t〉, wherem > t. Let C ′ be

{ smer〈R, t〉 | R ⊂ {r1, . . . , rm} ∧ |R| = t }.

That is,C ′ is the set of all constraintssmer〈R, t〉 such thatR is a size-t subset of{r1, . . . , rm}. It is easy to
see that violating any constraint inC ′ implies violating the constraintc and violating the constraintc implies
violating some constraint inC ′. Therefore,C ′ and{c} are equivalent.

It follows from Lemma 4 that for every setC of SMER constraints, there exists a setC ′ of canonical
SMER constraints such thatC andC ′ are equivalent. Furthermore, given an instance of EV in which the set
E contains more than one SSoD policy, one can verify these policies one by one. Without loss of generality,
we assume thatE is a singleton set, i.e.,E = {e} consists of one policy. This enables us to limit our
attention to the following special case of EV.

Definition 8 CEV (the Canonical Enforcement Verification problem) is defined as follows: GivenPA,
RH , a singleton set{e} of SSoD policies and a setC of canonical SMER constraints, determine whetherC

enforces{e}.

8

An algorithm solving CEV can be used to solve EV, as any EV instance can betranslated into a set of
CEV instances. However, the resulting CEV instance may have an exponential blowup in size, as one needs
to generate

(

m
t

)

SMER constraints for eacht-m SMER constraint. On the other hand, if an RBAC system
uses only canonical constraints to start with, then such blowup does not occur. Also, in the case thatt = 2,
we have a CEV instance the size of which is quadratic inm.

4.2 Algorithms and complexity for CEV

It is easier to think about the complement of CEV, denoted byCEV: If C does not enforce
{ssod〈{p1, · · · , pn}, k〉}, then there exists a user-to-role assignment fork − 1 users such that all the SMER
constraints inC are satisfied but thesek − 1 users together possess all permissions{p1, · · · , pn}. It turns
out that this problem is closely related to SAT, the satisfiability problem of propositional formulas in con-
junctive normal form. See Appendix C for an introduction to SAT.

Theorem 5 CEV reduces toSAT.

This reduction means that we can use algorithms for SAT to solve CEV. Givena CEV instance, the
answer is yes if and only if the corresponding SAT instance is not satisfiable.

We now show that CEV iscoNP-hard by showing that a special case of it iscoNP-complete. The
special case we consider is whether a set of2-2 SMER constraints satisfies a2-n SSoD policy. Recall that
a 2-2 SMER constraint specifies two roles are mutually exclusive, i.e., no user can be a member of both
roles. This is the most common kind of constraints considered in the literature. A2-n SSoD specifies that
no single user is allowed to possess all ofn given permissions. This is the simplest and most common kind
of SSoD policy. This special case is thus arguably the simplest verification problem.

Theorem 6 Determining whether a set of2-2 SMER constraints enforces a2-n SSoD policy iscoNP-
complete.

That this problem iscoNP-hard is shown by reducing MONOTONE-3-2-SAT (which is shown to be
NP-complete in Theorem 20 in Appendix C) to the complement of this problem.

Corollary 7 EV andCEV arecoNP-complete.

Proof. Follows directly from Lemma 3 and Theorem 6.

4.3 Efficiency of verification in practice

The fact that even the most basic form of EV is intractable is surprising. Observe that enforcing SSoD
policies directly by solving SC-SSOD is efficient for2-n SSoD policies. These results cast doubts on the
effectiveness of the approach of using SMER constraints to enforce SSoD policies, which has been adopted
in the literature without being questioned for years. However, complexity class is only part of the story, and
we now make some observations in favor of this approach.

When using SMER constraints to enforce SSoD policies, EV, which can be computationally expensive,
only needs to be performed when either a new role-role relationship is added to the role hierarchy or a
permission in an SSoD policy is assigned to some role. When a user is assignedto a role, only constraint
checking (SC-SMER) needs to be performed, which is quite efficient. On the other hand, when enforcing

9

SSoD policies directly, the expensive safety checking (SC-SSOD) needs to be performed every time a user
is assigned to a role of which the user was not already a member. Because user-to-role assignment is the most
dynamic relation, enforcing SSoD policies directly is overall more expensive than using SMER constraints.

In the proof of Theorem 6, we use a reduction from MONOTONE-3-2-SAT toCEV. In the reduction we
generate a2-n SSoD policy withn being unbounded. When a sensitive task involves only a small number
of permissions, then CEV can be done efficiently.

Even though CEV is intractable (coNP-complete), it means only that there exist difficult problem
instances that take exponential amount of time in the worst case using existingalgorithms. SAT has been
studied extensively for several decades (see e.g. [3]). Many clever algorithms exist that can answer most
instances efficiently. Many problems, including database, planning, computer-aided design, machine vision
and automated reasoning, are reduced to SAT and solved using SAT algorithms. This often results in better
performance than solving those problems directly. The fact that CEV naturally reduces to SAT means that
one can benefit from the extensive research on SAT to provide practical enforcement checking.

The complexity of SC-SSOD is calculated in the number of users plus the number of roles and the
complexity of CEV is calculated in the number of roles only. (In both cases, one needs to consider only the
permissions in the SSoD policies, rather than all permissions in the RBAC state.) Given that most RBAC
systems have many more users than roles, enforcement verification is likely tobe more efficient in practice.

Finally, although checking whether an arbitrary set of SMER constraints enforces a set of SSoD policies
may be expensive, SMER constraints may be generated from a set of SSoD policies and need not be verified.

5 Generating SMER Constraints

Section 4 considers verifying that SMER constraints in RBAC enforce the desired SSoD policies. In this
section we study the problem of generating a set of SMER constraints that are adequate for enforcing SSoD
policies. We examine the following questions: How do we define a notion of precision in enforcing SSoD
policies, as there are often multiple sets of constraints that enforce the same set of SSoD policies? How
do we compare the “degree of restriction” of different sets of SMER constraints? What kinds of SMER
constraints are needed in expressing SSoD policies, e.g., do3-3 SMER constraints add additional expressive
power over2-2 SMER constraints?

5.1 Enforceability of SSoD policies

Definition 9 (Enforceable SSoD configurations)We define an SSoD configurationto be a 3-tuple
〈PA,RH , E〉, whereE is a set of SSoD policies. An SSoD configuration isenforceableif there exists
a setC of SMER constraints such thatC enforcesE underPA andRH .

Lemma 8 An SSoD configuration〈PA,RH , E〉 is not enforceable if and only if there exists an SSoD policy
ssod〈{p1, · · · , pn}, k〉 in E such thatk − 1 roles together have all the permissions in{p1, · · · , pn}.

Theorem 9 Determining whether an SSoD configuration is enforceable iscoNP-complete.

Similar to SC-SSOD, efficient algorithms exist when all the SSoD policies in the configuration have
smallk.

10

5.2 RSSoD requirements

As SMER constraints are about role memberships and SSoD policies are about permissions, the first step of
the generation process is to translate a policy on permissions to requirements on roles, using information in
PA andRH . We now define such role-level SSoD requirements.

Definition 10 (RSSoD requirements)A k-n RSSoD (k-out-of-n Role-based Static Separation of Duty)
requirement is expressed as

rssod〈{r1, . . . , rn} , k〉 (1)

where eachri is a role andn andk are integers such that1 < k ≤ n. The meaning is that there should not
exist a set of fewer thank users that together have memberships in all then roles in the requirement. We
also sayk users are required tocoverthe set ofn roles.

We say that an RBAC stateγ is safewith respect to the above RSSoD requirement when

∀u1 · · ·uk−1 ∈ U

((

k−1
⋃

i=1

rolesγ [ui]

)

6⊇ {r1, . . . , rn}

)

.

An RBAC stateγ is safewith respect to a setD of RSSoD requirements if it is safe with respect to every
requirement inD, and we write it assafeD(γ).

Given an SSoD configuration〈PA,RH , E〉, we say that it isequivalentto a setD of RSSoD require-
ments if

∀UA ⊂ U ×R [safeE(〈UA,PA,RH 〉) ⇔ safeD(〈UA,PA,RH 〉)]

where⇔ means logical equivalence.

Example 3 The SSoD configuration given in Figure 1 is equivalent to the following setof RSSoD require-
ments.

D1 = {d1, d2, d3, d4}
d1 = rssod〈{ Engineering, Warehouse, Accounting, Finance} , 3〉
d2 = rssod〈{ Quality, Warehouse, Accounting, Finance} , 3〉
d3 = rssod〈{ Engineering, Finance} , 2〉
d4 = rssod〈{ Quality, Finance} , 2〉

In Appendix B we discuss the generation of RSSoD requirements that are equivalent to SSoD configura-
tions. A special case is when we are given an SSoD configuration〈PA,RH , {e = ssod〈{p1, . . . , pn} , k〉}〉,
and each permissionpi is assigned to exactly one roleri in PA andRH . Then the configuration is equivalent
to the singleton set of RSSoD requirement{d = ssod〈{r1, . . . , rn} , k〉}.

In the rest of this section, we discuss the generation of a set of SMER constraints to enforce one RSSoD
requirement.

5.3 Precise enforcement of RSSoD requirements

From the proof of Lemma 8, it is clear that any enforceable SSoD configuration can be enforced using only
2-2 SMER constraints. This shows the power of2-2 SMER constraints: they are sufficient to enforce any
enforceable SSoD policy. However this might be at a great cost in terms offlexibility.

Ideally, one would like to generate SMER constraints that “precisely capture” the restrictions inherent
to the RSSoD requirements. We now seek to formalize this.

11

Definition 11 Let D be a set of RSSoD requirements andC be a set of SMER constraints, we say thatC

enforcesD when
∀ RBAC stateγ [satisfiesC(γ) ⇒ safeD(γ)]

We say thatC is necessary to enforceD when

∀ RBAC stateγ [safeD(γ) ∧ liveD(γ) ⇒ satisfiesC(γ)]

whereliveD(γ) means that for every roler appearing inD, there exists a user who is a member ofr.
We sayC precisely enforcesD if C enforcesD and is necessary to enforceD. Sometimes we abuse the
terminology slightly to say a constraintc enforces an RSSoD requirementd.

We now give two cases where precise enforcement can be achieved.

Lemma 10 Given a k-k RSSoD requirementd = rssod〈{r1, · · · , rk}, k〉, the constraint c =
smer〈{r1, · · · , rk}, 2〉 precisely enforcesd.

Lemma 11 Given a 2-n RSSoD requirementd = rssod〈{r1, · · · , rn}, 2〉, the constraint c =
smer〈{r1, · · · , rn}, n〉 precisely enforces the configuration.

In fact, as we prove in Lemma 19 (in Section 5.5 after results needed for the proof have been developed),
for everyk andn such that2 < k < n, there exists no set of SMER constraints that precisely enforces ak-n
RSSoD requirement. That is, the two special cases in Lemmas 10 and 11 are the only cases where precise
enforcement can be achieved. As precise enforcement is not achievable in many cases, we give methods to
generate “good” sets of SMER constraints that are as precise as possible.

5.4 Expressive power of differentt-m SMER constraints

Before discussing the generation of “good” sets of SMER constraints, we look at the expressive power of
t-m SMER constraints using different values oft andm. We would like to answer questions such as: Does
an RBAC system that supports3-3 SMER constraints have more expressive power than an RBAC system
that supports only2-2 SMER constraints? Answers to such questions will help developers of RBAC systems
to decide which kinds of constraints to support.

From Lemma 4 we know thatt-m SMER constraints, wherem > t, can be equivalently represented
usingt-t SMER constraints; thus non-canonical constraints do not add additionalexpressive power in terms
of enforcing SSoD policies. From Lemma 8, we know that2-2 SMER constraints are sufficient for enforcing
(albeit not precisely) any enforceable SSoD configuration. We now show that2-2 SMER constraints (or2-n
SMER constraints which can be equivalently expressed using2-2 SMER constraints) are required in the
sense that they cannot be replaced with otherk-n SMER (wherek ≥ 3) constraints.

Lemma 12 There exist RSSoD requirements that cannot be enforced without using2-n SMER constraints.

Proof. A t-t RSSoD requirement can be enforced only by using2-n SMER constraints, as these are the only
type of constraints that prevent two roles from being assigned to a single user.

Although 2-2 SMER constraints are sufficient to enforce all enforceable SSoD configurations, other
constraints are needed to enforce some SSoD configurations more precisely.

12

Lemma 13 For any n > 2, there exists an RSSoD requirement that can be precisely enforced using a
canonical constraint of cardinalityn but cannot be precisely enforced using any set oft-m SMER constraints
with t < n.

This lemma suggests that if one wants to enforce an arbitrary RSSoD requirement as precisely as possi-
ble, then one needs to supportn-n SMER constraints for arbitraryn.

5.5 Generating “good” sets of SMER constraints

As we show in this section (Lemma 19), SSoD policies cannot always be precisely enforced. Thus it is
desirable to compare different sets of SMER constraints and determine which set “more precisely” enforces
a set of SSoD policies.

Definition 12 Let C1 andC2 be two sets of SMER constraints. We say thatC1 is at least as restrictive as
C2 (denoted byC1 D C2) if

∀ RBAC stateγ
[

satisfiesC1
(γ) ⇒ satisfiesC2

(γ)
]

.

TheD relation among all sets of SMER constraints is a partial order. WhenC1 D C2 but notC2 D C1, we
say thatC1 is more restrictive thanC2 (denoted byC1 B C2). Observe that by definition,C1 andC2 are
equivalent(Definition 7) if and only ifC1 D C2 andC2 D C1.

When neitherC1 D C2 norC2 D C1, we sayC1 andC2 areincomparable.

When bothC andC ′ enforce a setD of RSSoD requirements, there are four cases: (1)C B C ′; (2)
C ′ B C (3); C andC ′ are equivalent; and (4)C andC ′ are incomparable. In case (1),C ′ is preferable to
C for enforcingD as it is less restrictive (and thus more precise). Similarly, in case (2),C is preferable to
C ′. In case (3), eitherC or C ′ can be used; the choice does not matter. In case (4), the decision to chooseC

overC ′ (or C ′ overC) depends on other policy considerations.
Our philosophy for dealing with the generation problem is to generate all the sets of SMER constraints

that are minimal for enforcingD (for any such set, no other set is more preferable than it) and leave the
decision to choose which one to use to the system administrator.

Definition 13 Given a setD of RSSoD requirements, we say that a setC of SMER constraints isminimal
for enforcingD if C enforcesD and there does not exist a different setC ′ of SMER constraints such that
C ′ also enforcesD andC B C ′ (C is more restrictive thanC ′).

Lemma 14 If a setC of SMER constraints precisely enforces a setD of RSSoD requirement, then for any
C ′ that also enforcesD, C ′ D C, i.e.,C ′ is at least as restrictive asC.

Lemma 15 LetC be a set of SMER constraints that precisely enforces a setD of RSSoD requirement.C is
minimal for enforcingD. Furthermore, ifC1 is also minimal for enforcingD, thenC andC1 are equivalent.

Proof. Given anyC ′ that also enforcesD, it follows from Lemma 14 thatC ′ D C, thus it cannot beC B C ′

(which implies that¬(C ′ D C)).
Given anyC1 that is also minimal for enforcingD, it follows from Lemma 14 thatC1 D C. By Defini-

tion 13, it cannot be thatC1 B C; thusC1 andC must be equivalent.

13

Lemma 16 Given a setD of RSSoD requirements, if bothC1 andC2 are minimal for enforcingD andC1

andC2 are incomparable, then there exists no setC of SMER constraints that precisely enforcesD.

Proof. By Contradiction. If a setC that precisely enforcesD exists, then from Lemma 15,C is equivalent
to C1 and toC2. This contradicts the fact thatC1 andC2 are incomparable.

We now present a simple algorithm to generate all singleton sets of SMER constraints that are minimal
for enforcing one RSSoD requirement.

The SMER-Gen Algorithm
Input: RSSoD requirement rssod〈R, k〉
Output: a set S of minimal SMER constraints
1 let n = |R|, S = ∅
2 if k = 2
3 output smer〈R, n〉
4 else
5 for all j from 2 to

⌊

n−1
k−1

⌋

+ 1

6 let m = (k − 1)(j − 1) + 1
7 for each size-m subset R′ of R

8 output smer〈R′, j〉
9 end

Example 4 The above algorithm, when takingrssod 〈{Engineering, Warehouse, Accounting, Finance} , 3〉
as input, generates the following sets of SMER constraints.

C2 = {c4, c5, c6, c7}
c4 = smer〈{Warehouse, Accounting, Finance}, 2〉
c5 = smer〈{Engineering, Accounting, Finance}, 2〉
c6 = smer〈{Engineering, Warehouse, Finance}, 2〉
c7 = smer〈{Engineering, Warehouse, Accounting}, 2〉

Any SMER constraint fromC2 is sufficient to satisfy the RSSoD requirement. The constraints are all
minimal and incomparable. Each of them left a different role unconstrained. If one’s internal policy is that
Warehouse may be left unconstrained, then one may pickc5 as the desirable constraint to use.

The correctness of this algorithm is justified by the following two lemmas.

Lemma 17 Given an RSSoD requirementd, each SMER constraint generated bySMER-Gen(d) is minimal
for enforcingd.

Lemma 18 Given an RSSoD requirementd, each SMER constraint that is minimal for enforcingd is gen-
erated bySMER-Gen(d).

Lemma 19 Given ak-n RSSoD requirement where2 < k < n, there exists no set of SMER constraints that
precisely enforces it.

Our algorithm does not generate all sets of SMER constraints that are minimalto enforce an RSSoD
requirement. Constraint sets of cardinality greater than 1 may exist that areminimal for enforcing the
requirement. Our algorithm generates all possible minimal singletons in the formof k-m SMER constraints.
It is up to the system administrator to choose the most appropriate constraint from those candidates.

14

6 Conclusions and Future Work

We have posed and answered several fundamental questions related tothe use of SMER constraints to en-
force SSoD policies, while making a clear distinction between objectives and mechanisms. We have shown
that directly enforcing SSoD policies is intractable (coNP-complete), while enforcing SMER constraints
is efficient. We have also shown that verifying whether a set of SMER constraints enforces a set of SSoD
policies is intractable (coNP-complete), even for a basic subcase of the problem, but reduces naturally to
the satisfiability problem (SAT), for which there exist algorithms that have been proven to work well in
practice [3]. We have discussed why these intractability results should notlead us to conclude that SMER
constraints are not an appropriate mechanism for enforcing SSoD policies.

We have defined minimal and precise enforcement. We have also characterized the kinds of policies for
which precise enforcement is achievable and shown what constraints precisely enforce such policies. We
have also presented an algorithm that generates all singleton SMER constraint sets that minimally enforce
an RSSoD requirement.

An interesting problem that remains is whether the generation algorithm can beimproved to consider
preexisting SMER constraints and to consider a set of SSoD policies as a whole rather than individually.
Other constraints have also been proposed for RBAC, e.g., cardinality constraints and constraints on per-
mission assignment [14]. It would be interesting to examine using SMER constraints together with these
constraints to enforce SSoD policies.

Acknowledgement

Portions of this work were supported by NSF ITR and by sponsors of CERIAS. We thank Trent Jaeger for
helpful discussions. We also thank Elisa Bertino, Ji-Won Byun, Jiantao Liand Klorida Miraj for reading a
draft of the paper and making suggestions that have improved the paper.

A Proofs

Proof of Theorem 1.

Proof. Consider the complement of SC-SSOD, denoted bySC-SSOD. If an RBAC stateγ is not safe
wrt. E, then there exists ak-n SSoD policy inE andk − 1 users such that inγ thesek − 1 users together
have then permissions in the SSoD policy. It suffices to show thatSC-SSOD is NP-complete.

We first show thatSC-SSOD is in NP. If one correctly guesses thek-n SSoD policy being violated
and thek − 1 users that together have all then permissions in the policy, verifying that the guess is correct
can be done in polynomial time: compute the union of thek − 1 users’ permissions and check whether it is
a superset of the set of permissions in the SSoD policy.

We now show thatSC-SSOD is NP-hard by reducing the set covering problem (page 201 of [11]) to
it. In the set covering problem, the inputs are a finite setS, a familyF = {S1, . . . , S`} of subsets ofS, and
a budgetB. The goal is to determine whether there existB sets inF whose union isS. This problem is
NP-complete [8, 11].

The reduction is straightforward. GivenS, F , andB, construct an SSoD policye as follows: Let each
element inS map to a permission in the policy, letk beB+1 and letn be the size ofS. We have constructed
ak-n SSoD policy. Construct an RBAC stateγ as follows. For each corresponding permission inS, create

15

a role to which the permission is assigned. For each different subsetSi (1 ≤ i ≤ `) in F , create a userui to
which all roles inSi are assigned. The resulting RBAC stateγ is not safe with respect to{e} if and only if
B sets inF coverS.

Proof of Lemma 3

Proof. Consider the complement of EV, denoted byEV, it suffices to show thatEV is in NP. To show
this, we need to show that givenPA,RH , C, E, if C does not enforceE underPA andRH , then a short
(polynomial in the input size) evidence exists such that it can be verified in polynomial time.

If a setC of t-m SMER constraints does not enforce a setE of k-n SSoD policies underPA andRH ,
then there exists a counter-example, i.e., a user-role assignmentUA such thatsatisfiesC(〈UA,PA,RH 〉)
is true butsafeE(〈UA,PA,RH 〉) is false. That is, there exists ak-n SSoD policy inE that is violated by
k − 1 users. If such anUA exists, then a subset of theUA that consists of just thek − 1 users is also
a counter-example. Thus, the smallest counter-example has size linear in thesize of the input. Once the
counter-example is guessed, its correctness can be verified in time polynomial in the size of the input. This
shows thatEV is in NP.

Proof of Theorem 5

Proof. An instance of theCEV problem is given byPA, RH , a setC of canonical constraints, and ak-n
SSoD policye. We need to map such an instance to a SAT instance such that the SAT instanceis satisfiable
if and only if C does not enforce{e}. In other words, if the SAT instance is satisfiable, then we can find a
user assignment relationUA such that the constraints inC are satisfied but the state〈UA,PA,RH 〉 is not
safe with respect toe.

We first give such a mapping for a subcase ofCEV wheree is a2-n SSoD policy, i.e., no single user has
all n permissions ine. When constructing a SAT instance from such aCEV instance, our goal is to find a
user-to-role assignment for one single user such that this user has all permissions ine without violating any
constraint inC.

The SAT instance is constructed as follows. For each roler appearing inPA,RH , C, create a propo-
sitional variablevr. Intuitively, if vr is true, then the user is a member of the rolevr. Construct the set of
clauses for the SAT instance as follows.

• For each permissionp in e, let r′1, r
′
2, · · · , r′` be all the roles that are associated with the permissionp,

add the clause
vr′

1
∨ vr′

2
∨ · · · ∨ vr′

`

This clause means that, to have the permissionp, the user must be a member of one of the roles that
are associated with the permissionp.

• For each constraintc ∈ C, let c = ssod〈{r1, r2, · · · , rt}, t〉; for eachi from 1 to k − 1, add to the
instance the following clause

¬vr1
∨ ¬vr2

∨ · · · ∨ ¬vrt

This clause means that, to satisfy the constraint, there must be at least one role in {r1, r2, · · · , rt} of
which the user is not a member.

• For each role hierarchy relationship(r1, r2) ∈ RH , add to the instance the following clause

¬vr1
∨ vr2

16

This clause means that if a user is a member ofr1, then it must also be a member ofr2.

If the SAT instance is satisfiable, letI be a truth assignment that makes the instance true, then assign the user
to be a member of every roler such thatvr is true inI. The user has all permissions ine without violating
any constraint inC; therefore,C does not enforcee. On the other hand, ifC does not enforcee, then there
exists aUA such that in the RBAC state〈UA,PA,RH 〉 there exists a user who has all permissions ine,
then the role memberships of the user in this state give rise to a truth assignment that make the SAT instance
true.

We now give the mapping for any instance ofCEV. Given ak-n SSoD policye wherek > 2, we need
to consider role memberships ofk− 1 different users at the same time. Our goal is to find a user assignment
relation such thatk − 1 together have all permissions ine, yet none of thek − 1 user’s role memberships
violate constraints inC.

GivenPA,RH , let C be a set of canonical constraints ande be ak-n SSoD policy. Construct a SAT
instance as follows. For each role appearing inPA,RH , C, createk − 1 proposition variables. The propo-
sitional variables created for a roler is denotedv1

r , v
2
r , · · · , vk−1

r . Intuitively, vi
r is true when theith user is

a member of the roler. Then construct the set of clauses for the SAT instance as follows.

• For each permissionp in e, let r′1, r
′
2, · · · , r′` be all the roles that are associated with the permissionp,

add the clause
v1
r′
1

∨ · · · ∨ vk−1
r′
1

∨ v1
r′
2

∨ · · · ∨ vk−1
r′
2

∨ · · · ∨ v1
r′
`

∨ · · · ∨ vk−1
r′
`

To have the permissionp, at least one of thek − 1 users must be a member of one of these roles.

• For each constraintc ∈ C, let c = ssod〈{r1, r2, · · · , rt}, t〉; for eachi from 1 to k − 1, add the
following clause

¬vi
r1
∨ ¬vi

r2
∨ · · · ∨ ¬vi

rt

To satisfy the constraint, for every user, there must exist a role in{r1, r2, · · · , rt} of which the user is
not a member.

• For each role hierarchy relationship(r1, r2) ∈ RH , and for eachi from 1 to k − 1, add the following
clause

¬vi
r1
∨ vi

r2

This clause means that if a user is a member ofr1, then it must also be a member ofr2.

The SAT instance is satisfiable if and only ifC does not enforce{e}.

Proof of Theorem 6.

Proof. That this problem is incoNP follows from Lemma 3.
We prove that this problem iscoNP-hard by reducing MONOTONE-3-2-SAT to the complement of

this problem. We define MONOTONE-3-2-SAT as being a special case of monotone-CNF-SAT where each
negative clause is only composed of two literals. We show in Appendix C that MONOTONE-3-2-SAT is
NP-complete.

Given a MONOTONE-3-2-SAT problem composed of positive clauses of the form(vi1 ∨ vi2 ∨ vi3),
1 ≤ i ≤ n, and negative clauses(¬vj1 ∨ ¬vj2), 1 ≤ j ≤ m, we do the following reduction: (1) Each
propositional variablev is mapped to a roler(v). (2) Each positive clause(vi1 ∨ vi2 ∨ vi3) is mapped to a

17

permissionpi assigned to the three rolesr(vi1), r(vi2), andr(vi3). (3) Each negative clause(¬vj1 ∨ ¬vj2)
is mapped to a2-2 SMER constraintsmer〈{r(vj1), r(vj2)}, 2〉.

As can be seen, the MONOTONE-3-2-SAT instance is satisfiable if and only if the2-n SSoD policy
ssod〈{p1, p2, ..., pn}, 2)〉 can be violated while satisfying all the2-2 SMER constraints.

Proof of Lemma 8

Proof. If such a situation exists, then no matter what set of SMER constraints we use, one can always assign
k − 1 different users to thek − 1 roles without violating any SMER constraint, resulting in an unsafe state.
On the other hand, if such a situation does not exist, one can use2-2 SMER constraints to declare every
pair of roles inPA andRH to be mutually exclusive, this forbids any user from being assigned to two roles.
Clearly, any state satisfying these constraints is safe.

Proof of Theorem 9

Proof. We consider the complement of the problem, that is, to determine whether an SSoD configuration
is not enforceable. This problem is clearly inNP: from Lemma 8 given a solution set ofk − 1 roles
we compute the set of permissions assigned to those roles, and check whether it is a superset of the set
of permissions in the SSoD policy. We show that the problem isNP-hard by reducing the set covering
problem, which isNP-complete, to it. In the set covering problem, the inputs are a finite setS, a family
F = {S1, . . . , S`} of subsets ofS, and a budgetB. The goal is to determine whether there existsB sets in
F whose union isS.

Given an instance of the set covering problem:S, F , andB, construct an SSoD policye as follows.
Let each element inS map to a permission in the policy, letk beB + 1, and letn be the size ofS. We
have constructed ak-n SSoD policy. For each different subsetSi (1 ≤ i ≤ `) in F , create a roleri and
assign to it all permissions corresponding to the elements inSi. B sets inF coverS if and only if the SSoD
configuration is not enforceable.

Proof of Lemma 10

Proof. The requirementd means thatk users are required to cover allk roles. The constraintc means that
no user is allowed to be a member of2 roles in the set. We first show thatc enforcesd. If no user is a
member of2 roles from the set ofk roles, then clearlyk users are needed to cover thek roles. We then show
thatc is necessary. Given an RBAC stateγ that violatesc, we show thatlive{d}(γ) andsafe{d}(γ) cannot
both be true. Asγ violatesc, there exists a user who has memberships in2 roles from the set ofk roles. If
live{d}(γ) is true, then for every role other than the2 roles there exists a user who is a member of it. Thus
k − 1 users cover thek roles, andsafe{d}(γ) is false.

Proof of Lemma 11

Proof. The requirementd means that2 users are required to cover alln roles. The constraintc means that
no user is allowed to be a member of all the roles in the set. We first show thatc enforcese. If no user is a
member of alln roles from the set, then clearly, at least2 users are required to cover all then roles. We then
show thatc is necessary. Given an RBAC stateγ that violatesc, there is one user who has all roles from the
set ofn roles. Thussafe{d}(γ) must be false.

18

Proof of Lemma 13

Proof. Consider the2-n RSSoD requirementd = rssod〈{r1, · · · , rn}, 2〉 (at least2 users are required to
cover then roles). Then-n SMER constraintc = smer〈{r1, · · · , rn}, n〉 (no single user is allowed to a
member of alln roles) precisely enforces the configuration, as was shown in lemma 10.

We now show that no set of SMER constraints witht < n precisely enforcesd. Assume, for the sake of
contradiction, that there exists such a set. Then there exists a setC of canonical constraints of cardinalities
less thann that also precisely enforcesd. At least one constraint,c, in C must be such that all roles in
the constraint are in{r1, · · · , rn}; otherwise, one could assign one user to have all roles in{r1, · · · , rn}
without violating any constraint inC. Becausec is a canonical constraint of cardinalityt < n, the setS of
roles inc is a strict subset of{r1, · · · , rn}. This constraintc is not necessary for implementing the SSoD
configuration, as an RBAC state in which a user is assigned to be a member of all roles in S is safe with
respect to the requirementd, as long as the member is not a member of some role in{r1, · · · , rn} − S.

Proof of Lemma 14

Proof. We need to show that: (A) for every RBAC stateγ, satisfiesC′(γ) impliessatisfiesC(γ). We show
that this is equivalent to proving (B) for every RBAC stateγ′ such thatliveD(γ′), satisfiesC′(γ′) implies
satisfiesC(γ′). (A) clearly implies the (B). We now show that (B) implies (A). Suppose, forthe sake of
contradiction, that (B) is true but (A) is not, then there exists a stateγ such thatsatisfiesC′(γ) is true, but
satisfiesC(γ) is not. If such a stateγ exists, then there exists a stateγ1 such that the role hierarchy relation
in γ1 is empty, andsatisfiesC′(γ1) is true, butsatisfiesC(γ1) is false. The stateγ1 can be constructed by
computing all role memberships inγ and assign these role memberships usingUA. We now construct a
stateγ2 by adding toγ1 the following user-to-role assignments: for each roler mentioned inD assigns a
new user (one who is not a member of any role inγ1) to be a member ofr. (Different users are used for
different roles, so each new user is a member of exactly one role.) We denote the resulting stateγ2. Clearly,
liveD(γ2) is true. Furthermore,satisfiesC′(γ) if and only if satisfiesC′(γ2), andsatisfiesC(γ) if and only
if satisfiesC(γ2). Therefore,satisfiesC′(γ2) is true butsatisfiesC(γ2) is not. This is in contradiction with
(B) is true.

If C ′ enforcesD, then for everyγ such thatliveD(γ) is true,satisfiesC′(γ) implies safeD(γ), which
further impliessatisfiesC(γ). ThusC ′ is at least as restrictive asC.

Proof of Lemma 17

Proof. Given aj-m SMER constraintc generated by the algorithm for ank-n RSSoD requirementd, letRc

be the set of roles inc, andRd be the set of roles ind.
By Lemma 4 we know thatc can be equivalently expressed as a setC of j-j SMER constraints. Assume,

for the sake of contradiction, that the solution is not minimal. Then there exists asetC ′ of SMER constraints
that also enforcesd andC ′ is less restrictive thanC, i.e.,(C D C ′) ∧ ¬(C ′ D C).

Because¬(C ′ D C), there exists a stateγ such thatsatisfiesC′(γ) is true butsatisfiesC(γ) is not. This
means that at least onej-j SMER constraintcv ∈ C is violated byγ. LetRv be the set ofj roles incv; there
exists a user inγ who is a member of thej roles inRv. As γ satisfiesC ′, having one user being a member
of all roles inRv does not violateC ′.

We now construct another stateγ′ such thatsatisfiesC′(γ′) is true, butsafe{d}(γ
′) is not. This contra-

dicts thatC ′ enforcesd.
In order to constructγ′, we first construct another stateγ1 as follows:

19

• Usek − 2 users to cover the roles inRc − Rv with each user being a member of at mostj − 1 roles
in Rc − Rv. This is possible for the following reasons. First,|Rc − Rv| = m − j. Second, from
the algorithm,m = (k − 1)(j − 1) + 1. Thusk − 2 users can cover(k − 2)(j − 1) roles, where
(k − 2)(j − 1) = m − j.

• Assign one of thek − 2 users to be a member of all roles inRd − Rc.

Observe thatsatisfiesC(γ1) is true, asγ1 satisfiesc. This is becausec does not place any restriction on
role memberships in roles inRd − Rc and each user inγ1 has at mostj − 1 roles inRc. BecauseC D C ′,
satisfiesC′(γ1) is also true.

We now constructγ′ by adding toγ1 a new user and assigning the user to be a member of all roles in
Rv. The stateγ′ hask − 1 users; together they have memberships in all roles inRd. Thussafe{d}(γ

′) is
false. The stateγ′ also satisfiesC ′, as the role memberships of thek − 2 users inγ1 do not violateC ′ and
neither does the new user who is a member of all roles inRv.

Proof of Lemma 18

Proof. Given ank-n RSSoD requirementd, we show that anyj′-m′ SMERc that is not generated by the
algorithm is not minimal in enforcingd. We show this using case-by-case analysis.

Case 1:j′ >
⌊

n−1
k−1

⌋

+ 1. Thenj′ ≥
⌊

n−1
k−1

⌋

+ 2. By assigning tok − 1 usersj′ − 1 roles each, we are

able to cover(k − 1)(j′ − 1) roles. Observe that for every pair of positive integersx, y,
⌊

y
x

⌋

≥ y−(x−1)
x

.

Thus,(k − 1)(j′ − 1) ≥ (k − 1)(
⌊

n−1
k−1

⌋

+ 1) ≥ (k − 1)(n−k+1
k−1 + 1) = n. Therefore,c does not enforced.

Case 2:j′ ≤
⌊

n−1
k−1

⌋

+ 1 andRc 6⊆ Rd, whereRc is the set of roles inc andRd is the set of roles in

d. Consider the SMER constraintc′ = smer〈j′, Rc ∩ Rd〉. Clearly,c B c′, andc′ enforcesd if and only if c
enforcesd. Thereforec is not minimal.

Case 3:j′ ≤
⌊

n−1
k−1

⌋

+ 1, Rc ⊆ Rd, andm′ = m, wherem = (k − 1)(j′ − 1) + 1. This is not possible,

as such a constraintc will be generated by the algorithm.

Case 4:j′ ≤
⌊

n−1
k−1

⌋

+ 1, Rc ⊆ Rd, andm′ > m. As the algorithm generates aj′-m SMER constraint

for each size-m subset ofRd, there exist a constraintc′ generated by the algorithm with a set of rolesR′

such thatR′ ⊂ Rc. This impliesc′ B c, thereforec′ is not minimal.

Case 5:j′ ≤
⌊

n−1
k−1

⌋

+ 1, Rc ⊆ Rd, andm′ < m. We havem′ ≤ (k − 1)(j′ − 1). By assigning to

k − 1 users at mostj′ − 1 roles each, we are able to cover allm′ roles inc without violatingc. By further
assigning to one user to be a member of all roles inRd − Rc, the state is not safe with respect tod while
satisfyingc. Thusc does not enforced.

Proof of Lemma 19

Proof. It suffices to prove that when2 < k < n, the algorithm generates at least two SMER constraints, as
then, we know that each such constraint is minimal (Lemma 17) and thereforethere exists no set of SMER
constraints that precisely enforces the RSSoD requirement (Lemma 16).

To show that the algorithm generates at least two SMER constraints when2 < k < n, we observe that

either (1)
⌊

n−1
k−1

⌋

> 1, or (2)
⌊

n−1
k−1

⌋

= 1. If (1) is true, thenj takes on at least the two values 2 and 3 in

20

the outer loop, and therefore the inner loop (lines 7–8) is executed at least twice for different values ofj,
thereby generating two different SMER constraints.

If (2) is true, then the outer loop (line 5) is executed only once. For that execution of the outer loop,
m = k < n. Thus there exist more than one size-m subsets ofR. Therefore, the inner loop (lines 7–
8) executes at least twice for two different size-m subsetsR′ of R, thereby giving two different SMER
constraints.

B Generating RSSoD Requirements

As we mention in Section 5.2, there is an intermediate step between defining SSoD policies and designing
SMER constraints that implement them. The step is the mapping of SSoD policies to RSSoD requirements.
SSoD policies are expressed in terms of permissions; a set of RSSoD requirements expresses an SSoD
policy in terms of roles. Definition 10 defines an RSSoD requirement. In this section, we discuss the
problem of generating a set of RSSoD requirements from an SSoD policy and observe that the algorithm
can be inefficient for arbitrary policies, but should be efficient for typical SSoD policies.

Following is our algorithm to generate a set of RSSoD requirements from an SSoD policy. In line 10,
the algorithm returns an error if the SSoD policy cannot be satisfied for thegiven role structure.

Input: SSoD policy ssod〈P , k〉
Output: set S of RSSoD requirements or error
1 let n = |P |, S = R = ∅
2 for each pi ∈ P

3 let Ri = set of roles for which pi is authorized
4 for each r1 ∈ R1

5 add r1 to R

6 for each r2 ∈ R2

7 if r2 6∈ R add r2 to R
...

8 for each rn ∈ Rn

9 if rn 6∈ R add rn to R

10 if |R| < k return error: SSoD cannot be satisfied
11 else
12 copy R to R′

13 add rssod〈R′, k〉 to S

14 if rn was added to R at this level of nesting
15 remove rn from R

...
16 if r2 was added to R at this level of nesting
17 remove r2 from R

18 remove r1 from R

19 return S

In line 3, the algorithm adds toRi the roles to which the permissionpi is directly assigned and the roles
that inheritpi from Ri. Therefore, the lines 2–3 run with worst-case time-complexityO(nNr), whereNr is

21

the number of roles in the role-hierarchyRH andn is the number of permissions in the SSoD policy. The
entire algorithm runs with worst-case time-complexityO(Nr

n). Thus, if SSoD policies contain only small
sets of permissions, then the algorithm is reasonably efficient. Ifn can be any number of permissions, then
the algorithm is exponential in the size of the state.

The algorithm is efficient for “shallow” role-hierarchies. For instance,if the role-hierarchy is flat, that
is, for any two rolesr1, r2 ∈ R, we have(r1, r2) 6∈ RH , and if a permission is assigned to at most one role,
then the lines 2–3 dominate the lines 4–16 in running time, and the algorithm runs withworst-case time
complexityO(nNr).

C SAT

A boolean literal or variable is one that can take on a value from{0, 1}. A boolean expression is one of
the following: (a) a boolean variable, (b)¬φ, (c) φ1 ∨ φ2, or (d)φ1 ∧ φ2, whereφ, φ1 andφ2 are boolean
expressions. (c) is called a disjunction, and (d) is called a conjunction. A truth assignment to a boolean
expression is the assignment of either 0 or 1 to each variable in the expression. A boolean expression is
in Conjunctive Normal Form (CNF), if it can be written as

∧n
i=1 Ci wheren ≥ 1 and eachCi is called a

clause, a clause is either a literal or a disjunction of literals, and a literal is either a boolean variable or its
complement. A boolean expression is satisfiable if there exists a truth assignment to it such that it evaluates
to 1. The SAT problem is the problem of determining whether an expression inCNF is satisfiable. The
complement of the satisfiability problem is the validity problem: whether for any truth assignment, the
expression evaluates to 1.

The 3-SAT problem is SAT with each clause has exactly3 literals. It is well-known that SAT and
MONOTONE-SAT areNP-complete, and their complements arecoNP-complete.

Monotone 3-2-SAT isNP-complete

MONOTONE-3-SAT is 3-SAT with each clause containing either only positive literals or only negative
literals; it is known to beNP-complete [8]. We use MONOTONE-3-2-SAT to denote SAT with each clause
containing either 3 positive literals or 2 negative literals.

Theorem 20 MONOTONE-3-2-SAT is NP-complete.

Proof. MONOTONE-3-2-SAT is clearly inNP. We show that it isNP-hard by reducing 3-SAT to
MONOTONE-3-2-SAT.

Let (`1 ∨ `2 ∨ `3) be a clause. Case (1): all three literals are positive. No change needs to be made. Case
(2): one is negative. Wlog, assume that`3 is negative. This clause can be equivalently represented using a
positive clause(`1 ∨ `2 ∨ w) and a negative clause(¬w ∨ `3), wherew is a newly introduced propositional
variable. This technique turns one literal from negative to positive by introducing a new propositional
variable and a new length-2 negative clause. Case (3): two are negative. Apply the above technique twice.
Case (4): three are negative. Apply the above technique three times.

22

References

[1] Matt Bishop.Computer Security — Art and Science. Addison-Wesley, 2003.

[2] David D. Clark and David R. Wilson. A comparision of commercial and militarycomputer security
policies. InProceedings of the 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE
Computer Society Press, May 1987.

[3] Dingzhu Du, Jun Gu, and Panos M. Pardalos, editors.Satisfiability Problem: Theory and Applications,
volume 35 ofDIMACS Series in Discrete Mathematics and Theoretical Computer Science. AMS Press,
1997.

[4] David Ferraiolo and Richard Kuhn. Role-Based Access Control. InProceedings of the 15th National
Information Systems Security Conference, 1992.

[5] David F. Ferraiolo, Janet A. Cuigini, and D. Richard Kuhn. Role-Based Access Control (RBAC): Fea-
tures and Motivations. InProceedings of the 11th Annual Computer Security Applications Conference
(ACSAC’95), December 1995.

[6] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli.Role-Based Access Control.
Artech House, April 2003.

[7] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chandramouli.
Proposed NIST standard for role-based access control.ACM Transactions on Information and Systems
Security (TISSEC), 4(3):224–274, August 2001.

[8] Michael R. Garey and David J. Johnson.Computers And Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[9] D. Richard Kuhn. Mutual exclusion of roles as a means of implementing separation of duty in role-
based access control systems. InProceedings of the Second ACM Workshop on Role-Based Access
Control (RBAC’97), pages 23–30, November 1997.

[10] Michael J. Nash and Keith R. Poland. Some conundrums concerningseparation of duty. InProceedings
of IEEE Symposium on Research in Security and Privacy, pages 201–209, May 1990.

[11] Christos H. Papadimitriou.Computational Complexity. Addison Wesley Longman, 1994.

[12] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[13] Ravi Sandhu. Transaction control expressions for separationof duties. InProceedings of the Fourth
Annual Computer Security Applications Conference (ACSAC’88), December 1988.

[14] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based access control
models.IEEE Computer, 29(2):38–47, February 1996.

23

