

CERIAS Tech Report 2003-27

X-GTRBAC:
AN XML-BASED POLICY SPECIFICATION
FRAMEWORK AND ARCHITECTURE FOR

ENTERPRISE-WIDE ACCESS CONTROL

by Rafae Bhatti

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

X-GTRBAC:

AN XML-BASED POLICY SPECIFICATION FRAMEWORK AND

ARCHITECTURE FOR ENTERPRISE-WIDE ACCESS CONTROL

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rafae A. Bhatti

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2003

 - ii - ii

To my parents,
for without them I wouldn’t have accomplished this milestone.

 - iii - iii

ACKNOWLEDGMENTS

Acknowledgement is due to my advisor Prof. Arif Ghafoor, without whose support this

thesis would not have seen the light of day. Also to be acknowledged are my committee

members, Prof. Charlie Hu and Prof. Hong Tan, for their valuable input and

encouragement. The guidance from Prof. Elisa Bertino at Università di Milano, Milano,

Italy has been instrumental in the evolution of this work. Last but not the least, the

research presented in this thesis has been partially supported by the National Science

Foundation under the NSF Grant # IIS-0209111.

 - iv - iv

TABLE OF CONTENTS

 Page

LIST OF TABLES...vi

LIST OF FIGURES..vii

ABSTRACT... . ix

T1. INTRODUCTIONT ... 1T

1.1..Related Work ... 3
1.2..Organization of the Thesis ... 5

2. XML-BASED GTRBAC MODEL: MOTIVATION AND SPECIFICATION............. 7

2.1..XML... 7
2.1.1..Motivation... 7
2.1.2..Introduction... 7

2.2..GTRBAC Model.. 9
2.2.1..Motivation... 9
2.2.2..Introduction... 11

2.2.2.1..RBAC model.. 11
2.2.2.2..Temporal extensions to RBAC .. 13
2.2.2.3..GTRBAC specifications .. 14

3. X-GTRBAC SPECIFICATION LANGUAGE AND ARCHITECTURE 19

3.1..Modeling RBAC Elements .. 19
3.1.1..Users and credentials .. 20
3.1.2..Roles ... 21

3.1.2.1..Separation of duty constraints.. 21
3.1.2.2..Role hierarchies ... 22
3.1.2.3..Temporal and non-temporal context-based constraints 22
3.1.2.4..Triggers .. 25

3.1.3..Permissions ... 26
3.2..Policy Administration .. 27

3.2.1..User to role assignment... 28
3.2.2..Permission to role assignment .. 29

 - v - v

 Page

3.3..System Architecture and Implementation.. 30

3.3.1..Overview... 30
3.3.2..XML processor ... 31
3.3.3..GTRBAC processor .. 32

4. X-GTRBAC AND COMPUTER INTEGRATED ENTERPRISE 35

4.1..CIE Policy Specification.. 35
4.2..A CIE X-GTRBAC Policy... 42

4.2.1..Policy definition sheets ... 42
4.2.2..Primary policy sheets.. 42
4.2.3..Implementation experiences ... 45

5. CONCLUSION... 49

LIST OF REFERENCES...53

APPENDICES

 APPENDIX A: XML Schemas for RBAC Elements..59
 APPENDIX B: XML Schemas for Policy Administration Documents................. .65

 - vi - vi

LIST OF TABLES

Table Page

2.1: Temporal constraints and event expressions in GTRBAC……........................... 18

3.1: The XML sheets comprising the XML Policy Base... 28

4.1: A subset of constraints derived from the role hierarchy of Figure 4.1 and DAG
 of Figure 4.2 for the CIE .. 38

4.2: A subset of users and associated credentials for the CIE...................................... 39

4.3: A subset of role assignments in the CIE….. 40

4.4: A subset of available permissions in the CIE.. 40

4.5: A subset of permission assignments in the CIE... 41

4.6: The mapping of CIE specifications to X-GTRBAC framework............................ 41

 - vii - vii

LIST OF FIGURES

Figure Page

2.1: An XML instance document and its schema……………………………………. 8

2.2: Core RBAC elements and their relation…………………................................... 12

3.1: X-Grammar for XCredTypeDef sheet………………………………................... 20

3.2: X-Grammar for XUS…………………………………………............................ 20

3.3: X-Grammar for XRS……………………………………………………………. 21

3.4: X-Grammar for XSoDDef sheet………………………………............................ 22

3.5: X-Grammar for XRS constraints………………………………........................... 23

3.6: X-Grammar for XTempDefDef sheet……………………………….................... 24

3.7: X-Grammar for Logical Expression………………………………...................... 25

3.8: X-Grammar for XTrigDef sheet………………………………............................ 26

3.9: X-Grammar for XPS…………………………………………………………….. 27

3.10: X-Grammar for XURAS………………………………....................................... 29

3.11: X-Grammar for XPRAS……………………………….. 29

3.12: X-GTRBAC System Architecture……………………... 31

3.13: X-Grammar for XAS, XSS……………………………………………………... 33

4.1: The functional role hierarchy and accessed system resources at each level........... 36

4.2: The DAG representing the execution time-frame for a project within the
 CIE………………………………………………………………………………... 37

 - viii - viii

Figure Page

4.3: Part of the XCredTypeSheet to define the user credentials specified in
 Table 4.2………………………………………………………............................ 43

4.4: The XSoDDefSheet to define the separation of duty constraints specified in
 Table 4.1………………………………………………………............................ 43

4.5: Part of the XTempDefSheet to define the temporal constraints specified in
 Table 4.1….. 43

4.6: The XTrigDefSheet to define the trigger specified in Table 4.1………………... 43

4.7: Part of the XUS to define the users specified in Table 4.2……............................ 44

4.8: Part of the XRS to define the roles illustrated in the role hierarchy of
 Figure 4.1, and capture the constraints on them specified in Table 4.1…………. 44

4.9: Part of the XPS to define the permissions specified in Table 4.4……………….. 44

4.10: Part of the XURAS to define the role assignments specified in Table 4.3…….. 45

4.11: Part of the XPRAS to define the role assignments specified in Table 4.5….….. 45

4.12: Snapshots of Policy Display, clockwise from top left: (i) User Credentials
 for george, (ii) Information for Product Designer role, (iii) User to Role
 Assignment for nancy, and (iv) Permission to Role Assignment for
 Engg Manager role……………………………………………………………… 46

 - ix - ix

ABSTRACT

Bhatti, Rafae A., M.S.E.C.E, Purdue University, May 2003. X-GTRBAC: An XML-
based Policy Specification Framework and Architecture for Enterprise-Wide Access
Control. Major Professor: Arif Ghafoor.

Modern day enterprises exhibit a growing trend toward adoption of enterprise

computing services for efficient resource utilization, scalability and flexibility. These

environments are characterized by heterogeneous, distributed computing systems

exchanging enormous volumes of time-critical data with varying levels of access control

in a dynamic business environment. The enterprises are thus faced with significant

challenges as they endeavor to achieve their primary goals, and simultaneously ensure

enterprise-wide secure interoperation among the various collaborating entities. Key

among these challenges are providing effective mechanism for enforcement of enterprise

policy across distributed domains, ensuring secure content-based access to enterprise

resources at all user levels, and allowing the specification of temporal and non-temporal

context conditions to support fine-grained dynamic access control. This thesis

investigates these challenges, and presents X-GTRBAC, an XML-based GTRBAC policy

specification language and its implementation for enforcing enterprise-wide access

control. Our specification language is based on the GTRBAC model that incorporates the

content- and context-aware dynamic access control requirements of an enterprise. An X-

GTRBAC system has been implemented as a Java application. We discuss the salient

features of the specification language, and present the software architecture of our

system. A comprehensive example is included to discuss and motivate the applicability of

the X-GTRBAC framework to a generic enterprise environment. An application level

interface for implementing the policy in the X-GTRBAC system is also provided to

consolidate the ideas presented in the thesis.

 - 1 - 1

1. INTRODUCTION

The dynamic economic and technical environment surrounding modern day

business operations requires today’s enterprises to strive ever-more to stay competitive in

the marketplace [1]. The fast paced advancements in information technology

infrastructure has placed growing demands on the enterprise to rise above the competition

by making its operations more expandable, responsive to external factors, and, on top of

all, secure. This has motivated many enterprises to adopt enterprise computing (EC)

services for efficient resource utilization, scalability and flexibility [2]. Such enterprises

are also known as Computer Integrated Enterprise (CIE). The CIE is characterized by

heterogeneous, distributed computing systems exchanging enormous volumes of time-

critical data with varying levels of access control through the use of EC technology. The

EC framework highlights the durability and maintainability of the assets of the enterprise,

and emphasizes upon the scalability and flexibility of system infrastructure to allow it to

evolve with time. While adopting such strategies is vital to the success of enterprise’s

business operations, it poses some serious challenges in terms of ensuring an enterprise-

wide secure interoperation among the various collaborating entities.

These challenges belong to various domains within the CIE, and each needs to be

addressed in order to achieve the overall enterprise goals. The access control policy of a

large enterprise has many elements and many points of enforcement [3]. Elements of

policy may be managed by the Information Systems department, Human Resources, the

Legal department and the Finance department. And the policy may be enforced by the

extranet, mail, WAN and remote-access systems; platforms which inherently implement a

permissive security policy. For these reasons, there is a pressing need for a common

language for expressing enterprise-wide policy. Additionally, since most enterprises are

still migrating from legacy systems to newer infrastructure, the uniformity among the

communication protocols across the heterogeneous systems is essential to timely and

 - 2 - 2

accurate execution of enterprise-level policies. Another concern faced by large enterprise

applications is the number of users or clients accessing the enterprise resources, which

runs in tens of thousands. Since these resources would typically have privilege levels

associated with them, a mechanism needs to be provided to allow only authorized users

to access the requested resource. Hence, exercising content-based access control is a

significant challenge in securing large enterprises. Yet another dimension that

complicates access control specification is the dynamic nature of context-based

conditions attached with access decisions. An enterprise may grant/revoke access to

resources to certain individuals based on their level of involvement in the current stage of

product life cycle. The temporal constraints are also extended to sharing of information

between various users based on their degree of relevance to the resource at a particular

time. To adequately satisfy these kinds of conditions in a dynamic environment, hence,

constitutes another significant challenge. The primary goal of this thesis is to investigate

these challenges and propose an XML-based access control specification language that

adequately addresses them.

Our specification language is based on Generalized Temporal Role Based Access

Control (GTRBAC) model [4]. It is a generalized temporal extension of the widely

accepted Role Based Access Control (RBAC) model proposed in the NIST RBAC

standard [5]. RBAC model, because of its generality, can be used for defining a diverse

set of access control policies. Another advantage of the RBAC model is that it simplifies

authorization administration in large enterprises. RBAC models have also been shown to

be policy-neutral [6], and can be used to represent a variety of security policies, including

both DAC and MAC policies [7]. Although several approaches have been presented in

the literature based on RBAC to address various aspects of security administration within

an enterprise, they have their own drawbacks that render them unsuitable for enterprise-

wide access control (See Section 1.1). GTRBAC extends RBAC to allow a generalized

mechanism to express a diverse set of fine-grained temporal constraints related to both

roles and permissions in order to meet the dynamic content-based context-aware access

control requirements of an enterprise. The X-GTRBAC framework presented in this work

outlines an XML-based specification language that focuses on encapsulating all the basic

 - 3 - 3

features set forth in the GTRBAC model. Our framework augments the GTRBAC model

with XML to allow for supporting the policy enforcement in a heterogeneous, distributed

environment. It is based on XML schemas, and not DTDs, and hence has more

expressive power and support for data types as compared to DTD-based approaches [8].

1.1 Related Work

The specification of security policies for enterprises has recently emerged as an

active research area. The advent of the RBAC model has generally been hailed as a

promising sign in the industry and research community for its potential to simplify

authorization administration in large enterprises. Related work has broadly spanned the

aspects of both presenting system architecture and implementation of RBAC-based

technologies for enterprise security administration, and complementing the RBAC model

to introduce extended policy specification frameworks. In the following, we summarize

the efforts in both these directions, and then highlight the significance of our particular

work.

Several approaches have been presented in the literature to address various

aspects of security administration within an enterprise. An XML based approach to

specify enterprise RBAC policies has been reported in [9]. Ferraiolo et. al. use the RBAC

model to address access control needs of enterprise computing environments [10]. They

have attempted to present an RBAC-based approach as an alternative to ACL-based

access control scheme used within a corporate intranet, and have illustrated its use

through a reference implementation. Kern et. al. present an ERBAC model for

Enterprise-Wide Role-Based Access Control [1]. Their model uses the notion of

enterprise roles with parameterization, and is reported by the authors as being helpful in

reducing the administration effort required to maintain users and their access rights in

large enterprises. They have augmented their work with the discussion of a commercial

security administration tool. All these schemes, however, are not suited to enterprises

with dynamic content- and context-aware access control requirements since they provide

no explicit mechanism to support evaluation of dynamic user credentials and context

conditions.

 - 4 - 4

There has been an effort in the research community to complement the RBAC

model with additional features to allow extended policy specification frameworks. A

temporal extension to RBAC has been presented in the TRBAC model [11]. TRBAC

supports the specification of temporal constraints on role enabling, and the dependencies

among them, and hence provides a mechanism to enforce time-dependent access control.

A generalized GTRBAC model presented in [4] is capable of providing a wider range of

temporal constraints, including periodic as well as duration constraints on user-to-role

assignments, permission-to-role assignments, and role activation. The GTRBAC model

extends the syntactic structure of TRBAC; however, the notion of user credentials is not

supported in both these schemes to allow the assignment of authenticated users to a

particular role.

Two closely related works have been reported in the literature by the industrial

community. The OASIS XACML [3] specification is based on an extension of XML to

define an access control specification that supports notions similar to those of user

credentials and context-based privilege assignments. It, however, does not directly

support the notion of roles, and hence lacks the essential features as separation of duty

constraints, role hierarchy, and cardinality. The absence of roles also prohibits the

provision of a comprehensive mechanism to supply and evaluate sophisticated temporal

constraints on assignments of users to privileged tasks, since direct user-to-permission

assignments violate the very principles of scalability and manageability that motivate the

use of GTRBAC (See Section 2.2). The OASIS model for active security presented in

[12] addresses the context-aware access control requirements within large scale systems.

It is an extension of the RBAC model with parameters based on first order logic, and

allows fine-grained evaluation of dynamic user credentials and context conditions. The

paper emphasizes on the formal logic-based semantics of the model with its own merits,

but it does not detail any implementation architecture to enforce the same. The

implementation, however, is related by the authors to a middleware architecture that

supports asynchronous events, and requires a mechanism that allows the communicating

systems to acquire support for asynchronous operations. Although this scheme is

designed to be scalable and manageable for distributed environments, the fact that it

 - 5 - 5

relies on extending the client’s capabilities to make them able to communicate with the

OASIS server adds significant overhead to its wide-scale deployment. Since our

framework is entirely XML-based, our approach allows for adopting the XML-based

middleware architecture [13] that is emerging as a widely accepted standard for

communication among distributed applications, and thus significantly reduces the burden

attached thereto. Our system hence captures the combined semantics of both the OASIS

models, and achieves secure enterprise-wide inter-operation with dynamic fine-grained

access control. We, therefore, maintain that the XML-based GTRBAC approach to

address enterprise-wide access control presented in this thesis holds its novelty among the

related schemes.

1.2 Organization of the Thesis

The thesis is organized as follows. Chapter 2 provides the motivation for adopting

the component technologies, namely XML and GTRBAC, and gives an introduction to

each one. It also discusses the RBAC model and its extensions as a step toward

introducing GTRBAC. The detailed X-GTRBAC specification language is outlined in

Chapter 3. This chapter also includes a discussion of the implementation architecture and

system design for X-GTRABC. Chapter 4 discusses a comprehensive example of a

generic CIE to illustrate the applicability of the X-GTRBAC framework. It provides the

specifications for an enterprise access control policy, and a mapping thereof to our

framework. Chapter 5 presents the conclusion of this work.

 - 6 - 6

 - 7 - 7

2. XML-BASED GTRBAC MODEL:

MOTIVATION AND SPECIFICATION

This chapter provides the motivation for adopting the component technologies of

our X-GTRBAC framework, namely XML and GTRBAC, and then goes on to introduce

the salient features of each one. It also discusses the RBAC model and its extensions as a

step toward introducing GTRBAC. Additionally, it further investigates, as part of the

motivation, the access control challenges discussed in Chapter 1.

2.1 XML

The following two sub-sections provide the motivation and introduction,

respectively, of the eXtensible Markup Language (XML).

2.1.1 Motivation

The use of XML is primarily motivated by the vast heterogeneity of collaborating

entities exhibited by the distributed enterprise environment. The various functional units

within an enterprise, connected through multiple media, and each comprising of several

computing systems ranging from old to new, are linked together by the EC technology.

Hence the need arises for a common language to efficiently express and execute the

enterprise access control policy. XML provides a uniform, vendor-neutral representation

of enterprise data, and allows a mechanism for interchange, sharing and dissemination of

information content across heterogeneous systems. XML is, therefore, a natural choice as

the basis for the common policy language, due to the ease with which its syntax and

semantics can be extended to accommodate the unique requirements of an enterprise, and

the widespread support that it enjoys from all the main platform and tool vendors [3].

2.1.2 Introduction

The eXtensible Markup Language (XML) [14] evolved from a simple subset of

SGML [15], and is now hailed as the most promising technology for information

interchange across heterogeneous, distributed domains [16]. XML is a meta-language that

 - 8 - 8

<enterprise>
 <depts>
 <engineering>
 <engg_manager job_id= “EM”>
 <name>John</name>
 <level>5</level>
 <…> .. </..>
 </engg_manager>
 <product_engineer job_id=”PE”>

<name>Paul</name>
 <shift>1</shift>
 <…> .. </..>
 </product_engineer>
 </engineering>
 <design>
 <design_manager job_id= “DM”>
 <name>Adams</name>
 <grade>A</grade>
 <…> .. </..>
 </design_manager>
 <design_engineer job_id=”DE”>

<name>Charlie</name>
 <skill>auto</skill>
 <…> .. </..>
 </design_engineer>
 </design>
 </depts>
</enterprise>

 (a)

<xs:schema>
 <xs:element name =“enterprise”>
 <xs:complexType>
 <xs:element name = “depts”>
 <xs:complexType>
 <xs:element name = “engineering”>
 <xs:complexType>
 <xs:element name = “engg_manager”>
 <xs:complexType>
 <xs:attribute name =“job_id” type=”xs:string”/>
 <xs:element name = “name” type=”xs:string”/>
 <xs:element name = “level” type=”xs:string”/>
 …….
 <xs:/complexType>
 <xs:/element>
 <xs:element name = “product_engineer”>
 <xs:complexType>
 <xs:attribute name =“job_id” type=”xs:string”/>
 <xs:element name = “name” type=”xs:string”/>
 <xs:element name = “shift” type=”xs:string”/>
 …….
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>
 ……
 <xs:/complexType>
 <xs:/element>
<xs:schema> (b)

Figure 2.1: (a) An XML instance document, and (b) its schema

lets users design their own markup language, and hence allows them to define an agreed-

upon vocabulary for application-specific tasks. XML achieves this by offering an

extensible set of markup tags to create custom documents, and a set of related

technologies for their interpretation.

Each XML document has both a logical and a physical structure [17]. Physically,

the document is composed of units called entities. An entity may refer to other entities to

cause their inclusion in the document. A document begins in a "root" or document entity.

Logically, the document is composed of declarations, elements, comments, character

references, and processing instructions, all of which are indicated in the document by

explicit markup. Additionally, elements may contain attributes as well. The structure of

the XML document is expressed through an XML schema [18]. A schema itself is an

XML document that defines the valid syntax of an XML instance document, where the

term instance document denotes a document conforming to the associated schema. Figure

2.1 illustrates an XML instance document and its corresponding schema. Here, the

 - 9 - 9

structure of the various XML tags in the instance document is governed by the schema

definition. For instance, the second line in the schema definition declares “enterprise” as

the root element of the document. The “depts” element is then added to the root as a child

element. The hierarchy is similarly extended to incorporate all the desired elements. The

“engg_manager” and “design_manager” elements have a “job_id” attribute used to

identify the particular job. Also note that these two elements, and others that may be part

of the document, define their own set of child elements. The choice of the tags depends

upon their relevance to the actual element in a particular application. This extensible

naming mechanism hence allows the creation of customized documents that capture the

application-specific needs of any enterprise. For interested readers, the detailed

specifications of XML and XML Schemas can be found at [14, 18].

2.2 GTRBAC Model

The following two sub-sections provide the motivation and introduction,

respectively, of the Generalized Temporal Role-Based Access Control (GTRBAC)

model.

2.2.1 Motivation

The motivation behind adopting the GTRBAC model for enforcing enterprise-

wide access control is to incorporate within the access control model the following set of

capabilities:

Content-based context-aware access: Information access within an enterprise may need

to be restricted based on the information content and the contextual information obtained

at the time the access requests are made. For example, an external client may not be

allowed to access the Product Design manual from the enterprise document repository.

Or it may be the case that only the authorized component technicians are allowed to

access the plant inventory for a manufacturing enterprise, and such access would be

restricted to the components related to the technician’s job function. Hence the need

arises to exercise content-based access control for all users accessing enterprise

resources. The access control model should also capture security-relevant environmental

context and incorporate it in its access control decisions. Access requests may be decided

based on several context parameters, such as time or location. An example of location

 - 10 - 10

parameter is user domains, which are classified by IP addresses. In the manufacturing

enterprise, the access control model could allow all users who submit an access request

from within the Design Department intranet to access the Product Design manual at any

time for easy reference. This access may, however, be limited to be read-only for certain

less privileged users. The time parameter needs to be incorporated in the model to

express the time-dependent access constraints within an enterprise. For instance, in

addition to the restriction that a particular component technician should be granted access

to only the relevant components of the product, it is quite likely that such access is further

restricted to only the times when the product is in the manufacturing stage. Another view

of time-dependent constraints captures the periodic nature and associated duration of

enterprise tasks. One example for such constraint could be a rule that the Vendor

Contracts may only be allowed to be accessed by vendors in the second week of every

quarter of every year, and need to be submitted within two weeks of that time. More

complicated context conditions allow for expressing even more sophisticated constraints.

As an example, it may be required for the manufacturing enterprise that the Product

Engineering work should only start after the Product Design work has been completed.

This requires for checking various context parameters to evaluate the stated condition,

and allow for the requested or scheduled task to be executed.

Heterogeneity of subjects and objects: For a generic enterprise, heterogeneity implies the

diversity of users and resources across the component systems making up the enterprise.

Object heterogeneity may exist in the form of different types of enterprise resources that

need to be protected. The resources can range from Purchase and Marketing Contracts, to

Design and Engineering Manuals, to various Product Assemblies and Components.

Furthermore, the information content therein can evolve with time as new resources are

added and old ones removed or updated, introducing scalability problems in privilege

management. Subject heterogeneity implies that users have diverse activity profiles,

characteristics and/or qualifications that may not be known a-priori. Such activity profile

is needed by the EC technology to dynamically confer privileges to authenticated users

by upgrading their current role. This is needed because the trust level of the user may be

elevated, as the product goes through the various stages within the enterprise, and access

 - 11 - 11

to more privileged resources may accordingly be allowed. For instance, a Product

Technician with sufficient experience may be elevated to the role of Product Supervisor,

and allowed to access the Product Assemblies component at the time of manufacturing of

the product assembly. Subject heterogeneity complicates access control specification.

2.2.2 Introduction

As mentioned in Chapter 1, GTRBAC is a generalized temporal extension of the

RBAC model. Before introducing GTRBAC, the RBAC model is, therefore, introduced.

2.2.2.1 RBAC model

The RBAC model as proposed in the NIST RBAC standard consists of the

following four basic components: a set of users Users, a set of roles Roles, a set of

permissions Permissions, and a set of sessions Sessions. A user is a human being or

an autonomous agent. A role is a collection of permissions needed to perform a certain

job function within an organization. A permission is an access mode that can be exercised

on objects in the system, and a session relates a user to possibly many roles. When a user

logs in the system, he/she establishes a session and, during the session, can request to

activate some subset of roles he/she is authorized to assume. An activation request is

granted only if the corresponding role is enabled at the time of the request and the user is

entitled to activate the role at that time. If the activation request is satisfied, the user

issuing the request obtains all the permissions associated with the role he/she has

requested to activate. On the sets Users, Roles, Permissions, and Sessions, several

functions are defined. The user-to-role assignment (UA) and the permission-to-role

assignment (PA) functions model the assignment of users to roles and the assignment of

permissions to roles respectively. A user can be a member of many roles and a role can

have many members. Moreover, a role can have many permissions and the same

permissions can be associated with many roles. The user function maps each session to a

single user, whereas function role establishes a mapping between a session and a set of

roles (that is, the roles which are activated by the corresponding user in the session). On

Roles, a hierarchy is defined, denoted by ≥. If r Bi B ≥ rBj B, r Bi B, r Bj B ∈ Roles then r Bi B inherits the

permissions of r Bj B. In such a case, rBi B is a senior role and rBj B a junior role. The following

definition formalizes the above discussion:

 - 12 - 12

Figure 2.2: Core RBAC elements and their relation (Source: NIST RBAC
standard [5]).

USERS

 PRMS

OBS OPS
ROLES

SESSI_
ONS

PA UA

user_sessions session_roles
ULegend

OPS: Operations
OBS: Objects
UPRMS: Permissions
UA: User assignment
PA: Permission Assignment

Definition 2.2.2.1 (RBAC model): [5] The RBAC model consists of the following

components:

• Sets Users, Roles, Permissions and Sessions representing the set of users,

roles, permissions, and sessions, respectively;

• PA: Roles → Permissions, the permission assignment function, that assigns

permissions to roles;

• UA: Users → Roles, the user assignment function, that assigns users to roles;

• user: Sessions → Users, which maps each session to a single user;

• role: Sessions → 2P

Roles
P that maps each session to a set of roles;

• RH ⊆ Roles × Roles, a partially ordered role hierarchy (written ≥).

The RBAC model differentiates itself from traditional access control models in

that the permissions in RBAC are not directly associated with users, but with roles. Roles

are created by the security administrators to reflect the various functional categories of

users within the enterprise. Users are then assigned membership to roles, and these roles

are in turn assigned permissions. Permissions are actually composed of an object-to-

operations mapping. The element relationships of Core RBAC model are illustrated in

Figure 2.2.

 - 13 - 13

RBAC approach naturally fits into an organizational context as users are assigned

to organizational roles that have well-defined responsibilities and privileges. The RBAC

model proposed by NIST, because of its generality, can be used to express a very wide

range of security policies including discretionary and mandatory, as well as user-defined

organizational specific policies [6, 7, 19, 20]. Many benefits of an RBAC approach

include its support for security management and the principle of least privilege [6]. For

example, we can easily manage a change in a user’s responsibility or role within the

organization by assigning him/her the new role and removing him/her from the old one.

Furthermore, use of role hierarchies and grouping of objects into object classes based on

responsibility associated with a role makes the management of permissions very easy. By

configuring the assignment of the least set of privileges from a role set assigned to a user

when he/she activates the role, inadvertent damage can be minimized in a system.

2.2.2.2 Temporal extensions to RBAC

Because of its relevance and above-mentioned benefits that it provides, the RBAC

model has been widely investigated and several extensions to it have been proposed. A

set of such extensions related to the temporal dimension of the model shall now be

discussed. An initial temporal extension to RBAC has been proposed in the Temporal

RBAC (TRBAC) model. This has been motivated by the fact that in many organizations,

functions may have limited or periodic temporal duration. Consider, for instance, the case

of a component technician in a manufacturing enterprise and assume that any technician

is to be authorized to work only when a supervisor is at work. If both the technician and

supervisor are represented as roles, enforcing such a requirement entails constraining the

enabling of a technician role only during the specified temporal interval when the

supervisor role is enabled. TRBAC allows the specification of such temporal conditions.

The main features it provides include the periodic enabling/disabling of roles and

temporal dependencies among them expressed by means of role triggers, which are active

rules that are automatically executed based on the enabling and/or disabling of roles.

Priorities are associated with both the triggers and periodic enabling/disabling of roles to

handle possible conflicts that can arise, when the simultaneous enabling/disabling of a

role is required. In such cases, a combination of priority and denials-take-precedence rule

 - 14 - 14

are used to resolve the conflicts. TRBAC further allows an administrator to issue run-

time requests for enabling and disabling a role and restricted handling of role activations

by a user. TRBAC, however, is inadequate to express a variety of useful temporal

constraints. In particular, TRBAC does not include temporal constraints on (i) user-to-

role and permission-to-role assignments, and (ii) activations of roles by users. In (i),

TRBAC assumes that only roles can be transient, i.e., only they are enabled and disabled

at different time intervals. In this thesis, we motivate the point that in a typical enterprise

environment, roles, as well as users and permissions assigned to them, may also be

transient. Because of (ii), TRBAC does not use a well-defined, separate notion of role

enabling and role activation, and hence cannot enforce a fine-grained access control at the

user level for role activation. The GTRBAC model distinguishes between the notions of

role activation from that of role enabling to incorporate various activation constraints on

role activations at the individual user level. It also extends the temporal constraint

enforcement mechanism to user-to-role and permission-to-role assignments. It thus

allows the specification of a more complete set of temporal constraints related not only to

role enabling, but also to user-to-role assignment, permission-to-role assignment, and role

activation. The notions of triggers and safety, as provided in TRBAC, are also

accordingly extended to capture the enhanced language semantics. The X-GTRBAC

framework hence builds upon the elaborate and consistent set of specifications laid out in

the GTRBAC model.

2.2.2.3 GTRBAC specifications

The GTRBAC model allows the specification of an elaborate set of temporal

constraints on role enabling/disabling, activation/deactivation, and user-to-role and

permission-to-role assignment/de-assignment. These constraints are composed of

periodic-time expressions that capture the valid periods of time when the corresponding

constraint may be satisfied. This expression has three parts: (i) a start-time expression,

which indicates a valid start time, (ii) an interval expression, which indicates the interval

within which the constraint may be satisfied, and (iii) a duration expression, which

indicates the valid duration for the constraint. Note that all parts of the periodic-time

expression are optional, and the absence of any one of them means that there is no

 - 15 - 15

corresponding time restriction. The model additionally allows various content and

context conditions to be specified. These conditions are captured through status

expressions for roles, assignments, or other environmental parameters. Specifically, the

following temporal constraints and events are allowed in GTRBAC:

Temporal constraints on:

(a) role-enabling: These constraints allow the specification of the valid time

periods during which a role is enabled/disabled. Additional content-and context

conditions may also be supplied within the constraint.

(b) role-activation: These constraints allow the specification of the valid time

periods during which a role is activated/deactivated. Additional content-and context

conditions may also be supplied within the constraint. Role activation only occurs as a

run-time event.

(c) user-to-role assignment: These constraints allow the specification of the valid

time periods during which a user may be assigned to a role. Additional content-and

context conditions may also be supplied within the constraint.

(d) permission-to-role assignment: These constraints allow the specification of

the valid time periods during which a permission may be assigned to a role. Additional

content-and context conditions may also be supplied within the constraint.

Run-time events: A set of run-time events allows a user or an administrator to

dynamically initiate actions. One such example captured in our framework is

activation/deactivation of a role. Note that activation requests for a role may only be

supplied by the user, since role activation is done at the user’s discretion.

Triggers: Triggers allow for expressing dependency among GTRBAC events, as well as

capturing the past events and defining future events based on them. Triggers may not

include any activation event in their head, for the reason cited above.

In addition to the above temporal constraints, the GTRBAC model supports the

following separation of duty constraints as per the NIST RBAC standard:

(a) Static separation of duty: The semantics of static separation of duty require

that no n roles that are part of a “Static Separation of Duty Role Set” (SSD_Role_Set) be

assigned to the same user, where n is any positive integer.

 - 16 - 16

(b) Dynamic separation of duty: The semantics of dynamic separation of duty

require that no m roles that are part of a “Dynamic Separation of Duty Role Set”

(DSD_Role_Set) be simultaneously active in the same session of the same user, where m

is any positive integer.

The formal expressions for the specification of periodic time and the temporal

constraints and events in GTRBAC are re-produced below for completeness.

Definition 2.2.3.1 (Periodic expression) [21]: Given calendars CBdB, CB1 B, …, CBn B, and time

occurrences OB1, …, BOBn B, a periodic expression P is defined as:

P = ∑
=

n

i 1

OBi B.CBiB ⊲ x.CBd B

 where OB1 B = all, OBi B ∈ 2P

N
P ∪{all}, CBi B ⊑ CBi-1 B for i = 2,.., n, CBd B = CBn B, and x ∈ ℕ.

Periodic-time expression: Periodic time expression is represented by pairs <[begin,

end], P>, where P is a periodic expression denoting an infinite set of periodic time

instants, and [begin, end] is a time interval denoting the lower and upper bounds that

are imposed on instants in P.

The formalism for periodic expressions is based on the one used in [22], and

relies on the notion of calendars. A calendar is defined as a countable set of contiguous

intervalsTP

1
PT, numbered by integers called indexes of the intervals. In our discussion, we

assume the existence of a set of calendars containing the calendars Days, Weeks, Months,

and Years, where Days is the calendar with the finest granularity, i.e., it is the basic

calendar. Symbol ⊲ separates the first part of the periodic expression that identifies the

set of starting points of the intervals it represents, from the specification of the duration of

each interval in terms of calendar CBdB. For example, all.Years + {3, 7}.Months ⊲

2.Months represents the set of intervals starting at the same instant as the third and

seventh month of every year, and having a duration of 2 months. In practice, OBi B is omitted

TP

1
PT Two intervals are contiguous if they can be collapsed into a single one (e.g., [1, 2] and [3, 4]).

 - 17 - 17

when its value is all, whereas it is represented by its unique element when it is a

singleton. x.CBd B is omitted when it is equal to 1.CBn B.

Event expression: A simple event expression has one of the following forms:

(a). enable r or disable r where r ∈ Roles.

(b). assign r to u or de-assign r to u, where r ∈ Roles and u ∈ Users.

(c). assign p to r or de-assign p to r, where p ∈ Permissions and r ∈

 Roles.

Role status expression: Role status expressions have one of the following forms:

(a). enabled r or ¬enabled r (or disabled r), where r ∈ Roles.

(b). activated r, where r ∈ Roles.

(c). active r for u or ¬active r for u , where r ∈ Roles and u ∈ Users.

Assignment status expression: Assignment status expressions have the following forms

(a). assigned r to u or ¬assigned r to u, where r ∈ Roles and u ∈ Users.

(b). assigned p to r or ¬assigned p to r, where r ∈ Roles and p ∈

 Permissions.

Run-time request: A run-time request expression has one of the following forms:

 (a). a user’s run-time request expression to activate a role has the form:

s: activate r for u after ∆t, or

s: deactivate r for u after ∆t

 where r ∈ Roles and u ∈ Users, s is the session attached to the request, and

 ∆t is the duration.

(b). an administrator's run-time request expression has the form:

E after ∆t

 where E is an event expression and ∆t is the duration expression.

Triggers: A trigger expression has the form

E1 ,…, En , C1 ,…, Ck → E after ∆t

where E Bi Bs are event expressions or run time requests, CBi Bs are role status expressions or

assignment status expressions, E is an event expression such that E ∉ {s:activate r

for u}, and ∆t is a duration expression.

 - 18 - 18

Table 2.1 summarizes the temporal constraint types and expressions of the

GTRBAC model. The GTRBAC model extends the safety notion of the TRBAC model

to show that there exists an execution model for it. Hence the consistency of our

framework is implied by the consistency of GTRBAC model.

Table 2.1
Temporal constraints and event expressions in GTRBAC

Constraint
categories

Events Expression

Enabling
C i

 Role enabling (I, P,D, enable/disable r)
Activation

C i
Role activation <!--only occurs as a run-time event -->
User-to-role assignment ([I, P, D], assign BU B/deassign BU B r to u) Assignment

Constraint
Permission-to-role assignment ([I, P, D], assign BP B/deassign BP B p to r)

Trigger <!--any triggering event --> EB1 B ,…, EBn B , C B1 B ,…, C Bk B → E after ∆t
Users’ activation request (s:(de)activate r for u after ∆t))

(assign BU B/de-assign BU B r to u after ∆t)
(enable/disable r after ∆t)
(assign BP B/de-assign BP B p to r after ∆t)

Run-time
Requests

Administrator’s run-time request

(enable/disable c after ∆t)

This chapter motivated and introduced the component technologies of the X-

GTRBAC framework. In the next chapter, we present its specification language and

system architecture.

 - 19 - 19

3. X-GTRBAC SPECIFICATION LANGUAGE

AND ARCHITECTURE

This chapter presents the specification language and system architecture for our

X-GTBRAC framework. The specification is designed to serve dual goals. One, it

attempts to model the RBAC elements and incorporate the functional specifications as

per the NIST RBAC standard [5]. Additionally, it provides the syntactic and semantic

constructs needed to enforce the temporal constraints as per the GTRBAC model. The

system architecture is designed using XML and Java based technologies.

3.1 Modeling RBAC Elements

Initial goal of the X-GTRBAC specification language is to model the five basic

RBAC elements (as shown in Figure 2.2) and their associated set-relations. To represent

the RBAC elements in XML, we generate schema definitions for “user”, “role”, and

“permission”. Note that schema definition is not necessary for “operation” and “object”

elements because they are included in a “permission” definition as per the RBAC

standard, and hence their relationship with other RBAC elements is captured in the

“permission” schema. We introduce a BNF-like grammar, called X-Grammar, to present

an overview of the specification language for the RBAC elements in an XML-syntax.

X-Grammar: The X-Grammar follows the same notion of terminals and non-terminals as

in BNF, but supports the tagging notation of XML that also allows expressing attributes

within element tags. The non-terminals are expressed as <!--“non_terminal_name”>

XML tags, and terminals as standard XML tags. Optional tags are placed within square

brackets “[]”. Group portions of a production are included in curly brackets “{}”, with

the repeat count indicated by a subscript. The default count is one. A “*” and a “+”

indicates a count of “zero or more” and “one or more” respectively, whereas a “-” is used

to provide a range. A “|” indicates alternates within a production set, and exactly one can

be chosen. Any data placed in parenthesis “()” is not part of the terminal symbol, and

 - 20 - 20

Figure 3.1: X-Grammar for XCredTypeDef

<!-- Definitions of Credential Types>
::=
<XCredType [xctd_id = (id)] >
 {<!-- Credential Type Definition>}+
</XCredType>

<!-- Credential Type Definition> ::=
<CredType
cred_type_id = (id)
type_name= (type name) >
 <AttributeList>
 {<!-- Attribute Definition>}+
 </AttributeList>
</CredType >

<!-- Attribute Definition> ::=
<Attribute>

<AttributeName
 usage = “mand | opt”

 type = (type)> (name)
</AttributeName >

Figure 3.2: X-Grammar for XUS

<!-- User Definitions >::=
<Users>
 {<!-- User Definition>}+
</Users>

<!—CredType > ::=
<CredType cred_type_id = (id)
 type_name= (type name) >
 <!-- Credential Expression>
</CredType>

<!-- User Definition> ::=
<User user_id = (id)>
 <UserName> (name) </UserName>
 {<!--CredType>}+
 <MaxRoles>(number)</MaxRoles>
</User>

<!-- Credential Expression> ::=
<CredExpr>
 {<(attribute name)> (attribute value)
 </(attribute name)>}+
</CredExpr>

shall be supplied by the security administrator. The X-Grammar has been adopted for a

clear expression of the specification language constructs. The corresponding schemas for

the XML sheets listed in the thesis are provided in Appendix–A.

3.1.1 Users and credentials

To evaluate the users being assigned to a particular role, the specification

language uses the notion of credentials as discussed in [23]. A “credential type” is created

by the security administrator to group users based on their credentials, and hence

enforcing a common set of attribute-value pairs for a given group. This set of attributes

constitutes the “cred_expr” for the given credential type. A credential type definition

schema (XCredTypeDef) is supplied as part of the specification language to facilitate the

creation of new credential types.

With respect to the grammar for the XCredTypeDef sheet shown in Figure 3.1,

mand indicates that the attribute is mandatory whereas opt indicates that it is optional.

The credential information in XCredTypeDef sheet provides a vocabulary to express the

credentials needed by the users of any organization in order for them to be considered for

assignment to specific roles. Users and their credentials are expressed in the form of an

XML document that we refer to as XML User Sheet (XUS). The grammar for XUS is

 - 21 - 21

<!-- XML Role Sheet> ::=
<XRS [xrs_id = (id)]>
 {<!-- Role Definition>}+
</XRS>

<!-- Role Definition> ::=
<Role role_id = (id)
 role_name = (role name)>
 [<!--{En|Dis}abling Constraint>]
 [<!--[De]Activation Constraint>]
 {<SSDRoleSetID> (id) </SSDRoleSetID>}*
 {<DSDRoleSetID> (id) </DSDRoleSetID>}*
 [<Junior> (name) </Junior>]
 [<Senior> (name) </Senior>]
 [<Cardinality> (number) </Cardinality>]
</Role>

Figure 3.3: X-Grammar for XRS

shown in Figure 3.2. The “max_roles” tag indicates the maximum number of roles that a

user can be assigned to. As shall be elaborated in the next section, user credentials may

be updated dynamically to capture the activity profile of the user.

3.1.2 Roles

Roles are also created by the security administrator. A role has an associated set

of credentials that must be satisfied by the users who are assigned to that role. Roles and

their associated information is expressed in the form of an XML document that we refer

to as XML Role Sheet (XRS). The grammar for XRS is shown in Figure 3.3.

The “role_name” is a unique role identifier. The cardinality of a role is the

maximum number of users assigned to it at any time. If none is explicitly supplied, it is

assumed unlimited.

3.1.2.1 Separation of duty constraints

Each role definition contains optional “SSD_Role_Set_id” and

“DSD_Role_Set_id” tags which refer to the set of roles that are collectively in static and

dynamic separation of duty respectively as per the NIST RBAC standard. Each of

SSD_Role_Set and DSD_Role_Set has a cardinality attribute that gives the maximum

number of roles that a user may be assigned to or can simultaneously have active in

his/her sessions from the set. The SSD_Role_Sets and DSD_Role_Sets are supplied in a

separate XSoDDef sheet. The grammar for XSoDDef sheet is shown in Figure 3.4.

 - 22 - 22

Figure 3.4: X-Grammar for XSoDDef sheet

<!-- Separation of Duty Definitions> ::=
<XSoDDef [xsod_id = (id)]>
 [<!--SDRoleSets>]
 [<!--DSDRoleSets>]
</XSoDDef>

<!-- SSDRoleSets > ::=
<SSDRoleSets>
 {<!--SSDRoleSet>}+
</SSDRoleSets>

<!-- SSDRoleSet> ::=
<SSDRoleSet>
 {<SSDRole ssd_role_set_id =(id)
 ssd_cardinality = (number)>

 (role name)
 </SSDRole>}+
</SSDRoleSet>

<!-- DSSDRoleSets > ::=
<DSDRoleSets>
 {<!--DSDRoleSet>}+
</DSDRoleSets>

<!-- DSDRoleSet> ::=
<DSD dsd_role_set_id =(id)
 dsd_cardinality = (number)>

 (role name)
 </DSDRole>}+
</DSDRoleSet>

3.1.2.2 Role hierarchies

The optional “junior” and “senior” tags referring to junior and senior roles are

used to capture hierarchical relationships in the RBAC model. The exact semantics that

should be enforced on roles within an hierarchy are determined by the target enterprise.

However, the notion of “authorized roles” and “authorized permissions” as stated in the

NIST RBAC standard is supported by our framework. “Authorized roles” refers to the set

of assignable roles for a user, including the roles that are directly assignable to the user

based on his/her own credentials, as well as the “junior” roles of all such roles.

“Authorized permissions” is the set of corresponding permissions for the authorized

roles.

3.1.2.3 Temporal and non-temporal context-based constraints

We now discuss the tags of a role that capture the semantics of both temporal and

non-temporal constraint specification and related information. All these tags are optional

since their omission simply implies the absence of constraints in any given specification.

This set of constraints is supplied in a separate XTempConstDef sheet. The grammar for

XRS constraints specification is shown in Figure 3.5. The grammar for corresponding

XTempConstDef sheet is shown in Figure 3.6.

The “Attributes” tag of the role contains a list of role attributes that may be

parameters of the context conditions which need to be dynamically evaluated for any role

enabling/disabling or activation/deactivation. This role parameterization facilitates in

capturing the status expressions in GTRBAC model as discussed in Chapter 2. The

 - 23 - 23

<!--{En|Dis}abling Constraint> ::=
 <{En|Dis}abConstraint
 [op = {AND|OR|NOT}]>
 {<!--{En|Dis}abling Condition>}+
</{En|Dis}abConstraint>

<!--{En|Dis}abling Condition> ::=
<{En|Dis}abCondition
 [{pt_expr_id=(id) |
 d_expr_id=(id)}] >
 [<!-- Logical Expression>]
<{En|Dis}abCondition>

<!--[De]Activation Constraint> ::=
<[De]ActivConstraint

 [op = {AND|OR|NOT}]>
 {<!--[De]ActivationCondition>}+
</[De]ActivConstraint>

<!--[De]Activation Condition> ::=
<[De]ActivCondition
 [d_expr_id=(id)]>
 [<!-- Logical Expression>]

</[De]ActivCondition >

Figure 3.5: X-Grammar for XRS constraints

context conditions may be based on parameters such as time, system load, etc., or on

status expressions such as “whether role R has been enabled by user U”. The

“(En|Dis)abling Constraint” and “[De]Activation Constraint” tags contain a set of

conditions, where each condition is composed of possibly multiple logical expressions for

specification of the respective constraints based on both temporal and non-temporal

context-dependent parameters. The constraint tag has an optional op-code attribute that

determines the evaluation logic of the expressions within the constraint. An op-code of (i)

“AND” implies that all constituent expressions must be true for the constraint to be true,

(ii) “OR” implies that at least one expression must be true for the constraint to be true,

and (iii) “NOT” implies that none of the expressions must be true for the constraint to be

true. The op-code defaults to “AND” if none is specified.

Each condition tag may contain a “pt_expr_id” or “d_expr_id” attribute that refers

to a periodic-time or a duration expression respectively. These expressions are the XML

representation of the periodic-time expression framework provided in the GTRBAC

model, and bind the corresponding condition with the respective periodic expression. We

give an XML representation for each of the start-time, interval, and duration expressions

that together constitute the periodic-time expression. Following the notion of “calendars”

used in the GTRBAC model, the start time expression consists of “calendar sets”, where

each calendar is a unit of time, e.g. years, months, weeks, etc. As an example, an event

that occurs at the start of the second week of every first and eighth month of every odd

year would be represented by using “{odd}” as the Year set, “{1,8}” as the Month Set,

and “{2}” as the Week Set. The optional “pt_id_ref” attribute indicates start time with

 - 24 - 24

<!-- Definitions of Temporal Constraints> ::=
<XTempConstDef [xtcd_id = (id)]>
 [<!—Interval Expression>]
 [<!-- Periodic Time Expression>]
 [<!-- Duration Expression>]
</XTempConstDef>

<!-- Periodic Time Expression> ::=
 <PeriodicTimeExpr pt_expr_id = (id)
 [d_expr_id = (id)] [i_expr_id = (id)] >
 <!-- Start Time Expression>
</PeriodicTimeExpr>

<!-- Start Time Expression> ::=
<StartTimeExpr [pt_id_ref =(pt_id)]>
 [<Year>{all|odd|even} /<Year>]
 [<!--MonthSet>]
 [<!--WeekSet>]
 [<!--DaySet>]
</StartTimeExpr>

<!--MonthSet> ::=
<MonthSet> {<Month>{1|..|12}</Month>}B1-12 B
</MonthSet >

<!—Interval Expression> ::=
 <IntervalExpr i_expr_id = id)>
 <begin> (date)</begin>
 <end> (date)</end>
<IntervalExpr>

<!-- Duration Expression> ::=
<DurationExpr d_expr_id = (id)>
 <cal>{Years|Months|Weeks|Days}</cal>
 <len> (number)</len>
</DurationExpr>

<!--WeekSet> ::=
 <WeekSet>
 {<Week>{1|..|4}</Week>} B1-4
 </WeekSet >

<!--DaySet> ::=
<DaySet>
 {<Day>{1|..|7}</Day>}B1-7
</DaySet >

Figure 3.6: X-Grammar for XTempConstDef sheet

reference to the provided periodic-time expression id. If it is supplied, then the start time

is the same as that of the referenced periodic time. Note that a “pt_id_ref” is provided

only when the calendar sets are not provided, and vice versa. Any new start time is

always explicitly defined using new calendar sets. An interval is given by a (begin_date,

end_date) pair, and a duration is specified as (calendar, calendar_length) pair. The

semantics of the periodic time expression thus dictate that the associated event can only

occur if the start time expression is satisfied by the time of request, and such time falls

within the interval specified by the interval expression. The duration of the event, if it

occurs, would be governed by the duration expression.

The “Logical Expression” tag contains a set of predicates, where each predicate

may contain a context-condition expressed in terms of role attributes, or embed within

itself another logical expression. Hence, the structure allows evaluation of nested

conditions expressed by multiple logical expressions. The predicates are composed of

context-based parameters, where the “NameParam” tag contains the name of the

parameter to be evaluated, and the ”ValueParam” tag contains its value that is to be

checked according to the given “Operator”. For instance, any attribute supplied as part of

user credential expression may be compared for a pre-requisite value needed for certain

 - 25 - 25

<!-- Logical Expression> ::=
<LogicalExpr [op = {AND|OR|NOT}]>
 {<!-- Predicate>}+
</LogicalExpr>

<!-- Predicate> ::=
<Predicate>

 [{<Operator> {gt|lt|eq|neq} </Operator>
 [<FuncParam>(function name)</FuncParam>]
 {<NameParam [type=(role|user|attribute)]>
 (parameter name)</NameParam>}+
 <ValueParam>(value)</ValueParam> }

 |
 < !--LogicalExpression>]
</Predicate>

Figure 3.7: X-Grammar for Logical Expression

role assignment or activation by supplying the attribute name as “NameParam”, the

required values as ”ValueParam”, and the comparison operator as “Operator”. The

“FuncParam” is an optional tag which is useful if the parameters in question can only be

evaluated through a system review function, expressed as the status expressions of

GTRBAC model. Multiple parameter names may be passed to functions that evaluate

multiple parameters, with the distinction among parameter types made with the “type”

attribute. As an example of predicates, we might evaluate status expressions for a role by

supplying a status condition such as “active r for u” as “FuncParam”, the role name

and the user id as two instances of “NameParam”, and the value of either “True” or

“False” as the “ValueParam”. In such situations where a boolean output is returned, only

“eq” operator is useful for comparison. The “Logical Expression” tag also has an optional

op-code attribute that determines the evaluation logic of the predicates. On the similar

lines as the constraint tag, an op-code of (i) “AND” implies that all constituent predicates

must be true for the logical expression to be true, (ii) “OR” implies that at least one

predicate must be true for the logical expression to be true, and (iii) “NOT” implies that

none of the predicates must be true for the logical expression to be true. The op-code

defaults to “AND” if none is specified. The grammar for logical expression specification

is shown in Figure 3.7.

3.1.2.4 Triggers

The grammar for constraint specification is also used to capture the trigger

mechanism of GTRBAC model. Since the predicates within a logical expression can

include both temporal and non-temporal context-based parameters, they allow for

 - 26 - 26

Figure 3.8: X-Grammar for XTrigDef sheet

<!--Triggers Specification> ::=
<XTrigDef [xtd_id = (id)]>
 {<!-- Trigger>}*
</XTrigDef>

<!--Trigger> ::=
<Trigger [trig_id = (id)]>
 <Head {role_name = (name) | perm_id = (id) }
 [user_id = (id)]
 action = {enable | disable |
 assign | deassign | deactivate} >
 </Head>
 </Body>
 <!--Triggering Constraint>
 </Body>
</Trigger>

<!--Triggering Constraint> ::=
 <TrigConstraint
 [op = {AND|OR|NOT}]>
 {<!--Triggering Condition>}+
</TrigConstraint>

<!—Triggering Condition> ::=
<TrigCondition>
 [<!-- Logical Expression>]
<TrigCondition>

specification of context-based triggers in our X-GTRBAC framework. This set of triggers

is supplied in a separate XTrigDef sheet. The grammar for XTrigDef sheet is shown in

Figure 3.8.

The “Head” tag of the trigger has an attribute that indicates the target role or the

permission on which the trigger action is performed. An optional “user_id” attribute is

also supplied for triggers that need to perform the action with respect to certain individual

users. The triggering constraint in the “Body” tag is semantically similar to the

constraints discussed above, and is evaluated in an analogous manner. The action

associated with the trigger is performed if the constraint evaluates to true.

3.1.3 Permissions

The permissions for a given system are defined in terms of “objects” and

associated “operations”. The “operations” component of the permission is typically

system-dependent, such as read, write, delete, create, operate etc. The security

administrator creates the permissions that associate the objects in the system with

corresponding operations. The set of permissions for a system is expressed in the form of

an XML document that we refer to as XML Permission Sheet (XPS). The grammar for

XPS is shown in Figure 3.9.

 - 27 - 27

<!-- XML Permission Sheet> ::=
<XPS [xps_id = (id)]>
 {<!-- Permission Definition>}+
</XPS>

<!-- Permission Definition> ::=
<Permission perm_id = id
 [prop= (prop op)] >
 <Object type= (type name) id= (id)/>
 <Operation> (access op) </Operation>
</Permission>

Figure 3.9: X-Grammar for XPS

The “perm_id” is a unique permission identifier. An object in our framework can

represent any system resource, such as documents, or inventory products, to which

permission is being assigned. Each object is represented by a unique id and an associated

type attribute. The access control requirements for various object types in an enterprise

are therefore handled uniformly by our X-GTRBAC framework. The extent of the access

is defined by the associated operation, indicated by an access opcode which is one of an

enumerated set of values in the system. The resources in the system are modeled as

XML, and the natural hierarchical structure of XML DOM is used to capture the physical

object hierarchy. An object hierarchy could be composed of either documents, or

document elements (in case of XML documents), or a series of inventory products

organized according to their order of assembly, or any other organization of system

resources. A permission can, hence, have an optional propagation option, given by the

“prop” attribute, which indicates whether or not it propagates down the object hierarchy.

We allow the propagation options “no_prop”, “first_level” and “cascade” [24]. If no

propagation option is explicitly supplied, it is assumed to be “no_prop”, i.e. no

propagation. However, the security administrator can specify a different propagation

option at the time of permission-to-role assignment if a role demands sufficient

privileges.

3.2 Policy Administration

The information about users, roles and permissions, and the related credentials,

separation of duty constraints, temporal constraints, and triggers, available from the

corresponding XML documents are used in the process of policy administration. The

security administrator uses these XML sheets to specify the policy base for the protected

enterprise resources. The documents generated in this phase include an XML User-to-

Role Assignment Sheet (XURAS) and an XML Permission-to-Role Assignment Sheet

 - 28 - 28

(XPRAS). These assignments are specified through XML schemas. Keeping the user,

role, and permission specifications separate from their assignments allows independent

design and administration of the policy, and hence supports a modular implementation of

the X-GTRBAC system.

Table 3.1
The XML sheets comprising the XML Policy Base

Primary Policy Sheets Policy Definition Sheets

XUS XCredTypeDef

XRS XSoDDef

XPS XTempConstDef

XURAS XTrigDef

XPRAS

The policy sheets in the policy base are summarized in Table 3.1. The information

from the policy base is used to enforce the authorization constraints. More specifically,

the users are allowed access to resources based on their assigned roles per the XURAS

and the associated permissions per the XPRAS. The grammar for the specification

language for the generation of these assignment documents is presented below. The

corresponding schemas are provided in Appendix–B.

3.2.1 User to role assignment

The grammar for XURAS is shown in Figure 3.10. Each “UserRoleAssignment”

(URA) tag has an associated “role_name” attribute, and contains a set of “AssignUsers”

tags containing the set of users who are to be considered for potential assignment to the

specified role. Each such user is identified by the “user_ id” attribute of the

corresponding “AssignUser” tag. This tag also contains the assignment constraint for this

particular user. The assignment constraint has a “cred_type” attribute that specifies the

credential type that the user must possess in order to be considered for a potential role

assignment. The remaining part of the constraint is semantically similar to the constraints

discussed above, and is evaluated in an analogous manner. The user is assigned to the

specified role if the constraint evaluates to true. Similar logic applies to de-assignment of

users from roles. Note that a special user with user_id = “any” is recognized by the

 - 29 - 29

Figure 3.10: X-Grammar for XURAS

<!-- XML User-to-role Assignment Sheet> ::=
<XURAS [xuras_id = (id)]>
 {<!-- User-to-role Assignment>}+
</XURAS>

<!-- User-to-role Assignment> ::=
<URA ura_id=(id) role_name=(name)>
<[De]AssignUsers>
 {< !--[De]Assign User>}+
</[De]AssignUsers>
</URA>

<!--[De]Assign User > ::=
<[De]AssignUser
 user_id=(id)>
 <!--[De]Assign User Constraint>
</[De]AssignUser>

 <!--[De]Assign User Constraint> ::=
<[De]AssignUserConstraint
 [op = {AND|OR|NOT|XOR}]>
 <!--[De] Assign User Condition>
</[De]AssignUserConstraint>

<!--[De]Assign User Condition> ::=
<[De]AssignUserCondition
 cred_type=”type_name”
 [{pt_expr_id=(id) |
 d_expr_id=(id)}] >
 [<!-- Logical Expression>]
</[De]AssignUserCondition>

<!-- XML Permission-to-role Assignment Sheet> ::=
<XPRAS [xpras_id = (id)]>
 {<!-- Permission-to-role Assignment>}+
</XPRAS>

Figure 3.11: X-Grammar for XPRAS

<!-- Permission-to-role Assignment> ::=
<PRA pra_id=(id) role_name=(name)>
<[De]AssignPermissions>
 {< !--[De]Assign Permission>}+
</[De]AssignPermissions>
</PRA>

<!--[De]Assign Permission > ::=
<[De]AssignPermission
 [{pt_expr_id=(id) |
 d_expr_id=(id)}]
 {<PermId>(id)</PermId>}+
</[De]AssignPermission>

system as an unknown user, who may be required to supply additional assignment

conditions in order to be assigned to a particular role. If no explicit conditions are

specified, then any user could be assigned the particular role, which usually is the “guest”

role in most enterprise applications.

3.2.2 Permission to role assignment

The grammar for XPRAS is shown in Figure 3.11. Each

“PermissionRoleAssignment” (PRA) tag has an associated “role_name” attribute, and

contains a set of “AssignPermission” tags containing the set of permissions that are to be

potentially assigned to the specified role. Each such permission is identified by a

“PermId” tag within the corresponding “AssignPermission” tag. Note that the

permissions would typically be subject to periodic-time or duration constraints, and hence

we allow the option of specification of periodic-time or duration constraint expression for

the permission assignment. The permission is assigned to the specified role if the

 - 30 - 30

constraint evaluates to true. Similar logic applies to de-assignment of permissions from

roles.

3.3 System Architecture and Implementation

In this section, we present the system architecture of X-GTRBAC. We first

provide an overview of the system components and technologies, and then discuss the

implementation details to illustrate the process of specification and enforcement of an

enterprise’s access control policy.

3.3.1 Overview

The X-GTRBAC framework allows the XML-based enterprise policies to be

specified and enforced through a Java-based GUI-enabled application. The application

code is readily integrated into a Web browser by an application-to-applet transformation

mechanism provided by Java.

The overall system design is depicted in Figure 3.12. As indicated in the figure,

the two main sub-systems of X-GTRBAC Module are the XML Processor and the

GTRBAC Processor. The XML processor is implemented in Java using Java API for

XML Processing (JAXP). Custom modules have been designed to get the DOM instance

of parsed XML documents and forward them on to the GTRBAC Processor. The

GTRBAC Module then administers and enforces the policy according to the supplied

policy information.

The policy information is contained in the XML Policy Base. A document

composition module external to X-GTRBAC is provided to compose the policy

documents. This module composes the policy sheets listed in Table 3.1. The policy sheets

from the XML Policy Base are then loaded into the X-GTRBAC Module by the security

administrator. Since X-GTRBAC can act as both stand-alone and web-deployable

application, it may be invoked from either the local system, or remotely through an

XML-aware browser. Hence, the X-GTRBAC Module seamlessly interfaces with an

external client across distributed domains over an interconnect network (i.e. LAN, WAN

etc.). The client may submit an access request through any standard XML-based Web

services messaging protocol, like SOAP [13]. Similarly, the access authorization is

returned via the same protocol.

 - 31 - 31

Figure 3.12: X-GTRBAC System Architecture

X-GTRBAC Module

GTRBAC
Module

UR ,PR DataSet
 TRIG DataSet

Sessions
DataSet

XML
Sessions
Log

GTRBAC Processor

Policy
Loader

Policy
Validation
Module

XML Processor

DOM

XML
Parser

XML/SOAP

Access
Request

Document
Composition
Module

XML
Policy
Base

XML/SOAP

Authorization

Data Item

Functional
Module

ULegendU:

3.3.2 XML processor

The XML Processor contains the XML Parser and the DOM tree representations

of the supplied XML documents. The X-GTRBAC system provides a Policy Loader to

load the policy sheets for a given policy. As a next step, functionality is provided via a

Policy Validation Module to validate the policy sheets in terms of existence checking and

type conformance. This means that all users, roles, and permissions referenced in

XURAS, XPRAS and XTrigDef sheet must exist in the corresponding XUS, XRS and

XPS respectively. Also, all the referenced data must exist in the corresponding definition

files. This means that (i) the credential types associated with the users in XUS must

conform to the type definitions in the XCredTypeDef sheet, (ii) the separation of duty

constraint sets referenced in the XRS must be present in XSoDDef sheet, and (iii) the

periodic-time, start-time, interval, and duration expressions referenced in XRS must be

present in XTempConstDef sheet. This validation support is provided by Apache Xalan

 - 32 - 32

XSLT engine built into JAXP. Once the policy sheets are validated, the corresponding

DOM tree representation is generated and passed on to the GTRBAC Processor. A

facility is provided to display the instance of the DOM tree via the X-GTRBAC GUI.

3.3.3 GTRBAC processor

The GTRBAC Processor contains the GTRBAC Module and associated data

items generated by the GTRBAC Module. It performs the policy administration and

enforcement tasks.

Policy administration: The GTRBAC Module provides functionality to parse the DOM

tree structures supplied by the XML Processor, and retrieves the relevant information into

its internal data structures. The policy assignments are checked against the RBAC

consistency rules, similar to those outlined in [25], against violations of any SSD, DSD,

or cardinality constraints. A consistent assignment means, for instance, that a user in

question will be assigned by the GTRBAC Module to the corresponding role because it

satisfies all the required credential and consistency conditions. The permissions in the

system are also assigned to roles under similar consistency notions. It may be noted that

for all the users who have been assigned to roles, the actual role activation would occur

when the user actually logs into the system and requests a role. The notion of role

assignment in this context is of static type, i.e. it implies that the user has been declared

as assignable to the said role based on already supplied credential information. There can

also be a dynamic role assignment for an unknown user based on his/her credentials

supplied at the time of login. These static and dynamic role and permission assignments,

together with the role activation and enabling rules and triggers information, create the

complete internal representation of the XML Policy Base within the GTRBAC Processor

for enforcement of the policy. A collection of these policy information items are referred

to as UserRole (UR) datasets, PermissionRole (PR) datasets, and TRIG dataset. A facility

is provided to display the UR, PR and TRIG datasets via the X-GTRBAC GUI.

Policy enforcement: The information from the internal data structures is then used by the

GTRBAC Module to enforce the policy and manage user sessions. The initial login into

the system will create a default session for the user with a pre-specified “minimal” set of

roles activated based on the supplied user credentials. The initial login can be the

 - 33 - 33

<xas [xas_id= (id)]>
 <login login_id= (id)>
 [<!--CredType>]
 </login>
 ……….
 <xar xar_id= (id)>
 {<Object type= (type name) id= (id)/>}+
</xar>
<xas>

<xss [xss_id= (id)]>
 <session>
 <session_id> (id) </session_id>
 <user_id> (user id) </user_id>
 <role_name> (role name) </role_name>
 <domain> (domain name) </domain>
 <login_time> (time) </login_time>
 <login_date> (date) </login_date>
 <duration> (duration) </duration>
 <active> {Yes|No} </active>
 </session>
</xss>

Figure 3.13. X-Grammar for (a) XAS (b) XSS

(a) (b)

“user_id” from the XUS, if it is a known user, or a “user_id” of “any”, as discussed

above. In addition to the default set of activated roles, more roles can also be activated if

the user credentials so allow. Any triggers associated with role activation or other events

are handled by the GTRBAC Module based on the information from the TRIG dataset.

Access to resources is requested in the form of an XML Access Request (XAR) that

specifies the “object type” and “object id” of the requested resource. An XAR could be

submitted locally or remotely as an assertion in SOAP or similar XML-based messaging

protocol. This access request is then evaluated based on the currently activated roles for

this user. Only those resources may be accessed during a session for which the activated

set of roles has associated permissions. Both the login information and XARs for a user

are stored in an XML Access Sheet (XAS). The session-related information is contained

in the Sessions Dataset within the GTRBAC processor. This information is extracted

from an activity log maintained for every user by the GTRBAC module which we refer to

as an XML Sessions Sheet (XSS). A session parameter is included in the XSS to record

the domain from which the user is requesting access. In addition to the domain of the

requesting user, the XSS also contains the attributes such as “login_time”, “login_date”,

and “duration” of the session. These attributes are used to capture the activity profile of

the user. Such information is constantly updated into the Sessions DataSet, where it can

be dynamically processed, and incorporated into the access decisions. This feature is

useful in certain situations where context information may be an important decision

parameter, as discussed in Chapter 2. The grammar for a typical XAS and XSS is shown

in Figure 3.13.

 - 34 - 34

This chapter discussed the specification language and system architecture of X-

GTRBAC. In the next chapter, we discuss a CIE example and motivate the applicability

of our model by providing a mechanism to specify the CIE access control policy in X-

GTRBAC framework.

 - 35 - 35

4. X-GTRBAC AND

COMPUTER INTEGRATED ENTERPRISE

This chapter presents a CIE application that is currently being implemented on

our system, and discusses how the CIE specifications can be systematically mapped to

our X-GTRBAC framework to highlight the latter’s significance.

4.1 CIE Policy Specification

The access control policy for the CIE is essentially composed of the domain level

policies described for each domain within the enterprise. These domain level policies

capture the specifications of roles, users, permissions, and the related assignments for

their respective domains. In essence, each such policy captures a minimal set of

specifications that should include the following:

Functional roles and hierarchies: We let the roles in the CIE be represented by a

functional role hierarchy that assigns, at each level of the system, a role that is needed to

carry out the associated function. This role hierarchy captures the semantics of the top-

down requirements interfacingTP

2
PT and bottom-up requests interfacingTP

3
PT within the enterprise

[26]. In addition, it associates with the role at each level a set of responsibilities, and

corresponding permissions to carry out those responsibilities. These responsibilities and

permissions are captured in the domain level policies that are supplied according to the

specific needs and requirements of the enterprise. The functional role hierarchy for the

CIE in our application is shown in Figure 4.1. The corresponding policy name for each

domain is placed in an oval above each column. The overall policy of the enterprise may

then be composed of the combination of all domain level policies. Along the edges are

placed the names of possible resources that are accessed by the respective roles at

TP

2
PT Interfacing requirements of management and staff to factory floor

TP

3
PT Interfacing requests to management and staff from factory floor

 - 36 - 36

ENTERPRISE MANAGER

PURCHASE
POLICY

MKTG
POLICY

ENGG
POLICY

DESIGN
POLICY

ENGG
MODEL

VENDOR
CONTRACTS

DESIGN
MODEL

MKTG
CONTRACTS

PURCHASE
MANAGER

DESIGN
ENGINEER

ENGG
MANAGER

MKTG
MANAGER

Figure 4.1: The functional role hierarchy and accessed system resources at each
level.

ENGG
RESOURCES

PRODUCT
ENGINEER

PRODUCT
ASSEMBLIES

PURCHASE
ORDERS

PRODUCT
DESIGN

PRODUCT
DESIGNER

PROCUREMENT
OFFICER

ASSEMBLY
DESIGN

ASSEMBLY
DESIGNER

PRODUCT

SUPERVISOR

COMPONENTS

PRODUCT
TECHNICIAN

COMPONENT
DESIGN

COMPONENT
DESIGNER

CLIENT
INFO

MKTG
SUPERVISOR

each subsequent level. Only a subset of relevant functional modules has been shown in

the hierarchy to illustrate the applicability of X-GTRBAC policy specification

framework. The hierarchy can accordingly be extended and new policies defined as per

need for a specific enterprise.

Role enabling and activation constraints: The functional role hierarchy imposes a partial

ordering on the timing, order, and extent of accesses by the various roles. This constitutes

the temporal semantics of access control within the CIE, and could be captured by a

 - 37 - 37

Figure 4.2: The DAG representing the execution time-frame for a project within the
CIE.

Finish
“COMPONENT”

Create
“VENDOR

CONTRACTS”

Acquire
“PURCHASE

ORDERS”

Create
“ASSEMBLY

DESIGN”

Create
“COMPONENT

DESIGN”

Create
“PRODUCT
DESIGN”

Create
“MKTG

CONTRACTS”

Create
“DESIGN
MODEL”

Create
“ENGG

MODEL”

Acquire
“ENGG

RESOURCES”

Finish
“PRODUCT

ASSEMBLY”

Promote
“PRODUCT

SPECS”

2 wks

2 wks

2 wks

2 wks

2 wks
2 wks

2 wks

Directed Acyclic Graph (DAG), such as the one shown in Figure 4.2. This particular

graph represents the execution time-frame of a certain project scenario for the CIE being

implemented in our system. The project requires the pooling of human, technical,

commercial and engineering resources from various domains within the CIE. The timing

between two events is captured on the connecting arrows. Where it is not explicitly

stated, the default duration is 1 week. Note that the total time to finished product

according to the DAG is then 7 weeks. Based on the duration of the individual tasks in

the project, the corresponding roles in the CIE need to be enabled and disabled. The

enabled roles would have further constraints on activation in situations where there exist

other activation constraints. The permissions for the enabled and assigned roles would

also be constrained according to the involvement of the role in the current stage of the

project. The temporal constraint specification mechanism provided by X-GTRBAC

would be used to transform the temporal constraints specified by the DAG into XML

policies for the CIE.

 - 38 - 38

In the light of the preceding discussion on functional roles and tasks, we list in

Table 4.1 a subset of constraints that is implemented in the CIE represented by the role

hierarchy and DAG of Figures 4.1 and 4.2 respectively.

Table 4.1
A subset of constraints derived from the role hierarchy of Figure 4.1 and DAG of Figure

4.2 for the CIE

Constraint Type Role Constraint Description

1. Enabling Design Manager Is enabled only starting 1P

st
P week of every quarter of year 2003

2. Activation Design Manager May be activated only by one user at a time

3. Enabling Engg Manager Is enabled only :

(i) starting 3 P

rd
P week of every quarter of year 2003, and

(ii) if Design Manager role is enabled

4. Activation Engg Manager May be activated only if Design Manager role is activated

5. Enabling Product Designer Is enabled only:

(i) starting 3 P

rd
P week of every quarter of year 2003, and

(ii) if Design Manager role is enabled

6. Activation Product Designer May be activated only if Design Manager role is activated

7. Enabling Product Engineer Is enabled only:

(i) starting 5 P

th
P week of every quarter of year 2003, and

(ii) if Product Designer AND Engg Manager role is enabled

8. Activation Product Engineer May be activated only if Product Designer AND Engg Manager role
is activated

9. Enabling Purchase Manager
/ Marketing

Manager

Is enabled only:

(i) starting 5 P

th
P week of every quarter of year 2003, and

(ii) if Product Designer role is enabled

10. Activation Purchase Manager
/ Marketing

Manager

May be activated only if Product Designer role is activated

11. Static Separation
of Duty (SSoD)

Purchase Manager
and Marketing

Manager

Both these roles may not be assigned to the same user at any given time

12. Dynamic
Separation of
Duty (DSoD)

Product Designer
and Product
Engineer

Both these roles may not be simultaneously active in the same session by the
same user

13. Trigger All roles All active roles are de-activated at the start of 8 P

th
P week of every quarter of year

2003

User credentials: An enterprise would ordinarily supply the set of users who would

typically assume one of the functional roles within the CIE, and their associated set of

 - 39 - 39

credentials that may be used in determining their assignment to particular roles. Without

loss of generality, we list in Table 4.2 a subset of the users we consider in our example,

along with their associated credentials. We assume for simplicity the convention that the

credential types are named so as to reflect the current level of responsibility, or role, held

by the user. In general, they may be named differently from the actual role name of the

user. It should also be noted that the credential expression for a user with more than one

different credential types (such as george in Table 4.2) is the union of the credential

expressions of each of those credential types.

Table 4.2
A subset of users and associated credentials for the CIE

User Id Credential Type Credential Expression

1. john Product Designer age=39, level=B, qualification=MS

2. nancy Product Engineer age=36, experience=15, qualification=MS

3. george Assembly Designer

Product Supervisor
 age=29, level=D, experience=5, qualification =BS

4. carla Product Supervisor age=28, experience=5, qualification =BS

5. smith Procurement Officer age=32, level=B, region=northeast

5. dorothy Procurement Officer

Marketing Supervisor
 age=34, level=C, experience=20, region=midwest

Role assignment: The roles are assigned to users consistent with their supplied

credentials. Such assignments may be constrained by temporal or non-temporal context

conditions. Once again, without loss of generality, a subset of the role assignments

considered in our example is listed in Table 4.3.

Permissions: The available permissions within the CIE represent the set of operations

that may be performed on the available enterprise resources by eligible roles. The

specification of these permissions is system dependent. We list in Table 4.4 a subset of

the permissions assumed to be typically available in our example.

Permission assignment: The permission assignment determines the extent of access of

various roles within the CIE. The roles are assigned permissions consistent with their

responsibilities within the CIE. Such assignments may be constrained by temporal or

 - 40 - 40

non-temporal context conditions. A typical set of permission assignments for the CIE

considered in our example is listed in Table 4.5.

Table 4.3
A subset of role assignments in the CIE

Role User Id Credential Type Assignment Condition

1 Design Manager john Product Designer age>35 or level=A, qualification=PhD

2 Engg Manager nancy Product Engineer age>35 or experience>10,qualification=MS

3 Product Designer george Assembly Designer age>20 or level=B, qualification =BS

4 Product Engineer george

carla

Product Supervisor age>20 or experience =5, qualification =BS

5

.

Purchase Manager smith

dorothy

Procurement Officer age>30 or level=B, region=midwest

6 Marketing Manager dorothy Marketing Supervisor age>30 or experience>10, region=midwest

Table 4.4
A subset of available permissions in the CIE

Permission ID Object ID Object Type Allowed Operation

1. P1 Design Model Document All

2. P2 Design Model Document Read

3. P3 Engg Model Document All

4. P4 Engg Model Document Read

5. P5 Product Design Document All

6. P6 Product Design Document Read

7. P7 Engg Resources Material Equipment Operate

8. P8 Vendor Contracts Document All

9. P9 Marketing Contracts Document All

We capture the mapping of enterprise specifications to X-GTRBAC framework in

Table 4.6. The table lists the functions and tasks within the CIE and the corresponding

component that is responsible for it in the X-GTRBAC system. We next outline the

process of representing this CIE policy in our X-GTRBAC framework.

 - 41 - 41

Table 4.5
A subset of permission assignments in the CIE

Role Permission ID Assignment Condition

1. Design Manager P1 Is assigned starting 1 P

st
P week of every quarter of year 2003 for 6 weeks

2. Engg Manager P2

P3

Is assigned starting 3 P

rd
P week of every quarter of year 2003 for 2 weeks

Is assigned starting 3 P

rd
P week of every quarter of year 2003 for 4 weeks

3. Product

Designer
P2

P5

Is assigned starting 3 P

rd
P week of every quarter of year 2003 for 4 weeks Is

assigned starting 3P

rd
P week of every quarter of year 2003 for 4 weeks

4. Product

Engineer
P4

P6

P7

Is assigned starting 5 P

th
P week of every quarter of year 2003 for 2 weeks Is

assigned starting 5P

th
P week of every quarter of year 2003 for 1 week Is

assigned starting 5P

th
P week of every quarter of year 2003 for 2 weeks

5. Purchase

Manager
P2

P8

Is assigned starting 5 P

th
P week of every quarter of year 2003 for 1 week Is

assigned starting 5P

th
P week of every quarter of year 2003 for 2 weeks

6. Marketing

Manager
P2

P9

Is assigned starting 5 P

th
P week of every quarter of year 2003 for 1 week Is

assigned starting 5P

th
P week of every quarter of year 2003 for 2 weeks

Table 4.6
The mapping of CIE specifications to X-GTRBAC framework

CIE Function / Task Responsible X-GTRBAC

module

Related X-GTRBAC data

element

Specify Users and Credentials Policy Loader XUS, XCredTypeDef

Specify Functional Roles and Hierarchy Policy Loader XRS, XSoDDef

Specify Available Permissions Policy Loader XPS

Specify Task Scheduling and Timing (DAG) Policy Loader XTempConstDef

Specify Task Dependencies Policy Loader XTrigDef

Specify User Eligibility for Functional Roles Policy Loader XURAS

Specify Permission Criteria for Functional Roles Policy Loader XPRAS

Validate the Enterprise Policy Policy Validation Module Entire XML Policy Base

Generate Enterprise Policy Documents XML Processor Internal DOM tree structure

Create User-to-role / Permission-to-role Mapping GTRBAC Module UR and PR DataSets

Create and Maintain User Sessions GTRBAC Module XSS, Sessions DataSets

Request Access to Enterprise Resource External GUI (local or remote) XAR

Enforce Access Control Policy GTRBAC Processor UR, PR, Sessions DataSets

 - 42 - 42

4.2 A CIE X-GTRBAC Policy

The specification language discussed in Chapter 3 can be used to compose the policy

sheets for the CIE based on the mapping given in Table 4.6. The policy specification is

then loaded into our implemented system for enforcement. Presented below is a

discussion of the composition and implementation of the policy in our X-GTRBAC

framework.

4.2.1 Policy definition sheets

In order to supply the necessary information needed to enforce an access control

policy, the security administrator of the CIE loads the basic policy definitions related to

credential types, separation of duty constraints, temporal constraints, and trigger

specification. The policy definition sheets containing this information are shown in

Figures 4.3-4.6.

4.2.2 Primary policy sheets

The security administrator next creates the primary policy sheets related to the

users, roles, permissions, user-to-role assignments, and permission-to-role assignments.

These sheets refer to the supplemental information provided by the policy definition

sheets to specify an elaborate set of temporal and non-temporal context-based constraints

for the enterprise access control policy. As discussed in Chapter 3, the information from

both these sets of sheets is read into the X-GTRBAC module to constitute a complete

representation of the XML Policy Base for policy enforcement. The primary policy

sheets for the CIE are shown in Figures 4.7-4.11.

In particular, note that (i) the credential expression shown in XUS of Figure 4.7

captures the credential expression #1 in Table 4.2 for user john, and (ii) the activation

and enabling constraints on Design Manager role in the XRS shown in Figure 4.8

capture the constraints # 1 and #2 of Table 4.1. Similarly, the reference to the dynamic

separation of duty role set in Product Designer role captures the constraint # 12 of

Table 4.1. Also note that (i) the role assignment shown in XURAS of Figure 4.10

captures the assignment condition #1 in Table 4.3 for user john, and (ii) the permission

 - 43 - 43

<?xml version="1.0" encoding="UTF-8"?>
<XCredTypeDef xctd_id="CIE_XCTD">
 <CredentialType cred_type_id="cPD"
 type_name="Product Designer">
 <AttributeList>
 <AttributeName type="integer"
 usage="mand">age</AttributeName>
 <AttributeName type="string"
 usage="mand">level</AttributeName>
 <AttributeName type="integer"
 usage="mand">qualification
 </AttributeName>
 </AttributeList>
 </CredentialType>

</XCredTypeDef>

Figure 4.3: Part of the XCredTypeSheet to
define the user credentials specified in

Table 4.2.

<?xml version="1.0" encoding="UTF-8"?>
<XSoDDef xsod_id="CIE_XSOD">
 <SSD_Role_Sets>
 <SSD_Role_Set SSD_Role_Set_id="SSD1"
 SSD_cardinality="1">
 <SSD_Role>Purchase Manager</SSD_Role>
 <SSD_Role>Marketing Manager</SSD_Role>
 </SSD_Role_Set>
 <DSD_Role_Sets>
 <DSD_Role_Set DSD_Role_Set_id="DSD1"
 DSD_cardinality="1">
 <DSD_Role>Product Designer</DSD_Role>
 <DSD_Role>Product Engineer</DSD_Role>
 </DSD_Role_Set>
 </DSD_Role_Sets>
</XSoDDef>

Figure 4.4: The XSoDDef sheet to
define the separation of duty

constraints specified in Table 4.1.

XCredTypeDef: XSoDDef:

<?xml version="1.0" encoding="UTF-8"?>
<XTrigDef xtd_id="CIE_XTD">
 <Trigger trig_id = “disableAll”>
 <Body role_name = “all”
 action = “disable” >
 </Head>
 <Body>
 <TrigConstraint>
 <TrigCondition
 pt_expr_id="PTQuarterWeekEight"/>
 </TrigConstraint>
 </Body>
 </Trigger>
</XTrigDef>

<?xml version="1.0" encoding="UTF-8"?>
<XTempConstDef xtcd_id="CIE_XTCD">
 <IntervalExpr i_expr_id="Year2003">
 <begin>1/1/2003</begin>
 <end>12/31/2003</end>
 </IntervalExpr>
 <DurationExpr d_expr_id="SixWeeks">
 <cal>Weeks</cal>
 <len>6</len>
 </DurationExpr>

 <PeriodicTimeExpr pt_expr_id="PTQuarterWeekOne"
 i_expr_id="Year2003">
 <StartTimeExpr>
 <Year>all</Year>
 <MonthSet>
 <Month>1</Month>
 <Month>4</Month>
 <Month>7</Month>
 <Month>10</Month>
 </MonthSet>
 <WeekSet>
 <Week>1</Week>
 </WeekSet>
 </StartTimeExpr>
 </PeriodicTimeExpr>

</XTempConstDef>

Figure 4.5: Part of the XTempDefSheet to
define the temporal constraints specified in

Table 4.1.

Figure 4.6: The XTrigDef sheet to
define the trigger specified in Table

4.1.

XTrigDef:XTempConstDef:

assignments shown in XPRAS of Figure 4.11 capture the assignment conditions # 1 and

#4 in Table 4.5 for Design Manager and Product Engineer roles respectively.

 - 44 - 44

Figure 4.7: Part of the XUS to define the
users specified in Table 4.2.

<?xml version="1.0" encoding="UTF-8"?>
<XUS xus_id="CIE_XUS">
<User user_id="john">
 <UserName>John</UserName>
 <CredType cred_type_id="cPD"

type_name="Product Designer">
 <CredExpr>
 <age>39</age>
 <level>B</level>
 <qualification>MS</qualification>
 </CredExpr>
 </CredType>
 <MaxRoles>2</MaxRoles>
 </User>

</XUS>

<?xml version="1.0" encoding="UTF-8"?>
<XPS xps_id="CIE_XPS">
 <Permission perm_id="P1">
 <Object object_type="Document"

object_id="DesignModel"/>
 <Operation>all</Operation>
 </Permission>

 <Permission perm_id="P7">
 <Object

object_type="MaterialEquipment"
object_id="EnggResources"/>

 <Operation>operate</Operation>
 </Permission>

</XPS>

Figure 4.9: Part of the XPS to define the
permissions specified in Table 4.4.

XPS:

XUS:

<?xml version="1.0" encoding="UTF-8"?>
<XRS xrs_id="CIE_XRS">

<Role role_id="rDM" role_name="Design Manager">
 <Junior>Product Designer</Junior>

 <Cardinality>1</Cardinality>
 <EnabConstraint>
 <EnabCondition
 pt_expr_id="PTQuarterWeekOne"/>
 </EnabConstraint>
 <ActivConstraint>
 <ActivCondition>
 <LogicalExpr>
 <Predicate>
 <Operator>eq</Operator>
 <NameParam type=role>Design Manager
 </NameParam>
 <FuncParam>activated</FuncParam>
 <Value_param>false</ValueParam>
 </Predicate>
 </LogicalExpr>
 </ActivCondition>
 </ActivConstraint>
 </Role>
 <Role role_id="rPD" role_name="Product

Designer">
 <DSD_Role_Set_id>DSD1</DSD_Role_Set_id>
 <Senior>Design Manager</Senior>
 <Junior>Assembly Designer</Junior>
 <EnabConstraint>
 <EnabCondition
 pt_expr_id="PTQuarterWeekThree"/>
 </EnabConstraint>
 </Role>

</XRS>

Figure 4.8: Part of the XRS to define the
roles illustrated in the role hierarchy of

Figure 4.1, and capture the constraints on
them specified in Table 4.1.

XRS:

 - 45 - 45

<?xml version="1.0" encoding="UTF-8"?>
<XURAS xuras_id="CIE_XURAS">
 <URA ura_id="uraDM" role_name="Design
 Manager">
 <AssignUsers>
 <AssignUser user_id="john">
 <AssignConstraint>
 <AssignCondition cred_type="Product
 Designer">
 <LogicalExpr op="AND">
 <Predicate>
 <LogicalExpr op="OR">
 <Predicate>
 <Operator>gt</Operator>
 <NameParam>age</NameParam>
 <ValueParam>35</ValueParam>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <NameParam>level</NameParam>
 <ValueParam>A</ValueParam>
 </Predicate>
 </LogicalExpr>
 </Predicate>
 <Predicate>
 <Operator>eq</Operator>
 <NameParam>qualification</NameParam>
 <ValueParam>PhD</ValueParam>
 </Predicate>
 </LogicalExpr>
 </AssignCondition>
 </AssignConstraint>
 </AssignUser>
 </AssignUsers>
 </URA>
.......
</XURAS>

Figure 4.10: Part of the XURAS to define
the role assignments specified in Table

4.3.

XURAS:

<?xml version="1.0" encoding="UTF-8"?>
<XPRAS xpras_id="CIE_XPRAS">
 <PRA pra_id="praDM" role_name="Design
 Manager">
 <AssignPermissions>
 <AssignPermission d_expr_id="SixWeeks">
 <PermId>P1</PermId>
 </AssignPermission>
 </AssignPermissions>
 </PRA>
.......
<PRA pra_id="praPE" role_name="Product
 Engineer">
 <AssignPermissions>
 <AssignPermission d_expr_id="TwoWeeks">
 <PermId>P4/PermId>
 </AssignPermission>
 <AssignPermission d_expr_id="OneWeek">
 <PermId>P6</PermId>
 </AssignPermission>
 <AssignPermission d_expr_id="TwoWeeks">
 <PermId>P7</PermId>
 </AssignPermission>
 </AssignPermissions>
 </PRA>
.......
</XPRAS>

Figure 4.11: Part of the XPRAS to define
the permission assignments specified in

Table 4.5.

XPRAS:

4.2.3 Implementation experiences

This sub-section discusses our implementation experiences with the CIE example

on our working prototype system.

The policy sheets are loaded into the X-GTRBAC system through the Policy

Loader module. The XML Processor loads the policy sheets as DOM, and the GTRBAC

module stores the policy information from the DOM into internal system data structures.

Based on this information, some of the policy assignments effected by the GTRBAC

processor are shown in Figure 4.12. In particular, we note the following:

(i) john has not been assigned the Product Designer role since he does

not have the required qualification (PhD).

 - 46 - 46

(ii) nancy has been assigned the Engg Manager role.

(iii) dorothy is assignable to both Purchase Manager and Marketing

Manager roles. However, she can be assigned only to one of them (a policy

validation rule) because of the static separation of duty constraint # 11 in

Table 4.1.

(iv) george has been assigned to both Product Designer and Product

Engineer roles, however, he may only have one of them activated at any

given time due to the dynamic separation of duty constraint # 12 in Table 4.1.

This follows from the notion of role assignment and activation as treated in

our framework.

Figure 4.12: Snapshots of Policy Display, clockwise from top left: (i) User
Credentials for george, (ii) Information for Product Designer role, (iii) User

to Role Assignment for nancy, and (iv) Permission to Role Assignment for Engg
Manager role

 - 47 - 47

(v) smith cannot assume the role of Purchase Manager since his region is

not midwest.

(vi) nancy has been authorized the permission P7 by virtue of being senior to the

Product Engineer role.

 Note that the permissions of the roles within the CIE are constrained according to

the policy specification by including the duration expression within the permission

assignment constraints. The fact that all roles need to be disabled after the specified

project duration expires will be handled by the disable action trigger that would fire

at the start of the 8th week to disable all roles. In case a role is activated up to the end of

specified duration, the semantics of GTRBAC model require that the trigger first

deactivates the role, and then disables it. It may be mentioned that a role may also have

explicit duration constraints if it so requires. Also indicated in the figures are the

authorized roles and permissions that are acquired by virtue of the role hierarchy.

The policy administration process thus creates a complete internal representation

of the specified enterprise policy. The policy enforcement phase then uses this

information to allow the users to create sessions and access permitted resources. The

various context conditions supplied within the activation constraints are then evaluated to

make access control decisions, as discussed in Chapter 3. We invoke individual sessions

for the users, and apply a 3 level security mechanism to effectively enforce the access

control policy: (i) the user may only activate a role if he/she already meets the assignment

criteria for it, and this restriction is imposed through the X-GTRBAC GUI by allowing

only the assigned roles to appear in a drop down list of roles to choose from; (ii) the role

activation goes through only if the role is enabled at that particular instance; (iii) when in

an activated role, the user is restricted to request access to only those resources that the

activated roles for the user have permission on, and this restriction is also imposed by

allowing a selection from a drop down list of available accessible resources

corresponding to the assigned permissions of the activated role. Hence, the 3 stage

security mechanism ensures the enforcement of access control policy by restricting user

access to only his/her available set of resources, and preventing any possibility for even

requesting access to any unauthorized resource.

 - 48 - 48

This chapter presented a comprehensive example of a CIE application currently

being implemented in our X-GTRBAC framework. The next chapter concludes this thesis

by providing a compendium of the accomplishments of this research, and outlining some

future work.

 - 49 - 49

5. CONCLUSION

In this thesis, we have highlighted the challenges for enterprise-wide access

control and presented X-GTRBAC framework, an XML-based specification language

based on the GTRBAC model and its implementation, which addresses them. Our

specification language provides compact representation of access control policies for a

generic CIE, while incorporating the security relevant features that have been motivated

in this thesis to allow content-based, context-aware access control. The language

conforms to the GTRBAC model, and hence incorporates the features from the NIST

RBAC model and the temporal extensions proposed thereupon. We have emphasized

separation of language schemas to provide efficient specification of definitions of RBAC

elements, user-to-role and permission-to-role assignments, hierarchical and separation of

duty constraints, and an elaborate set of temporal and non-temporal constraints. Such

separation allows for an extensible design of the enterprise access control policy. The

language can be used to specify GTRBAC policies for securing heterogeneous,

distributed enterprise resources, and allows dynamic evaluation of user credentials and

context information to provide fine-grained access control. An implementation based on

Java has also been presented, and the system architecture has been illustrated to highlight

its salient features. Our framework hence allows an enterprise’s access control policy to

be expressed in XML, and enforced through the X-GTRBAC system module. We also

discussed a comprehensive example to motivate and illustrate the applicability of the

model to a generic CIE. Our implementation experiences have also been presented on our

working prototype system.

We plan to extend this work by analyzing the effect of more complex temporal

role hierarchies in GTRBAC, as have been investigated in [27]. Also to be considered is

enhanced support to allow more elaborate constraint specification for dynamically

 - 50 - 50

changing access control requirements, including time-constrained cardinality and

dynamic separation of duty constraints [28].

A major direction for future will be extending our X-GTRBAC framework to

distributed inter-enterprise environments. This poses several challenges, the key amongst

them being heterogeneity management. Each individual system of a multi-enterprise

environment can have its own access control policy at a local level, and the integration of

these local policies entails various challenges regarding reconciliation of semantic

differences between local policies, secure interoperability, containment of risk

propagation, global level policy management, etc. [29]. When local policies of individual

enterprises are integrated to generate a global policy or meta-policy that governs the rules

for access mediation within a multi-enterprise environment, semantic differences and

inconsistencies among the local policies must be resolved in order to ensure secure

interoperation. Efficient administration and management of global level policy becomes

challenging, particularly as local policies evolve with time. We plan to explore the

promise of our XML-based GTRBAC framework for its support for information

management and access control in distributed systems to handle the heterogeneity

challenges posed by such environments.

 - 51 - 51

LIST OF REFERENCES

[1] A. Kern, “Advanced Features for Enterprise-Wide Role-Based Access Control”,
 Annual Computer Security Applications Conference, 2002

[2] Overview of Enterprise Computing
 http://faculty.washington.edu/jtenenbg/courses/455/s02/sessions/ec_overview.ppt

[3] XACML 1.0 Specification
 http://xml.coverpages.org/ni2003-02-11-a.html

[4] J. B. D. Joshi, Elisa Bertino, Usman Latif, Arif Ghafoor, "Generalized Temporal
 Role Based Access Control Model (GTRBAC) (Part I) - Specification and
 Modeling", Submitted to IEEE Transaction on Knowledge and Data Engineering.
 Available as technical report at:
 https://www.cerias.purdue.edu/infosec/bibtex_archive//archive/2001-47.pdf

[5] David F. Ferraiolo , Ravi Sandhu , Serban Gavrila , D. Richard Kuhn , Ramaswamy
 Chandramouli, “Proposed NIST standard for role-based access control”, ACM
 Transactions on Information and System Security, Volume 4, Issue 3, August 2001

[6] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role Based Access Control
 Models”, IEEE Computer Volume 29, Issue 2, February 1996.

[7] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-Based Access Control to
 Enforce Mandatory and Discretionary Access Control Policies,” ACM Transactions
 on Information and System Security, Volume 3, Issue 2, February 2000.

[8] Why XML Schema beats DTDs hands-down for data
 http://www-106.ibm.com/developerworks/xml/library/x-sbsch.html

[9] N. N. Vuong, G. S. Smith, Y. Deng, “Managing Security Policies in a Distributed
 Environment Using eXtensible Markup Language (XML)”, Symposium on Applied
 Computing, March 2001

 - 52 - 52

[10] D. F. Ferraiolo, J. F. Barkley, D. R. Kuhn, “A Role Based Access Control Model
 and Reference Implementation Within a Corporate Intranet”, ACM Transactions on
 Information and System Security, Volume 2, Issue 1, Feb 1999.

[11] E. Bertino, P. Bonatti, E. Ferrari, “TRBAC: A temporal role-based access control
 model”, ACM Transactions on Information and System Security, Volume 4 , Issue
 3, August 2001.

[12] J. Bacon, K. Moody, W. Yao, “A model of OASIS role-based access control and its
 support for active security”, ACM Transactions on Information and Systems
 Security, Volume 5, Issue 4 , November 2002.

[13] Simple Object Access Protocol (SOAP) 1.1
 http://www.w3.org/TR/SOAP/

[14] eXtensible Markup Language (XML) 1.0, W3C Recommendation 6 October 2000
 http://www.w3.org/TR/REC-xml

[15] Standard Generalized Markup Language (SGML)

ISO 8879. Information Processing -- Text and Office Systems - Standard
Generalized Markup Language (SGML), 1986

[16] Web Services XML’s Role
 http://www.webreference.com/js/tips/011028.html

[17] XML Tutorial
 http://www.javacommerce.com/tutorial/xmlj/intro.htm

[18] W3C XML Schema
 www.w3.org/XML/Schema

[19] D. F. Ferraiolo, D. M. Gilbert, and N. Lynch, “An Examination of Federal and
 Commercial Access Control Policy Needs,” In Proceedings of NISTNCSC National
 Computer Security Conference, Baltimore, MD, September 20-23 1993.

[20] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R. Chandramouli, “The NIST Model
 for Role-Based Access Control: Towards a Unified Standard,” ACM Transactions
 on Information and System Security, Volume 4, Issue 3, August 2001.

[21] E. Bertino, C. Bettini, E. Ferrari, P. Samarati, “An Access Control Model
 Supporting Periodicity Constraints and Temporal Reasoning”, ACM Transactions
 on Database Systems, 23(3):231-285, September 1998.

 - 53 - 53

[22] M. Niezette and J. Stevenne, “An efficient symbolic representation of periodic
 time”, In proceedings of First International Conference on Information and
 Knowledge Management, 1992.

[23] E. Bertino, S. Castano, E. Ferrari, M. Mesiti, “Controlled Access and Dissemination
 of XML Documents”, Workshop On Web Information And Data Management,
 November 1999.

[24] E. Bertino, S. Castano, E. Ferrari, “Securing XML Documents with Author X”,
 IEEE Internet Computing, May-June 2001.

[25] S. I. Gavrila , J. F. Barkley, “Formal Specification for Role Based Access Control
 User/role and Role/role Relationship Management”, Proceedings of the third ACM
 workshop on Role-based access control, Fairfax, Virginia, United States, October
 22-23, 1998.

[26] Purdue Reference Model for Computer Integrated Manufacturing

 http://iies.www.ecn.purdue.edu/IIES/PLAIC/PERA/ReferenceModel/index.html

[27] J. B. D. Joshi, Elisa Bertino, Arif Ghafoor, “Temporal Role Hierarchies in
 GTRBAC”, Submitted to ACM Transactions on Information and System Security.

[28] J. B. D. Joshi, Basit Shafiq, Elisa Bertino, Arif Ghafoor, “Dependencies and
 Separation of Duty Constraints in GTRBAC”, Accepted at Eighth ACM Symposium
 on Access Control Models and Technologies, 2003, Como, Italy.

[29] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford, “Digital Government Security
 Infrastructure Design Challenges”, IEEE Computer, Volume 34, Issue 2, February
 2001.

 - 54 - 54

 - 55 - 55

APPENDICES

 - 56 - 56

 - 57 - 57

APPENDIX A

XML SCHEMAS FOR RBAC ELEMENTS

(i) UUser CredentialU

 <xs:schema>
 <xs:element name = “XUS”>

<xs:complexType>
 <xs:attribute name = “xus_id” type=” xs:string” >
 <xs:element name = “user” type=” xs:string” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>

 <xs:attribute name = “user_id” type=” xs:string” use=”required” />
 <xs:element name = “user_name” type=” xs:string” minOccurs=”0” />
 <xs:element name = “cred_type” type=” cred_type”

maxOccurs=”unbounded”/>
 <xs:element name = “max_roles” type=” xs:integer” minOccurs=”0” />

 <xs:/sequence>
 <xs:/complexType>
 <xs:/element>

 <xs:complexType name=”cred_type” >
 <xs:sequence>
 <xs:attribute name = “cred_type_id” type=” xs:string” use=”required” />
 <xs:attribute name =“type_name” type=”xs:string” />

 <xs:element name = “cred_expr” minOccurs=”0” />
 <xs:complexType>
 <!—each attribute from the schema(ii) is mapped to one element here

 <xs:element name =
“$[XCredTypeDef]/credential_type/attribute_list/attribute_name”

type=”xs:string” />
 <xs:/complexType>
 <xs:/element>
 <xs:/sequence>

 <xs:/complexType>
 <xs:/complexType>

 <xs:/element>

 < !--refers to all the available credential types generated from the schema(ii) below -->

 <xs:key name="userID">
 <xs:selector xpath="user"/>
 <xs:field xpath="@user_id"/>

 - 58 - 58

 </xs:key>
 <xs:key name="credTypeID">
 <xs:selector xpath="user/cred_type"/>
 <xs:field xpath="@cred_type_id"/>
 </xs:key>
 <xs:key name="typeName">
 <xs:selector xpath="user/cred_type"/>
 <xs:field xpath="type_name"/>
 </xs:key>
<xs:keyref name="credTypeIdRef" refer="[XCredTypeDef]/credTypeId">
 <xs:selector xpath="user/cred_type"/>
 <xs:field xpath="@cred_type_id"/>
</xs:keyref>
<xs:keyref name="typeNameRef" refer="[XCredTypeDef]/typeName">
 <xs:selector xpath="user/cred_type"/>
 <xs:field xpath="@type_name"/>
</xs:keyref>

 <xs:/schema>

 (ii) UCredential Type DefinitionU
 <xs:schema>

 <xs:element name =“XCredTypeDef”>
 <xs:complexType>

<xs:attribute name =“xctd_id” type=”xs:string”/>
<xs:element name =“credential_type” type=”xs:string”/>
 <xs:complexType>
 <xs:sequence>

<xs:attribute name =“cred_type_id” type=”xs:string” use=”required”/>
<xs:attribute name =“type_name” type=”xs:string” use=”required”/>
 <xs:element name = “attribute_list” minOccurs=”0”>

 <xs:complexType>
<xs:element name = “attribute_name” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name = “type” type=”xs:string” use=”required” />
 <xs:attribute name = “usage” type=”xs:string” use=”required”>

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="mand"/>
 <xs:enumeration value="opt"/>
 <xs:/restriction>
 <xs:/simpleType>

 <xs:/attribute>
 <xs:/sequence>

 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>

 <xs:/sequence>
 <xs:/complexType>

 <xs:/element>
 <xs:/complexType>

 - 59 - 59

 <xs:/element>

 <xs:key name="credTypeID">
 <xs:selector xpath="credential_type"/>
 <xs:field xpath="@cred_type_id"/>
 </xs:key>

 <xs:key name="typeName">
 <xs:selector xpath="credential_type"/>
 <xs:field xpath="@type_name"/>
 </xs:key>

 <xs:/schema>

 (iii) URole DefinitionU

<xs:schema>
<xs:element name =“XRS”>
 <xs:complexType>

 <xs:attribute name =“xrs_id” type=”xs:string”/>
 <xs:element name = “role” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name = “role_id” type=” xs:string” use=”required” />
 <xs:attribute name = “role_name” type=” xs:string” />
 <xs:element name = “SSD_Role_Set_id” type=” xs:string” minOccurs=”0”/>

 <xs:element name = “DSD_Role_Set_id” type=” xs:string” minOccurs=”0”/>
 <xs:element name = “senior” type=” xs:string” minOccurs=”0”/>
 <xs:element name = “junior” type=” xs:string” minOccurs=”0”/>
 <xs:element name = “cardinality” type=” xs:integer” minOccurs=”0”/>
 </xs:/sequence>
 <xs:/complexType>
 <xs:/element>

 </xs:complexType>
 <xs: /element>

<xs:key name="roleID">
 <xs:selector xpath="role"/>
 <xs:field xpath="@role_id"/>
 </xs:key>

<xs:key name="roleName">
 <xs:selector xpath="role"/>
 <xs:field xpath="@role_name"/>
</xs:key>

<xs:keyref name="roleNameSeniorRef" refer="roleName">
 <xs:selector xpath="role"/>
 <xs:field xpath="senior"/>
</xs:keyref>

<xs:keyref name="roleNameJuniorRef" refer="roleName">
 <xs:selector xpath="role"/>

 - 60 - 60

 <xs:field xpath="junior"/>
</xs:keyref>

<xs:keyref name="SSDIdRef" refer="[XSoDDef]/SSDId">
 <xs:selector xpath="role"/>
 <xs:field xpath="SSD_Role_Set_id"/>
</xs:keyref>

<xs:keyref name="DSDIdRef" refer="[XSoDDef]/DSDId">
 <xs:selector xpath="role"/>
 <xs:field xpath="DSD_Role_Set_id"/>
</xs:keyref>

<xs:schema>

(iv) USeparation of Duty DefinitionsU

 <xs:schema>
 <xs:element name =“XSoDDef”>
 <xs:complexType>

<xs:attribute name =“xsod_id” type=”xs:string”/>
 <xs:element name = “SSD_Role_Sets” >
 <xs:complexType>
 <xs:element name = “SSD_Role_Set” type=”SSD_Role_Set” minOccurs=”0”/>
 <xs:/complexType>
 <xs:/element>
 <xs:element name = “DSD_Role_Sets” >
 <xs:complexType>
 <xs:element name = “DSD_Role_Set” type=”DSD_Role_Set” minOccurs=”0”/>
 <xs:/complexType>
 <xs:/element>
 </xs:complexType>
 <xs: /element>

 <xs:complexType name = “SSD_Role_Set”>
 <xs:sequence>
 <xs:attribute name = “SSD_Role_Set_id” type=” xs:string” use=”required” />
 <xs:attribute name = “SSD_cardinality” type=” xs:integer” use=”required” />
 <xs:element name = “SSD_Role” ” type=” xs:IDREF” maxOccurs=”unbounded” />
 <xs:/sequence>
 </xs:complexType>
 <xs:complexType name = “DSD_Role_Set”>
 <xs:sequence>
 <xs:attribute name = “DSD_Role_Set_id” type=” xs:string” use=”required” />
 <xs:attribute name = “DSD_cardinality” type=” xs:integer” use=”required” />
 <xs:element name = “DSD_Role” ” type=” xs:string” maxOccurs=”unbounded” />
 <xs:/sequence>
 </xs:complexType>

 <xs:key name="SSDId">
 <xs:selector xpath="SSD_Role_Set"/>
 <xs:field xpath="@SSD_Role_Set_id"/>
 </xs:key>

 - 61 - 61

 <xs:key name="DSDId">
 <xs:selector xpath="DSD_Role_Set"/>
 <xs:field xpath="@DSD_Role_Set_id"/>
 </xs:key>

 <xs:keyref name="roleNameSSDRef" refer="[XRS]/roleName">
 <xs:selector xpath=" SSD_Role_Set"/>
 <xs:field xpath="SSD_Role"/>
 </xs:keyref>

 <xs:keyref name="roleNameDSDRef" refer="[XRS]/roleName">
 <xs:selector xpath="DSD_Role_Set"/>
 <xs:field xpath="DSD_Role"/>
 </xs:keyref>

<xs:schema>

(v) UPermission Definition
<xs:schema>
<xs:element name =“XPS”>
 <xs:complexType>

 <xs:attribute name =“xps_id” type=”xs:string”/>
 < xs:element name = “permission” type=” xs:string” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name = “perm_id” type=” xs:string” />

 <xs:element name = “object”>
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name = “object_type” >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Cluster"/>
 <xs:enumeration value="Schema"/>
 <xs:enumeration value=”Instance"/>
 <xs:enumeration value=”Element"/>
 <xs:/restriction>
 <xs:/simpleType>
 <xs:/attribute>
 <xs:attribute name = “object_id” type=” xs:string” />
 <xs:/sequence>
 <xs:/complexType>

 <xs:/element>
<xs:element name = “operation” >

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="read"/>
 <xs:enumeration value="write"/>
 <xs:enumeration value="navigate"/>
 <xs:enumeration value=”all"/>
 <xs:/restriction>
 <xs:/simpleType>
 <xs:/element name>
 <xs:element name = “prop” minOccurs=”0”/>

 - 62 - 62

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="no_prop"/>
 <xs:enumeration value="first_level"/>
 <xs:enumeration value="cascade"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:/element>

 <xs:/sequence>
<xs:/complexType>

 <xs:/element>
 <xs:/complexType>
 <xs:/element>

 <xs:key name="permName">
 <xs:selector xpath="permission"/>
 <xs:field xpath="perm_name"/>
 </xs:key>
 <xs:key name="objectID”>
 <xs:selector xpath="permission/object"/>
 <xs:field xpath="@object_id"/>
 </xs:key>

 <xs:/schema>

Note: The areas in require XSL/XPath and XLink support and do not form valid schema
constructs unless properly replaced by their exact syntactic expressions.

 - 63 - 63

APPENDIX B

XML SCHEMAS FOR POLICY ADMINISTRATION DOCUMENTS

(i) UUser to Role AssignmentU
 <xs:schema>
 <xs:element name=”XURAS”>
 <xs:complexType>
 <xs:attribute name =“xuras_id” type=”xs:string”/>
 <xs:element name = “ura” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name = “ura_id” type=” xs:string” use=”required” />
 <xs:attribute name = “role_name” type=“xs:string” />
 <xs:element name = “assign_users”>
 <xs:complexType>
 <xs:element name = “assign_user”>
 <xs:complexType>
 <xs:attribute name = “user_id” type=” xs:string” use=”required” />
 <xs:element name = “assign_constraint” type = “assign_constraint_type”
minOccurs=”0”/>
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>
 <xs:/sequence>
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>
 <xs:schema>

 <xs:complexType name=”assign_constraint_type”>
 <xs:attribute name = “op” type=”xs:string” default=”AND”>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AND"/>
 <xs:enumeration value="OR"/>
 <xs:enumeration value=”NOT"/>
 </xs:restriction>
 <xs:/simpleType>
 <xs:/attribute>
 <xs:element name =“assign_condition” type=”assign_condition_type” maxOccurs=“unbounded” />

 - 64 - 64

<xs:/complexType>

 <xs:complexType name=”assign_condition_type”>
 <xs:sequence>
 <xs:attribute name = “cred_type” type=“xs:string” use=”required”/>
 <xs:attribute name =“p_cond_id” type=”xs:string” />
 <xs:attribute name =“d_expr_id” type=” xs:string” />
 <xs:element name =“logical_expr” type=”logical_expr_type” minOccurs=”0”
maxOccurs=“unbounded” />
 <xs:/sequence>
<xs:/complexType>

 <xs:complexType name=”predicate_type”>
 <xs:sequence>
 <xs:element name = “operator” >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="EQ"/>
 <xs:enumeration value="GT"/>
 <xs:enumeration value=”LT"/>
 <xs:enumeration value=”NEQ"/>
 <xs:/restriction>
 <xs:/simpleType>
 <xs:/element>
 <xs:element name = “name_param” type=“xs:string” />
 <xs:element name = “value_param” type=“xs:string” />
 <xs:/sequence>
 <xs:/complexType>

 <xs:complexType name=”logical_expr_type”>
 <xs:sequence>
 <xs:attribute name = “op” type=”xs:string” default=”AND”>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AND"/>
 <xs:enumeration value="OR"/>
 <xs:enumeration value=”NOT"/>
 </xs:restriction>
 <xs:/simpleType>
 <xs:/attribute>
 <xs:element name = “predicate” minOccurs=“1” >
 <xs:complexType>
 <xs:choice>
 <xs:element name = “logical_expr” type=”logical_expr_type” />
 <xs:element name = “predicate” type=”predicate_type” />
 <xs:/choice>
 <xs:/complexType>
 <xs:/element>
 <xs:/sequence>
 <xs:/complexType>

 <xs:key name="uraID">
 <xs:selector xpath="ura"/>
 <xs:field xpath="@ura_id"/>

 - 65 - 65

 </xs:key>

 <xs:/schema>

(ii) UPermission to Role AssignmentU
<xs:schema>
 <xs:element name=”XPRAS”>
 <xs:complexType>
 <xs:attribute name =“xpras_id” type=”xs:string”/>
 <xs:element name = “pra” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:attribute name = “pra_id” type=” xs:string” use=”required” />
 <xs:attribute name = “role_name” type=“xs:string” />
 <xs:element name = “assign_permissions”>
 <xs:complexType>

 <xs:element name = “assign_permission”>
 <xs:complexType>
 <xs:element name = “perm_id” type=“xs:string” maxOccurs=”unbounded”/>
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>

 <xs:/element>
 <xs:/sequence>
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>

 <xs:key name="praID">
 <xs:selector xpath="pra"/>
 <xs:field xpath="@pra_id"/>
 </xs:key>

<xs:/schema>

(iii) UXML Access SheetU
<xs:schema>
 <xs:element name = “login” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:attribute name = “login_id” type=” xs:string” use=”required” />
 <xs:choice>
 <xs:element name = “user_id” type=“xs:string”/>

<xs:element name = “cred_type” type=“cred_type”/>
 <xs:/choice>
 <xs:/complexType>
 <xs:/element>
 <xs:element name = “xar” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:attribute name = “xar_id” type=” xs:string” use=”required” />
 <xs:element name = “object”>
 <xs:complexType>
 <xs:sequence>

 - 66 - 66

 <xs:attribute name = “object_type” >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Cluster"/>
 <xs:enumeration value="Schema"/>
 <xs:enumeration value=”Instance"/>
 <xs:enumeration value=”Element"/>
 <xs:/restriction>
 <xs:/simpleType>
 <xs:/attribute>

 <xs:attribute name = “object_id” type=” xs:string” />
 <xs:/sequence>
 <xs:/complexType>
 <xs:/element>
 <xs:/complexType>
 <xs:/element>

 <xs:key name="loginID">
 <xs:selector xpath="login"/>
 <xs:field xpath="@login_id"/>
 </xs:key>
 <xs:key name="xarID">
 <xs:selector xpath="xar"/>
 <xs:field xpath="@xar_id"/>
 </xs:key>

<xs:/schema>

(iii) UXML Sessions Sheet U
<xs:schema>
 <xs:sequence>
 <xs:element name = “session_id” type=“xs:string” />
 <xs:element name = “user_id” type=“xs:string” />
 <xs:element name = “role_name” type=“xs:string” />
 <xs:element name = “domain” type=“xs: anyURI” />
 <xs:element name = “login_time” type=“xs:time” />
 <xs:element name = “login_date” type=“xs:date” />
 <xs:element name = “duration” type=“xs:integer” />
 <xs:element name = “active” type=“xs:boolean” />
 <xs:/sequence>

 <xs:key name=”sessionID">
 <xs:selector xpath="."/>
 <xs:field xpath="session_id"/>
 </xs:key>

<xs:/schema>

