
CERIAS Tech Report 2004-117
ViBE: A Compressed Video Database Structured for Active Browsing and Search

 by J Chen, C Taskiran, A Albiol, E Delp, C Bouman
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

ViBE: A Compressed Video Database Structured for

Active Browsing and Search ∗

Jau-Yuen Chen, Cüneyt Taşkıran, Alberto Albiol†,
Edward J. Delp and Charles A. Bouman

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285
{jauyuen,taskiran,ace,bouman}@ecn.purdue.edu

†Departamento de Comunicaciones
Universidad Politécnica de Valencia

Valencia, Spain
alalbiol@dcom.upv.es

Corresponding Author:
Professor Edward J. Delp

School of Electrical and Computer Engineering
1285 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1285

USA
Telephone: +1 765 494 1740

Fax: +1 765 494 0880
Email: ace@ecn.purdue.edu

Abstract

In this paper, we describe a unique new paradigm for video database management known as
ViBE (Video Indexing and Browsing Environment). ViBE is a browseable/searchable paradigm
for organizing video data containing a large number of sequences. The system first segments video
sequences into shots by using a new feature vector known as the Generalized Trace obtained from
the DC-sequence of the compressed data. Each video shot is then represented by a hierarchical
structure known as the shot tree. The shots are then classified into pseudo-semantic classes that
describe the shot content. Finally, the results are presented to the user in an active browsing
environment using a similarity pyramid data structure. The similarity pyramid allows the user
to view the video database at various levels of detail. The user can also define semantic classes
and reorganize the browsing environment based on relevance feedback. We describe how ViBE
performs on a database of MPEG sequences.

EDICS: DTBS - Image and Video Databases

∗Please address all correspondence relative to this manuscript to Professor Edward J. Delp.

1 Introduction

Applications for digital video are undergoing explosive growth. While these applications will gen-

erate and use vast amounts of video data, the technologies for organizing and searching video data

are in their infancy. To date, most research in video content management has focused on specific

video processing problems which are essential components of any larger video database system. For

example, temporal segmentation of video into shots [1, 2, 3], selection of representative keyframes

for shots [4, 5], and design of shot similarity measures are problems which are relevant to the design

of video database systems. More recently, there have been efforts to extract high level properties

of video shots in an effort to better characterize and thereby manage the video. The motion trails

features proposed in [6] are used to query video for specific object trajectories, whereas the motion

features of [7] are used to label each shot using simple, but useful, categories. The objective of [8]

was to use features such as motion and shot length to infer high level labels of the video sequence

such as “comedy” and “action”.

In separate but related work, a number of techniques have been proposed for browsing or

summarizing video sequences. Shahraray and Gibbon exploited closed caption information to

automatically generate pictorial transcripts from news sequences [9]. Yeung and Yeo [10] clustered

shots into scene transition graphs or video posters, and Rui, Huang and Mehrotra [11] merged shots

into scenes to automatically create a table-of-contents. In each case, the objective of this research

is subtly different from a video database management, since the systems are designed to operate

on individual sequences rather than large databases of video.

Early approaches to video database, such as QBIC, have used what are essentially image

database query techniques to search the keyframes of video shots [12]. Zhang et. al. [13] pro-

posed a video database system which used features derived from color, and motion. While they

mainly focused on search by example, they also proposed a basic browsing capability based on a

cluster-based hierarchy. Most recently, Rui, Huang and Mehrotra have proposed an approach to

video database which tightly integrates browsing and query methods into a single framework [14].

In this paper, we present an integrated system for managing large databases of video which

we call ViBE (video indexing and browsing environment) [15, 16]. The ViBE system introduces

a variety of novel algorithms and techniques for processing, representing, and managing video

while keeping the user in the loop. Perhaps the most important objective of this paper is to

describe not only how these techniques function, but also how they integrate together into a single

1

Video
Sequences

Shot Boundary
Detection

Shot Tree
Representation

Pseudo-semantic
Labeling

User
Active

Browsing
Enviroment

Figure 1: The ViBE system

system which can be scaled to large databases and extended to a wide variety of functionalities.

Figure 1 illustrates the four major components of ViBE: shot boundary detection, hierarchical shot

representation, pseudo-semantic shot labeling, and active browsing.

Shot boundary detection is the first step in processing the video data. Our shot boundary detec-

tion method incorporates two major innovations: the extraction of a high dimensional compressed-

domain feature vector which we call the generalized trace (GT), and the use of a binary regression

tree [17] to estimate the conditional probability of a shot boundary for each frame. The regression

tree is essential because it automatically selects the relevant information from the GT and generates

probabilities which can be directly used for shot boundary detection.

In order to capture the salient aspects of complex shots, we introduce the idea of a shot tree.

The shot tree is a binary tree which contains a set of representative frames from the shot, with

the keyframe being the root node of the tree. The shot tree is formed by clustering the frames in

a shot, hence it hierarchically organizes frames into similar groups. The tree structure also allows

important operations, such as similarity comparisons, to be obtained efficiently using tree matching

algorithms.

Ideally, one would like to query a video database using very high-level semantic descriptions.

Unfortunately, automatic labeling of such categories is currently impossible. In order to overcome

this difficulty, we adopt the use of pseudo-semantic classes which are broadly defined semantic

categories to bridge the gap between low-level features and semantic labels. In ViBE, pseudo-

semantic labels are expressed as a vector with elements that take on values in [0, 1] depending on

the confidence of the label. The vector labels can then be incorporated into the search, browsing

and relevance feedback operation.

2

The active browsing environment provides a user interface that integrates together the results

of shot boundary detection, shot representation, and pseudo-semantic labeling. Our browsing

environment is based on a similarity pyramid data structure [18]. The similarity pyramid uses a tree

structure to organize the objects in the database for efficient access. We utilize relevance feedback

in the browsing environment, so that users can dynamically modify the database’s organization to

suit the desired task. We will demonstrate the performance of ViBE using a database of MPEG

sequences.

2 Shot Boundary Detection

A group of frames from a video sequence that have continuity in some sense is known as a shot.

Often, a shot is composed of frames which depict the same scene, signify a single camera operation,

or contain a distinct event or action. A scene is defined as a complete unit of narration which

consists of a series of shots or a single shot that takes place in a location and that deals with a

single action [19]. The first task in content-based video analysis is to segment shots by detecting

and classifying shot boundaries. Although shot boundaries can take a wide variety of forms ranging

from cuts to dissolves, fades, wipes, page turns, and special effects, in this paper we shall concentrate

on the detection of cuts which are abrupt changes of content from one frame to another.

2.1 Previous Work

A large number of techniques have been reported in the literature for temporal segmentation. To

detect cuts, some methods have used the difference of pixel values averaged over the entire frame as a

similarity feature between frames [20]. Shahraray [1] has proposed dividing a frame into blocks and

finding the “best” matching blocks between frames for comparison, similar to the block matching

technique of MPEG. Yeo and Liu [21] use the pixel differences of the luminance component of DC

frames in an MPEG sequence. The fact remains that the simple frame differencing methods are

susceptible to intensity differences caused by motion, illumination changes, and noise.

Other methods have been proposed to address the above problems based on the the use of color

histograms of the frames. One approach is to use a test statistic derived from the histograms to

determine their similarity. Patel and Sethi [3] have experimented with various statistics and have

found that the χ2 statistic gives the best performance. They use the intensity histograms obtained

for the entire frame. The histograms are found using DC coefficients of MPEG video for only

3

I frames. Tekalp and others [22, 23] use the sum of histogram differences for the Y , U , and V

components. Two-class clustering is then used to determine the cut locations.

Idris and Panchanathan [24] use vector quantization to compress a video sequences using a

codebook of size 256 and 64-dimensional vectors. The histogram of the labels obtained from the

codebook for each frame is used as a frame similarity measure and a χ2 statistic is used to detect

cuts. Using the observation that during a shot transition the locations of appearing edge pixels

would be very different from old edge pixel locations, Zabih et. al. [2] have proposed a cut detection

scheme based on edge detection. Shen et. al. [25] have applied this technique to MPEG sequences

using multi-level Hausdorff distance histograms. Meng et. al. [26] define various ratios of the number

of macroblocks to perform cut detection for P and B frames of a MPEG sequence.

A number of researchers have investigated the merits of a video model in the detection of shot

boundaries. Aigrain and Joly [27] develop a model for the probability density function of intershot

pixel differences in successive frames. They then detect shot transitions by fitting this model to pixel

difference data obtained from the sequence. Vasconcelos and Lippman [8] have modeled the time

duration between two shot boundaries. Using a Bayesian model and the Weibull prior distribution,

they have derived a variable threshold to detect shot boundaries. Knowledge-based approaches

include the work of Zhang et. al. [28] where anchor person shots are found by examining intrashot

temporal variation of frames. Swanberg et. al. [29] used a similar approach by template matching.

2.2 The Generalized Trace

Most of the techniques in the literature detect shot boundaries by extracting some form of one-

dimensional frame similarity feature from the video data. Usually, this similarity feature is then

thresholded using a fixed global threshold. This approach has a number of problems. First, it

is difficult to determine a single frame similarity feature which can be used to accurately detect

shot boundaries in a wide variety of situations. Second, there is no single threshold value which is

appropriate for all video sequences.

In ViBE, shot boundary detection is performed by first extracting a set of features from each DC

frame. These features are placed in a high dimensional feature vector that we call the generalized

trace (GT) [31]. The GT is then used in a binary regression tree to determine the probability that

each frame is a shot boundary. These probabilities can then be used to detect frames corresponding

to shot boundaries. In this paper, we will describe the detection of cut locations. However, we feel

that the paradigm of the GT/regression tree can be extended for the detection and classification

4

of other types of shot boundaries [15].

Our method has a number of advantages. First, the GT feature vector allows a multitude

of very different features to be collectively used to detect shot boundaries. This is important

since different features may be useful in different shot boundary scenerios. Second, since the

regression tree generates probabilities, the detection can be made without requiring the selection of

arbitrary thresholds. Moreover, this method is also highly extensible. For example, if we find new

features that work well in detecting shot transitions, we can easily incorporate them. In addition,

the multidimensional classifier provides a unified framework to investigate various kinds of shot

boundaries as compared with trying to derive a different detection scheme for each type of shot

boundary.

Our method uses the “DC sequence” extracted from the compressed video sequence. The DC

sequence is formed from the DC coefficients of the DCT used in MPEG. While the DC coefficients

are directly available for I frames, they must be estimated for P and B frames. We have used the

method described in [30] for estimating these DC coefficients.

The GT for frame i of the sequence is denoted by ~gi and its jth component by gi,j . For the

experiments described in this paper, the GT consists of the following features:

gi,1−3 - Histogram intersection [32] of frames i and i− 1 for the Y , U , and V color components.

gi,4−6 - Standard deviation of the Y , U , and V color components for frame i.

gi,7 - Number of intracoded macroblocks in frame i.

gi,8 - Number of forward predicted macroblocks in frame i.

gi,9 - Number of backward predicted macroblocks in frame i.

gi,10−12 - Flags which identify the frame type {I, P , or B} for frame i.

Figure 2 illustrates how some of the components of the GT vary with frame number for a typical

sequence. The ground truth information indicates where actual cuts are located.

2.3 Binary Regression Tree

To detect whether a cut has occurred between frames i − 1 and i, we use the GT and a binary

regression tree [17] to estimate the probability of a shot boundary. The binary regression tree

provides a piecewise linear approximation to the conditional mean, i.e.,

yi ≈ E[αi|~gi−w · · ·~gi · · ·~gi+w] (1)

5

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Y histogram intersection

frame number
100 200 300 400 500 600 700 800 900 1000 1100 1200

0

10

20

30

40

50

60

70
Y standard deviation

frame number
100 200 300 400 500 600 700 800 900 1000 1100 1200

0

10

20

30

40

50

60

70

80

90
number of intracoded MBs (B and P frames)

frame number

Y histogram intersection Y standard deviation number of intracoded macroblocks

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.2

0.4

0.6

0.8

1

tree classifier output

frame number
100 200 300 400 500 600 700 800 900 1000 1100 1200

0

0.2

0.4

0.6

0.8

1

cut groundtruth

frame number

Output of the regression tree Ground truth

Figure 2: Examples of features used in the GT, the ground truth for cut locations, and the output
of the binary regression tree.

where αi is the cut indicator function

αi =

{
1 if a cut occurs between frames i− 1 and i

0 if no cut occurs

and where yi is the output of the tree classifier for the ith frame and w controls the window size.

The output yi can be interpreted to be the probability of a cut occurring at frame i [17]. It should

be noted that in general the classifier uses more than just ~gi to determine if a shot boundary

has occurred. Our experiments have shown that the use of ~gi−1, ~gi and ~gi+1 (w = 1) provides a

reasonable balance between complexity and performance.

Cuts are then detected by using the threshold yi > Thresh where we typically chose Thresh =

0.20. This approach is more robust than thresholding the value of the features, as is used in many

other shot boundary detection techniques, because the classifier chooses the best features from the

GT, and because the threshold is not dependent on the specific video sequence. The detected cut

locations are then post-processed to remove cuts that are too close together. In the experiments

described in Section 6.2, if two cuts are closer than ten frames, the cut with a smaller yi is deleted.

The regression tree used in ViBE is a variation of the technique proposed in [33]. The difference

is that the training and pruning step is used only once. The training process uses two sequences

with known shot boundary locations, we shall refer to these sequences as ground truth sequences.

One of these sequences is used to build a large tree and the other sequence is then used to prune

6

(a) (b)

Figure 3: (a) Each shot is represented by a hierarchy of frames which are organized with agglomer-
ative clustering; (b) Shot dissimilarity is then determined by computing the distance between two
trees.

the tree. The growing stage starts with a single terminal node and at each step the terminal node

that yields the greatest reduction in the classification error is split. In this way, we produce a tree

that overfits the data [33]. The classification tree is then pruned in a bottom-up fashion using the

second ground truth sequence where we remove nodes whose deletion decreases the classification

error.

The tree-based approach has a number of advantages when compared to more traditional non-

parametric methods such as nearest neighbor or kernel estimator approaches. The regression tree

has a simple form which can be compactly stored, and it efficiently classifies data. It also does

automatic feature selection and complexity reduction [33].

3 Shot Representation

After the video sequence is segmented into shots, usually a frame is chosen to represent each shot.

This is usually known as a keyframe. The objective is to represent each shot with one or several

frames that can provide a way to manage the video content. The effectiveness of this approach will

then depend on the algorithm used for the selection of keyframes. An easy and straightforward

approach is to select one keyframe per shot, usually the nth frame for a fixed number n. To capture

the concept of a shot with a great deal of motion, methods for sequentially selecting multiple

keyframes have also been proposed based on frame differencing [21, 34]. Other methods for selecting

multiple keyframes include the use of motion information [4], and clustering approaches [5, 22].

7

3.1 Shot Representation Using the Shot Tree

This section describes a novel way to represent a shot based on a tree structure, known as a shot

tree, formed by clustering the frames in a shot. The tree structure allows important operations,

such as similarity comparisons, to be obtained efficiently using tree matching algorithms. A typical

shot tree is shown in Figure 3a. The frames in the shot are organized by the tree in such a way

that the root node is the most “representative” frame in the shot. As one progresses down the tree,

frames are organized into representative groups. For example, if one wants to categorize the shot by

one frame, the root node is used. If one wanted to categorize the shot by three frames, the first two

levels of the tree are used (Figure 3a). This tree representation is obtained through agglomerative

clustering of the shot’s frames. We use the color, texture and edge histograms proposed in [18] as

the feature vector for each frame in a shot, and the L1 norm to measure feature distances. The

depth of the tree will depend on the application. For browsing, the root node can be used as a

keyframe; for similarity measure and classification in the browsing environment, two or three levels

of the tree can be used.

Bottom-up (agglomerative) clustering algorithms work by first forming a complete matrix of

the distances between the frames and then using this matrix to sequentially group frames[35, 36].

Let ci be the set of all frames in cluster i, and let ni be the number of frames in ci. The proximity

matrix [dij] defines the pairwise distances between clusters ci and cj . Let the shot contain frames

fj, j = 1 · · ·N . Initially let ci = {fi}, i = 1 · · ·N , be the disjoint clusters each of size ni = 1, i.e.,

one frame per cluster. The proximity matrix is set to the L1 distance between the frames fi and fj.

Each iteration of agglomerative clustering combines the two clusters, ci and cj , with the minimum

distance. The new cluster formed by joining ci and cj is denoted by ck, and the distance from ck

to each of the remaining clusters is updated.

The general algorithm for agglomerative clustering has the following form:

8

1. Ψ← {0, 1, · · · ,N − 1}

2. For each (i, j) ∈ Ψ2 compute dij ← d(fi, fj)

3. For k = N to 2N − 2 {

(a) (i∗, j∗) = arg min
(i,j)∈Ψ2

dij

(b) Set ck ← ci∗ ∪ cj∗ and nk ← ni∗ + nj∗

(c) Ψ← {Ψ− {i∗} − {j∗}} ∪ {k}

(d) For each h ∈ Ψ− {k} compute dhk

}

The specific type of agglomerative clustering is defined by the choice of the distance function dhk

in step 3.d.

Among agglomerative algorithms, the complete link algorithm has been used to organize keyframes

[37], while the flexible algorithm has been proposed in organizing image databases [18]. In ViBE,

we use Ward’s clustering algorithm, also known as the minimum variance method [38], for building

the shot tree. This clustering algorithm uses the distance function:

dhk =
ni + nh

ni + nj + nh
dhi +

nj + nh
ni + nj + nh

dhj −
nh

ni + nj + nh
dij (2)

Figure 3a illustrates such a representation for a shot from an action sequence. In this example,

the shot contains significant changes which can not be captured by a single keyframe; hence the

tree structure can better represent the diverse aspects of the shot. The tree structure hierarchically

organizes frames into similar groups, therefore allowing automatic detection of subgroups inside a

shot.

3.2 Shot Similarity

In ViBE, the distance between two shots is a sum of distances which depend on the shot tree, the

temporal information, the motion information, and the pseudo-semantic labels. Assume all video

sequences in the database are assigned a unique identification number, Si. Also assume that the

jth shot in sequence Si is denoted as sij. Then the distance between two shots is given by

D(sij , skl) = DST (sij, skl) +DT (sij , skl) +DM (sij , skl) +DPS(sij , skl)

where DST , DT , DM , and DPS are the shot tree, temporal, motion, and pseudo-semantic distance

components. Each of these components is defined below.

The shot tree dissimilarity, DST (sij , skl), is measured by obtaining the distance between the

two corresponding shot trees as in Figure 3b. Each node, t, of the shot tree is associated with a

9

set of frames from the shot and a feature vector, zt, for the cluster of frames. Generally, zt is the

centroid of the feature vectors in the cluster. The distance between the shot trees is then given

by the weighted sum of the distances between nodes for the best mapping between the shot trees.

In this work, we only use trees of depth three, so the optimum mapping can be found by simply

checking the 8 distinct mappings between the two trees.

A shot is more than just a set of frames. The temporal relationship among shots is another useful

yet often ignored feature. Yeung, Yeo and Liu [39] has formulated a time-constrained temporal

distance. Let bij and eij be the frame number of the beginning and ending frame of shot sij.

We define the “temporal distance” between shots sij and skl as the following

DT (sij, skl) =

{
KSeq +KShot, if i 6= k

KShot(min(1
2 ,

min(|bij−ekl|,|bkl−eij |)
2Tf

) + min(1
2 ,
|j−l|
2Ts

)), if i = k
(3)

Here we assume that if two shots are farther apart than Tf frames or Ts shots, we will not consider

them similar in a temporal sense. We shall use the values of Tf = 3000 and Ts = 30. Notice that

the constants KSeq and KShot can be used to control the relative importance of shot and sequence

matching in the overall distance function.

Another feature that we exploit is the number of forward, backward and bidirectionally predicted

macroblocks in each P or B frame. For each P or B frame, we first compute

mk = (# forward MB) + (# backward MB) + 2(# forward-backward MB)

for each frame k. We next obtain the histogram hi,j of the values mk for all the frames k in the

shot si,j. We then define the “motion distance” between shots sij and skl to be the L1 norm of the

difference between the histograms.

DM (sij, skl) = KMotion‖hij − hkl‖1

The constant KMotion controls the weighting of this component.

The last but perhaps the most important features are the pseudo-semantic labels we will discuss

in Section 4. For each shot, we define a label vector, pij, where each element of the vector takes on

continuous values in the range [0,1] indicating the confidence level for the corresponding pseudo-

semantic class. The “semantic distance” between shots sij and skl is then defined to be the L1

norm of the difference of these feature vectors pij and pkl.

DS(sij, skl) = KSemantic‖pij − pkl‖1

10

The constant KSemantic controls the weighting. We shall describe how these similarity measure are

used for browsing in Section 5.

4 Pseudo-Semantic Labeling

The purpose of semantic labeling is to classify or label each frame in a video sequence using a high

level semantic description. True semantic labels such as “young girl running”, “blue dress”, and

“park scene” characterizes a scene based on its content. Ideally, such semantic labels might provide

the most useful descriptions for indexing and searching databases. Currently, however, automatic

extraction of truly semantic features is not possible.

Pseudo-semantic labeling bridges the gap between low-level and truly semantic labels. We are

investigating in ViBE the use of several pseudo-semantic labels. These include labels such as “face,”

“indoor/outdoor,” “high action,” “man made,” and “natural.” Since pseudo-semantic labels are

generally associated with some level of uncertainty, each label is assumed to be a continuous value

in [0, 1] where 1 indicates that the video frame has the associated property with high confidence,

and 0 indicates that it does not.

In this paper, we will describe our work on the “face” label. The goal here is to detect whether

a frame in the sequence contains a face. Different approaches have been developed in recent

years for the face detection problem. Some of the most representative work includes shape-feature

approaches [40, 41, 42]. In [43], a hierarchical knowledge-based pattern recognition method is

presented. Neural network approaches are used in [44, 45, 46], and template matching approaches

are used in [47, 48, 49]. These approaches have tended to focus on still grayscale images. While

they report good performance, they are often computationally expensive. This is especially true of

template matching and neural network approaches, since they require processing for each possible

position and scaling of the image. Also, the results may still be excessively sensitive to the rotation

and pose of the face. Recently, a number of authors have used color and shape as important cues for

face detection. In [50, 51, 52] both color and spatial information is exploited to detect segmented

regions corresponding to faces. However, in [51, 52] the color and spatial information is also used

to merge image regions in the segmentation process.

11

root
node

face
label

Skin
Detection

Unsupervised
Segmentation

Region and
Feature

Extraction

Hierarchical
Region Labeling

Figure 4: Block diagram illustrating the processing steps used to obtain the pseudo-semantic “face”
label for the root node of each shot tree.

50 100 150 200 250

50

100

150

200

250

U component

V
 c

om
po

ne
nt

pdf skin data

Figure 5: Projection on the UV plane of the histogram of the skin pixels.

4.1 Overview of Face Labeling

The following sections present the details of our approach for determining the face label of a frame.

Our method is designed to be robust for variations that can occur in face illumination, shape, color,

pose, and orientation. To achieve this goal, our method integrates information we have regarding

face color, shape, position and texture to identify the regions which are most likely to contain a face.

It does this in a computationally efficient way which avoids explicit pattern matching. Furthermore,

we believe that the general processing strategy is extensible to a wider variety of pseudo-semantic

categories.

The task of pseudo-semantic labeling is greatly reduced by the shot tree representation described

in Section 3. For the work presented in this paper, we only label the root node for each shot tree.

More generally, we could label each frame contained in the shot tree. We should note that all

processing is done on full frames extracted from the MPEG data.

Figure 4 illustrates the processing steps that we use to obtain the face label for a given frame.

The first step, skin detection, is used to segment regions of the image which potentially correspond

to face regions based on pixel color. Figure 5 shows the histogram of a representative set of skin

pixels in the UV plane. Notice that the skin tones occupy a relatively small portion of the color

space. This property allows us to eliminate many regions from consideration based on color.

Once the pixels of interest are identified, unsupervised segmentation is used to separate these

12

pixels into smaller regions which are homogeneous in color. This is important because the skin

detection will produce nonhomogeneous regions often containing more than a single object. For

example, skin colored materials may be erroneously included in the skin detection. These undesired

regions are separated from true faces using the subsequent unsupervised segmentation step. The

next step extracts regions using connected components analysis. For each connected component, a

set of features is extracted which characterizes the region in terms of its color and shape.

The final step is to label face regions. Face areas will often be divided up into two or more

regions in the unsupervised segmentation process. Therefore to improve detection accuracy, we

would like to consider all possible mergings of these initial regions to find the new composite region

which best fits our hypothesis for the behavior of face areas. Of course, a search of all possible

merges is impractical even for a moderate number of initial regions. Hence we instead use a pair-

wise steepest descent method in which all pairs of merged regions are considered to find the merged

region which best fits the hypothesis. This pair-wise merging process is recursively performed and

results in a single composite region which best fits the face hypothesis.

Figure 6 illustrates the effect of these four processing steps on three example images. The first

column shows three original images, each containing a face. The second column shows the result

of skin detection with the white pixels representing the regions that have been classified to be

skin. The third column is the result of unsupervised segmentation of the skin detected pixels into

homogeneous color regions. The fourth column shows the single merged region which best fits the

face hypothesis.

4.2 Skin Detection and Unsupervised Segmentation

The objective of skin detection is to extract skin-like regions from the image. This is a challenging

problem because in video databases we must deal with substantial variations in illumination con-

ditions and skin-types. We use the Y UV luminance-chrominance space to detect the color of skin

pixels. This has the advantage of avoiding any color transformation since the Y UV color space is

also used in the MPEG standard.

The skin detection works by modeling the skin colors using a Gaussian mixture distribution

similar to that of [53], and then segmenting the image with a multiscale Bayesian segmentation

algorithm known as sequential maximum a posteriori (SMAP) [54]. The Gaussian mixture density

models skin pixels with a multimodal distribution. This is important since it allows for a wide

variety of possible skin colors or illumination conditions. We use the expectation maximization

13

Original images Detection step Unsuper. Seg. Face Region

Figure 6: Results of each of the four steps used in obtaining the face label.

(EM) algorithm to estimate the parameters of the Gaussian mixture distribution from a training

set of skin pixels [55, 56]. The training set is obtained from more than 200 images randomly selected

from our database which were manually segmented into skin and no skin regions.

The next step is unsupervised segmentation of the detected skin pixels into homogeneous regions.

The objective of this step is to separate spurious regions from the true face areas. To do this, we

again use the EM algorithm to cluster the detected skin pixels using a multivariate Gaussian mixture

distribution. Each component of the Gaussian mixture is then treated as a distinct subclass of the

skin color space. The number of subclasses is set to be

number of subclasses = 5 + (# of detected pixels)/104 .

This insures that detected skin pixels are split into a sufficiently large number of regions. Each pixel

of the detected skin region is then individually classified to its highest probability subclass (i.e. the

MAP classification), and the resulting segmentation is smoothed using a morphological opening

and closing operation with a 5× 5 circular kernel. This morphological smoothing eliminates many

small spurious regions produced by the MAP classification. As we can see in the third column of

Figure 6, the unsupervised segmentation process further partitions the skin detected regions into

smaller more homogeneous regions.

14

4.3 Region Extraction and Hierarchical Region Labeling

The next step is to extract connected regions and features vectors which characterize those regions.

For each connected region, we compute a set of features which we call a state vector that describes

the color and shape of the region. Let Ωi be the ith region of pixels, and let xr be a color pixel

in Y UV coordinates at position r ∈ Ωi. Here r ∈ Ωi is assumed to be a two dimensional column

vector r = [r1, r2]t where r1 and r2 index the row and column of the pixel. For each region, we will

extract a state vector of information defined by qi = [Ni, x̄i, γi, µi, Ri,maxi,mini]. Each feature of

qi describes a characteristic of the color or shape of the region. The elements of the state vector

are given by the following expressions:

Ni =
∑
r∈Ωi

1

x̄i = 1
Ni

∑
r∈Ωi

xr γi = Diag

 1
Ni

∑
r∈Ωi

(xr − x̄i)(xr − x̄i)
t

µi = 1

Ni

∑
r∈Ωi

r Ri = 1
Ni

∑
r∈Ωi

(r − µi)(r − µi)
t

maxi = (max
r∈Ωi

r1,max
r∈Ωi

r2) mini = (min
r∈Ωi

r1,min
r∈Ωi

r2)

where γi is a vector containing the variance for each of the Y , U , and V color components. An

important property of the state vector is that it can be recursively updated for merged regions. For

example, let Ωi and Ωj be two regions that are merged to form a new region Ωh. The new state

vector for the region h may be expressed as qh = U(qi, qj) where U(·, ·) is a function of the two

original state vectors.

From the state vectors qi, we obtain a feature vector vi which contains the specific features we

will use for labeling regions. The elements of vi are x̄i, γi, µi, the area of the bounding box derived

from maxi and mini and normalized by Ni, and three more features obtained from the eigenvalues

and eigenvectors of Ri. Let λ1 > λ2 be the two eigenvalues of Ri with corresponding eigenvectors

e1 and e2. Then the three remaining features are
√
λ1λ2/Ni, the orientation of e1, and λ2/λ1.

A multivariate Gaussian distribution is used to model the behavior of vi for face areas. Let v̄

and Σv be the mean and covariance of the vector vi for regions corresponding to face areas. Then

the dissimilarity between vi and the mean behavior for a face region is given by:

Ci = (vi − v̄)tΣ−1
v (vi − v̄) (4)

The smaller the value of Ci the greater the likelihood that the region is a face area. In our

15

1 2

4

12

14

5 6

15 9

7 8

10

16

3

11

13

4

Figure 7: Binary tree structure resulting from skin-like region merging.

experiments, v̄ and Σv are extracted as the sample statistics from a set of 100 manually segmented

frames, each containing at least one face.

As discussed earlier, the unsupervised segmentation is likely to partition face areas into more

than one connected region. Therefore, we must merge regions to form a new region which best

matches the behavior expected for face areas. We do this by searching each pair-wise merging of

regions to find the new region which minimizes (4). We first form a matrix Ci,j defined by

Ci,j = (vi,j − v̄)tΣ−1
v (vi,j − v̄) (5)

where vi,j is the feature vector computed by merging regions Ωi and Ωj. We then search for the

minimum entry of the matrix, Ci∗,j∗ = min(i,j)∈P Ci,j, where P is the set of entries of the matrix

defined by

P = {(i, j) : Ci,j < Ci,i and Ci,j < Cj,j}

The restriction to the set P insures that the minimum occurs between a pair of distinct regions

which, when merged, will match the face hypothesis better then any existing individual region.

Once the two distinct regions Ωi∗ and Ωj∗ are identified, these two regions are merged to form a

new region Ωh = Ωi∗ ∪Ωj∗. After merging, the original regions Ωi∗ and Ωj∗ must be removed from

the matrix and replaced by the new region Ωh, and the entries of Ci,j must be updated.

This process of merging is repeated until the set P is empty. At this point, the merging of any

two regions will only reduce the quality of the match to the face hypothesis. Figure 7 illustrates

how this recursive merging process progresses. Each node represents a region of the image with

the internal nodes representing regions that result from merging. The merging process terminates

in a set of nodes, in this example nodes 9, 14, 15, and 16. Any of these nodes which contains less

then 600 pixels are removed, and the region that best fits the face hypothesis is used to compute

the face label. This is done using the equation:

p =

{
−C∗

40 + 1 C∗ < 40
0 C∗ > 40

(6)

16

where C∗ = miniCi where i indexes the remaining nodes. Notice that p ∈ [0, 1] is larger if the

frame is more likely to contain a face, and smaller if it is less likely.

5 The ViBE Active Browsing Environment

Many approaches for content-based management of video databases have focused on query-by-

example methods [57] in which an example shot is presented and the database is searched for shots

with similar content. However, query-by-example techniques tend to quickly converge to a small

set of shots that may not be of interest to the user.

In previous research [18, 58], we introduced the similarity pyramid as a structure for organizing

and browsing large image databases. The similarity pyramid uses a tree structure to organize

the shots in the database for efficient access. To construct these trees, we apply a bottom-up or

agglomerative clustering method because our experiences have shown that bottom-up methods tend

to yield better results [18, 58].

In ViBE, we adapt this browsing approach to the problem of video databases [16, 15]. The

pyramid is organized using the shot dissimilarity measure described in Section 3. Our dissimilarity

measure allowed weights to be adjusted which control the relative importance of color, edges,

motion, temporal position, and pseudo-semantic labels. To exploit this flexibility, our browsing

environment allows dynamic reorganization based on the user’s needs. For example, the database

may be organized to group together shots from the same sequence, or from similar times, or

containing similar content or pseudo-semantic labels. To do this, the browsing environment is

designed to allow user feedback. This feedback can be through the direct selection of parameters

that control the relative importance of sequence number, time, content, and labeling in the similarity

measure. However, it can also be through relevance feedback mechanisms provided in the user

interface of the browsing environment [60, 61]. While a number of techniques have used relevance

feedback in content-based image retrieval [62, 63, 64], we believe that the use of relevance feedback

for browsing is a very different problem which requires a fundamentally different approach.

5.1 Similarity Pyramids for Video Browsing

The structure of a similarity pyramid is illustrated in Figure 8. The similarity pyramid organizes

large video databases into a three dimensional pyramid structure. Each level of the similarity

pyramid contains clusters of similar shots organized on a 2-D grid. As users move down the

17

Figure 8: An example of a similarity pyramid and its embedded quad-tree.

pyramid, the clusters become smaller, with the bottom level of the pyramid containing individual

shots. Each cluster of the pyramid is represented by a single key frame chosen from the cluster; so

as the user moves through the pyramid they have a sense of database content at various scales. In

addition, users can pan across at a single level of the pyramid to see shots or shot clusters that are

similar.

The similarity pyramid is created by first hierarchically clustering the shots, reorganizing them

into a quad-tree structure, and then mapping the quad-tree’s clusters onto the 2-D grid at each level

of the pyramid. The shots are clustered using the distance metric of Section 3, and an agglomerative

method similar to the general algorithm described in Section 3. However, our clustering method

is adapted to use a sparse proximity matrix. For a database with N shots, we only compute the

distance between each shot and its M closest matches [59], and then use a clustering technique

similar to the flexible method developed by Lance and Williams [65]. The result of this clustering

is a binary tree which is subsequently converted to a quad-tree, and then remapped to the pyramid

structure in a way which best preserves the organization of the database.

5.2 Browsing Interface

Figure 9 shows the browsing environment presented to the user. The similarity pyramid is shown

to the left, and the set of relevant shots, which we call the relevance set, is shown to the right. For

a large database, even upper levels of the pyramid will be too large to display on a single screen.

Therefore, the user can move along the horizontal or vertical directions in a panning motion to

search for image clusters of interest. If a specific cluster appears to be of interest, then the user can

choose to move down to the next level by “clicking” on a cluster. The next level of the pyramid

is then presented with the corresponding group of four children clusters centered in the view.

Alternatively, the user may desire to backtrack to a higher level of the pyramid. In this case, the

previous level of the pyramid is presented with proper centering.

18

Figure 9: Active Browsing Environment: The top level of the similarity pyramid is shown to the
left, and the set of relevant shots (relevance set) is shown to the right. The users can incrementally
add or remove shots from the relevance set as they browse through the database.

The relevance set is a set of shots that the user selects as they move through the pyramid. The

user can incrementally add or remove shots from the relevance set at any time during the browsing

process. For browsing, the user’s objective may be to locate all shots from a desired class. In this

case, the relevance set may contain dissimilar groupings of shots that represent the variations that

can occur among shots in the class. As the user browses through the database, the relevance set

also becomes a buffer or clip board which stores all the shots of interest to the user. Once users

have defined a set of relevant shots, they may associate the relevance set with a semantic label.

These relevance sets may then be stored and recalled based on the semantic label.

5.3 Pruning and Reorganization

We incorporate relevance feedback into two basic browsing functions: pruning and reorganization.

Pruning removes shots from the database that are not likely to be of interest to the user while

retaining all or most potentially desirable shots, and reorganization changes the structure of the

similarity pyramid to facilitate the user’s search. In order to perform these basic pruning and

reorganization functions, we use statistical estimation techniques based on cross-validation. In [60,

61], we showed that the cross-validation approach gives reliable performance independently of the

database content and the specific choice of similarity measures.

19

The pruning is useful because it reduces the size of the database, and therefore makes browsing

easier and more effective. While traditional query methods attempt to find shots that are likely

to be of interest, pruning retains all shots which are of possible interest, but at the expense of

retaining many questionable shots. Intuitively, pruning attempts to achieve high recall, but at

the expense of precision; whereas traditional queries tend to emphasize precision over recall. The

reduced precision of pruning is acceptable because the similarity pyramid structure allows the user

to efficiently browse the resulting shots.

The objective of reorganization is to dynamically rebuild the similarity pyramid based on the

relevance information. As with pruning, reorganization makes the browsing process more efficient

by moving the desired shots nearer to one another in the similarity pyramid structure. To do this,

we will assume that the distance function Dθ(y, x) is parameterized by a vector θ. In this work, θ

is a 13 component vector containing the 9 weightings corresponding to the L, a and b components

of the color, edge and texture histogram features [18] of the shot tree, and KSeq, KShot, KMotion,

and KSemantic described in Section 3.

Our objective is to find the parameter θ̂ which minimizes a cost function E(θ,R) that measures

the separability of the relevance set R from the rest of the database. The detailed form of E(θ,R)

is given in [60, 61]. With this cost function, we then compute the optimal value of the parameter

θ̂ = arg minθ E(θ,R). This minimization is done using conjugate gradient optimization. The

resulting distance function Dθ̂(y, x) is then used to rebuild the similarity pyramid.

6 Experimental Results

6.1 The Experimental Data Set

At this time, ViBE consists of 23 MPEG-1 sequences obtained from several standard broadcast

television channels. All sequences used in our database are copyright cleared for use in ViBE. These

sequences are 10 minutes in length and have been digitized at a rate of 1.5 Mbytes/sec in QCIF

format (352 × 240). The data set used therefore contains nearly four hours of video with more

than 400,000 frames. We have obtained ground truth for the shot boundary locations and semantic

content for seven sequences in the data set. These ground truth sequences were used for training

purposes.

20

tree classifier sliding window simple thresholding

Sequence Detect Miss FA MC Detect Miss FA MC Detect Miss FA MC

news1 171 15 18 7 145 41 10 3 148 38 31 10

news2 46 1 0 0 44 3 1 0 41 6 2 1

news3 40 5 4 0 39 6 1 0 30 15 9 1

news4 65 0 4 3 65 0 4 0 59 6 10 8

news5 128 19 11 6 108 39 17 2 105 42 18 11

movie 121 8 4 0 114 15 1 0 110 19 7 2

drama 94 5 1 1 85 14 3 1 56 43 2 1

Total 665 53 42 17 600 118 37 6 549 169 79 34

Table 1: Results for cut detection using the GT/tree classifier, the sliding window method, and
simple thresholding. Detect indicates a correct detection, Miss indicates a miss detection, FA
indicates a false alarm and MC indicates a missclassify.

6.2 Scene Change Detection

In the results presented here, the version of the GT/regression tree implemented consists of using

the three vectors, ~gi−1, ~gi and ~gi+1, for classification. This means that the regression tree uses 36

features. This “windowing” approach has shown to be robust. For all results of our method, we

have used a threshold of yi > 0.20 as our detection criteria.

We have compared our method with two other methods. The first comparison method uses a

global threshold on the luminance histogram intersection of the frames, i.e, the gi,1 component of the

GT. Again, if two shots occur closer than 10 frames, the one having a smaller histogram intersection

is deleted. The global threshold was chosen experimentally to provide the best performance. We

have also implemented a sliding window technique, similar to the one proposed by Yeo and Liu [21],

using the sum of the histogram intersections of the Y, U, and V components, i.e, gi,1 + gi,2 + gi,3,

as the frame similarity feature. In this technique, a symmetric window of size 2M + 1 is placed

around the ith frame and a cut is declared from frame i− 1 to i if

1. the value of the similarity feature for i is the maximum within the window, and

2. it is also N times the value of the second maximum in the window.

In our experiments we have used M = 5 and N = 1.8 because these values gave the best over all

performance on our data sets.

We used our seven ground truth sequences to examine the performance of the three methods.

The results are shown in Table 1. The table shows the number of correct detections (Detect), the

number of locations that were missed (Miss), the number of locations that were falsely classified

21

Figure 10: Face images used in training the pseudo-semantic classifier. The manually segmented
face masks are also shown.

as cuts (FA). Since we have ground truth information, we also determined the number of locations

that the detection methods labeled as cuts but were actually other types of shot transitions such

as dissolves. This is labeled as MC in the table. Our experiment indicates that the GT/regression

tree in general performs better for a wide variety of video content.

6.3 Pseudo-Semantic Classification

The algorithm described in Section 4 was tested using the ground truth sequences. The root nodes

of the shot trees were extracted for each shot and then ground truth information relative to “face”

and “no face” was determined. Finally, the root nodes were extracted from the MPEG sequence

at full frame resolution. These images were then used for classification. The algorithm was trained

using “face masks” obtained from manually segmented faces from 100 randomly chosen frames

that contained faces. A representative set of face masks is shown in Figure 10. The results were

evaluated in the following way:

• A False Alarm results if the frame contains no faces, but our algorithm says that there is at

least one face.

• A Detection results if the frame contains at least one face, and our algorithm says that there

is at least one face.

• A Correct Classification results when a Detection is achieved or when there is no face in the

frame and our algorithm finds no face in the frame.

Once we have merged skin-like regions, we apply a threshold to the dissimilarity values given

by Equation 4 in the remaining regions. If there exist any value below the threshold, the frame is

said to contain at least one face. Thus an optimal threshold can be obtained that maximizes the

Classification rate.

22

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 11: The boxes indicate the faces detected (threshold Dmax = 20).

It is important to emphasize that no thresholds are used when similarity measurements are per-

formed. Our algorithm produces confidence values that are then used by the browsing environment.

Thresholds are used only in this section to show the performance of the face labeling stage.

In Figure 11, a bounding box is drawn in each image for regions whose dissimilarity value is

less than 20. As shown, we are able to detect faces under many different illumination conditions

and poses. In Figure 11g, we can see that two boxes are drawn. In the classical face-detection

problem this would have been classified as a false alarm. In our application, we do not care about

such false alarms because our objective is to determine whether a face is presented or not. Figures

11m, 11n, 11o and 11p show false alarms where faces are detected in frames containing no human

faces. In Table 2, the results for each ground truth sequence are shown separately.

6.4 Active Browsing

Figure 12 and Figure 13 demonstrate the significance of each component of the shot dissimilarity

measure. Figure 12 shows the first 15 shots returned for a query using a Boilermaker football shot

(upper left hand shot) when searching 23 sequences of video. Figure 12a) shows the result when

23

Sequence Shots Faces Detect (%) FA (%) Correct. Class. (%)

news1 231 76 73.68 16.13 80.51

news2 72 29 93.1 23.25 83.33

news3 78 33 87.87 15.55 85.89

news4 103 42 90.47 13.11 88.34

news5 188 51 76.47 13.86 83.51

movie 142 92 84.78 28 80.28

drama 100 90 94.4 20 93

total 914 413 85.23 16.96 84.02

Table 2: Results for face detection using the ground truth sequences. Faces indicates the number
shots containing at least one face. Detect indicates the Detection rate. FA indicates the False
Alarm rate and Correct. Class the Correct Classification rate.

(a) DST (shot tree distance)

(b) DST +DM (a + motion distance)

(c) DST +DM +DT (b + temporal distance)

Figure 12: Example of search results using
different similarity measures.

(d) DST (shot tree distance)

(e) DST +DM (d + motion distance)

(f) DST +DM +DPS (e + psudo-semantic distance)

Figure 13: Example of search results using
different similarity measures.

only using DST the distance between the shot trees. Figure 12b) shows the result when the motion

distance DM is added, and Figure 12c) is the result when temporal distance DT is added. Notice

that the temporal and motion information are important cues in identifying good matching shots.

Figure 13 shows the first 15 shots returned for a query using local weather report shot (upper

left hand shot) when searching 7 sequences of video. Figure 13a) shows the result when only using

DST the distance between the shot trees. Figure 13b) shows the result when the motion distance

DM is added, and Figure 13c) is the result when pseudo-semantic distance DPS is added. For this

task, the pseudo-semantic distance is very effective at identifying matching shots.

In Figure 14, we show the shots using relevance feedback for similarity pyramid pruning and

24

(a) organized with default weightings (b) organized with optimized distance

Figure 14: The pruning result of Figure 9. (a) The pyramid organized with the default weightings
(b) The pyramid organized with the optimized distance.

design. Figure 9 shows the original pyramid and the shots that have been selected by a user.

Although these shots have dissimilar attributes, they all form a single semantic category, “anchor-

person”. Notice that the pruned set contains most of the shots which closely match the user selected

set (Figure 9). Figure 14b shows the reorganized sub-database where the dissimilarity function is

defined by the optimized distance described in Section 5. Notice that the shots in the relevance set

are clustered together. These experiments with ViBE indicate that the use of the pseudo-semantic

label and motion and temporal information can provide powerful aids in querying and browsing

the database.

7 Conclusion

In this paper, we have presented a new paradigm for video database management known as ViBE.

ViBE introduces a variety of novel algorithms and techniques for processing, representing, and

managing digital video in an integrated environment. We have introduced a new way of exam-

ining scene change detection through the use of the Generalized Trace and regression trees. We

have described a powerful way of representing each shot using a binary tree and have discussed

similarity measures that exploit information in the shot tree and the shot boundaries. The use of

pseudo-semantic labels provide a novel way of describing shots that can be used in our browsing

environment.

Future work includes populating ViBE with more video sequences, extending the GT/regression

25

tree approach to other types of shot transitions, the description of more pseudo-semantic labels and

the use of this information in our browsing environment. Our experiments have demonstrated that

the use of pseudo-semantic labels and motion information obtained from shot boundary detection

provide powerful cues in aiding browsing.

References

[1] Behzad Shahraray, “Scene change detection and content-based sampling of video sequences,” in
Proceedings of SPIE Conference on Digital Video Compression: Algorithms and Technologies,
San Jose, CA, February 1995, vol. 2419, pp. 2–13.

[2] Ramin Zabih, Justin Miller, and Kevin Mai, “A feature-based algorithm for detecting and
classifying scene breaks,” in Proceedings of the ACM International Conference on Multimedia,
San Francisco, CA, November 5-9 1995, pp. 189–200.

[3] Nilesh V. Patel and Ishwar K. Sethi, “Video shot detection and characterization for video
databases,” Pattern Recognition, vol. 30, no. 4, pp. 583–592, April 1997.

[4] Wayne Wolf, “Key frame selection by motion analysis,” in Proceedings of IEEE Int’l Confer-
ence on Acoustic, Speech and Signal Processing, 1996.

[5] Yueting Zhuang, Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Adaptive key frame
extraction using unsupervised clustering,” in Proceedings of IEEE Int’l Conference on Image
Processing, Chicago, IL, October 4-7 1998.

[6] Shih-Fu Chang, William Chen, Horace J. Meng, Hari Sundaram, and Di Zhong, “A fully
automated content based video search engine supporting spatio-temporal queries,” to Appear
in IEEE Trans. on Circuits and Systems for Video Technology Special Issue on Image/Video
Processing for Interactive Multimedia, 1998.

[7] Edoardo Ardizzone and Marco La Cascia, “Multifeature image and video content-based stor-
age and retrieval,” in Proceedings of SPIE Conference on Multimedia Storage and Archiving
Systems, Boston, MA, November 18-19 1996, vol. 2916, pp. 265–276.

[8] Nuno Vasconcelos and Andrew Lippman, “Towards semantically meaningful feature spaces
for the characterization of video content,” in Proceedings of IEEE Int’l Conference on Image
Processing, Santa Barbara, CA, October 1997, vol. II, pp. 542–545.

[9] Behzad Shahraray and David C. Gibbon, “Automatic generation of pictorial transcripts of
video programs,” in Proceedings of SPIE Conference on Multimedia Computing and Network-
ing, San Jose, CA, Febrary 1995, vol. 2417, pp. 338–341.

[10] Minerva M. Yeung and Boon-Lock Yeo, “Video visualization for compact presentation and fast
browsing of pictorial content,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 7, no. 5, pp. 771–785, October 1997.

[11] Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Browsing and retrieving video content
in a unified framework,” in Proceedings of IEEE International Conference on Multimedia
Computing and Systems, Austin, TX, June 28-July 1 1998, pp. 237–240.

[12] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, Byron
Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, and Peter
Yanker, “Query by image content: The QBIC system,” IEEE Computer, pp. 23–31, September
1995.

[13] HongJiang Zhang, Jianhua Wu, Di Zhong, and Stephen Smoliar, “An integrated system for
content-based video retrieval and browsing,” Pattern Recognition, vol. 30, no. 4, pp. 643–658,
April 1997.

26

[14] Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Browsing and retrieving video content
in a unified framework,” in Proceedings of IEEE Multimedia and Signal Processing workshop,
Los Angeles, CA, 1998.

[15] Cuneyt Taskiran, Jau-Yuen Chen, Charles A. Bouman, and Edward J. Delp, “A compressed
video database structured for active browsing and search,” in Proceedings of IEEE Int’l Con-
ference on Image Processing, Chicago, IL, October 4-7 1998.

[16] Jau-Yuen Chen, C. Taskiran, Edward J. Delp, and Charles A. Bouman, “ViBE: A new
paradigm for video database browsing and search,” in IEEE Workshop on Content-Based
Image and Video Databases, Santa Barbara, CA, June 21 1998, pp. 96–100.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression
Trees, Wadsworth International Group, Belmont, CA, 1984.

[18] Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Similarity pyramids for browsing and
organization of large image databases,” in Proceedings of SPIE/IS&T Conference on Storage
and Retrieval for Image and Video Databases III, San Jose, CA, January 26-29 1998, vol. 3299.

[19] James Monaco, How to Read a Film: The Art, Technology, Language, History, and Theory of
Film and Media, Oxford University Press, New York, NY, 1977.

[20] Arun Hampapur, Ramesh Jain, and Terry Weymouth, “Digital video segmentation,” in
Proceedings of Second Annual ACM MultiMedia Conference and Exposition, San Francisco,
CA, October 1994, pp. 357–364.

[21] Boon-Lock Yeo and Bede Liu, “Rapid scene analysis on compressed video,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 533–544, December 1995.

[22] A. Mufit Ferman and A. Murat Tekalp, “Multiscale content extraction and representation
for video indexing,” in Proceedings of SPIE Conference on Multimedia Storage and Archiving
Systems II, Dallas, TX, November 3-4 1997, pp. 23–31.

[23] Bilge Gunsel, Yue Fu, and A. Murat Tekalp, “Hierarchical temporal video segmentation and
content characterization,” in Proceedings of SPIE Conference on Multimedia Storage and
Archiving Systems II, Dallas, TX, November 3-4 1997, vol. 3329, pp. 46–56.

[24] F. Idris and S. Panchanathan, “Indexing of compressed video sequences,” in Proceedings of
SPIE/IS&T Conference on Storage and Retrieval for Image and Video Databases IV, San Jose,
CA, February 1996, vol. 2670, pp. 247–253.

[25] Bo Shen, Donnge Li, and Ishwar K. Sethi, “Cut detection via compressed domain edge extrac-
tion,” in IEEE Workshop on Nonlinear Signal and Image Processing, Mackinac Island, MI,
September 1997.

[26] Jianhao Meng, Yujen Juan, and Shih-Fu Chang, “Scene change detection in a MPEG com-
pressed video sequence,” in Proceedings of SPIE Conference on Multimedia Computing and
Networking, San Jose, CA, February 1995, vol. 2417, pp. 180–191.

[27] Philippe Aigrain and Philippe Joly, “The automatic real-time analysis of film editing and
transition effects and its applications,” Computation and Graphics, vol. 18, no. 1, pp. 93–103,
1994.

[28] HongJiang Zhang, Shuang Yeo Tan, Stephen Smoliar, and Yihong Gong, “Automatic parsing
and indexing of news video,” Multimedia Systems, vol. 6, no. 2, pp. 256–266, 1995.

[29] Deborah Swanberg, Chiao-Fe Shu, and Ramesh Jain, “Knowledge guided parsing in video
databases,” in Proceedings of SPIE/IS&T Conference on Storage and Retrieval for Image and
Video Databases, San Jose, CA, April 1993, vol. 1908, pp. 13–24.

[30] Ke Shen and Edward J. Delp, “A fast algorithm for video parsing using MPEG compressed
sequences,” in Proceedings of IEEE Int’l Conference on Image Processing, Washington, D.C.,
October 26-29 1995, vol. II, pp. 252–255.

27

[31] Cuneyt Taskiran and Edward J. Delp, “Video scene change detection using the generalized
trace,” in Proceedings of IEEE Int’l Conference on Acoustic, Speech and Signal Processing,
Seattle, WA, May 1998, pp. 2961–2964.

[32] Michael J. Swain and Dana H. Ballard, “Color indexing,” Intern. Journal of Computer Vision,
vol. 7, no. 1, pp. 11–32, 1991.

[33] Saul Gelfand, C. Ravishankar, and Edward Delp, “An iterative growing and pruning algorithm
for classification tree design,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
13, no. 2, pp. 163–174, February 1991.

[34] Bilge Gunsel and A. Murat Tekalp, “Content-based video abstraction,” in Proceedings of
IEEE Int’l Conference on Image Processing, Chicago, IL, October 4-7 1998.

[35] P.H.A. Sneath and R.R. Sokal, Eds., Numerical Taxonomy, Freeman, San Francisco, 1973.

[36] Anil K. Jain and Richard C. Dubes, Eds., Algorithms for Clustering Data, Prentice Hall, New
Jersey, 1988.

[37] Minerva M. Yeung and Bede Liu, “Efficient matching and clustering of video shots,” in
Proceedings of IEEE Int’l Conference on Image Processing, Washington, DC, October 23-26
1995, vol. I, pp. 338–341.

[38] Jr. Joe H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the
American Statistical Association, vol. 58, pp. 236–244, 1963.

[39] Minerva M. Yeung, Boon-Lock Yeo, and Bede Liu, “Extracting story units from long pro-
grams for video browsing and navigation,” in IEEE International Conference on Multimedia
Computing and Systems, Hiroshima, Japan, June 17-21 1996, pp. 296–305.

[40] Sargur N. Srihari Venu Govindaraju and David. B. Sher, “A computational model for face
location,” in Proceedings of the third International Conference on Computer Vision, Osaka,
Japan, 1990, vol. 2, pp. 162–177.

[41] T.K. Leung, M.C. Burl, and P. Perona, “Finding faces in cluttered scenes using random labeled
graph matching,” in Fifth International Conference on Computer Vision, Cambridge, MA,
June 1995, pp. 637–644.

[42] Kin Choong Yow and Roberto Cipolla, “Feature-based human face detection,” Image and
Vision Computing, vol. 15, no. 9, pp. 713–735, 1997.

[43] Guangzheng Yang and Thomas S. Huang, “Human face detection in a complex backgroung,”
Pattern Recognition, vol. 27, no. 1, pp. 53–63, 1994.

[44] Shumeet Baluja Henry A. Rowley and Takeo Kanade, “Human face detection in visual scenes,”
Advances in Neural Information Processing Systems, vol. 8, pp. 875–881, 1996.

[45] Gilles Burel and Dominique Carel, “Detection and localization of faces on digital images,”
Pattern Recognition Letters, vol. 15, no. 10, pp. 963–67, October 1994.

[46] Kah-Kay Sung and Tomaso Poggio, “Example-based learning for view-based human face
detection,” Technical Report AI Memo 1521, MIT, 1994.

[47] Baback Moghaddam and Alex Pentland, “Probabilistic visual learning for object detection,”
in Proceedings of the fifth International Conference on Computer Vision, Cambridge, MA,
1995, pp. 786–793.

[48] Antonio J. Colmenarez and Thomas S. Huang, “Face detection with information-based max-
imum discrimination,” in Proceeding of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Juan, PR, 1997, pp. 782–787.

28

[49] Michael S. Lew, “Information theoretic view-based and modular face detection,” in 2nd.
International Conference on Automatic Face and Gesture Recognition, Killington, VT, October
1996, pp. 198–203.

[50] N. Herodotou, K. Plataniotis, and A. Venetsanopoulos, “A color segmentation and classifica-
tion scheme for facial image and video retrieval,” in IX European Signal Processing Conference,
Rhodes, Greece, September 1998.

[51] Veronica Vilaplana, Ferran Marques, Philippe Salembier, and Luis Garrido, “Region-based
segmentation and tracking of human faces,” in European Signal Processing, Rhodes, September
1998, pp. 593–602.

[52] Ming-Hsuan Yang and Narendra Ahuja, “Detecting human faces in color images,” in Pro-
ceedings of IEEE Int’l Conference on Image Processing, Chicago, IL, October 4-7 1998, pp.
127–130.

[53] Stephen McKenna Yogesh Raha and Shaogang Gong, “Tracking and segmenting people in
varying lighting conditions using colour,” in Proceedings of International Conference on Au-
tomatic Face and Gesture Recognition, Nara, Japan, April 1998.

[54] C. A. Bouman and M. Shapiro, “A multiscale random field model for Bayesian image segmen-
tation,” IEEE Trans. on Image Processing, vol. 3, no. 2, pp. 162–177, March 1994.

[55] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data
via the EM algorithm,” Journal of the Royal Statistical Society B, vol. 39, no. 1, pp. 1–38,
1977.

[56] Murray Aitkin and Donald B. Rubin, “Estimation and hypothesis testing in finite mixture
models,” Journal of the Royal Statistical Society B, vol. 47, no. 1, pp. 67–75, 1985.

[57] Di Zhong and Shih-Fu Chang, “Spatio-temporal video search using the object based video
representation,” in Proceedings of IEEE Int’l Conference on Image Processing, Santa Barbara,
CA, October 1997, pp. 21–24.

[58] Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Hierarchical browsing and search of
large image databases,” Submitted to IEEE Trans. on Image Processing, 1998, 1998.

[59] Jau-Yuen Chen, Charles A. Bouman, and Jan P. Allebach, “Fast image database search using
tree-structured VQ,” in Proceedings of IEEE Int’l Conference on Image Processing, Santa
Barbara, CA, October 26-29 1997, vol. 2, pp. 827–830.

[60] Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Active browsing using similarity
pyramids,” in Proceedings of 1998 Asilomar Conference on Signals, Systems, And Computers,
Pacific Grove, CA, November 2-4 1998.

[61] Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Active browsing using similarity
pyramids,” in Proceedings of SPIE/IS&T Conference on Storage and Retrieval for Image and
Video Databases VII, San Jose, CA, January 24-29 1999, vol. 3656.

[62] Ingemar J. Cox, Matt L. Miller, Stephen M. Omohundro, and Peter N. Yianilos, “Pichunter:
Bayesian relevance feedback for image retrieval,” in Proceedings of International Conference
on Pattern Recognition, Vienna, Austria, August 1996, vol. 3, pp. 361–369.

[63] Leonid Taycher, Marco La Cascia, and Stan Sclaroff, “Image digestion and relevance feedback
in the Imagerover WWW search engine,” in Proceedings of International Conference on Visual
Information, San Diego, CA, December 15-17 1997.

[64] Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Relevance feedback techniques in inter-
active content-based image retrieval,” in Proceedings of SPIE/IS&T Conference on Storage
and Retrieval for Image and Video Databases VI, San Jose, CA, January 26-29 1998, vol. 3312,
pp. 25–36.

[65] G. N. Lance and W.T. Williams, “A general theory of classificatory sorting strategies. i.
hierarchical systems,” Computer Journal, vol. 9, pp. 373–380, 5 1966.

29

