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ABSTRACT  
A Generalized Temporal Role Based Access Control (GTRBAC) 
model that captures an exhaustive set of temporal constraint needs 
for access control has recently been proposed. GTRBAC’s 
language constructs allow one to specify various temporal 
constraints on role, user-role assignments and role-permission 
assignments. In this paper, we identify various time-constrained 
cardinality, control flow dependency and separation of duty 
constraints (SoDs). Such constraints allow specification of 
dynamically changing access control requirements that are typical 
in today’s large systems. In addition to allowing specification of 
time, the constraints introduced here also allow expressing access 
control policies at a finer granularity. The inclusion of control 
flow dependency constraints allows defining much stricter 
dependency requirements that are typical in workflow types of 
applications.  

Categor ies and Subject Descr iptors 
D.4.6 [Secur ity and Protection]: Access control; H.2.7 
[Database Administration] Security, integrity, and protection. 

General Terms 
Security, Theory. 

Keywords 
Role based access control, security, separation of duty, temporal 
constraints, cardinality constraint 

1. INTRODUCTION 
Role based access control (RBAC) has emerged as a promising 
alternative to traditional discretionary and mandatory access 
control (DAC and MAC) models [7, 11, 15, 16], which have some 
inherent limitations [11]. Several key features such as policy 
neutrality, support for least privilege, efficient access control 
management, are associated with RBAC models [7, 11, 16]. Such 

features make RBAC better suited for handling access control 
requirements of diverse organizations. Furthermore, the concept 
of role is associated with the notion of functional roles in an 
organization, and hence RBAC models provide intuitive support 
for expressing organizational access control policies [5]. RBAC 
models have also been found suitable for addressing security 
issues in the Internet environment [2, 11], and have shown 
prospects for supporting secure interoperation in a heterogeneous 
multidomain environment [10].  

One of the important aspects of access control is that of time 
constraining accesses to limit resource use. Such constraints are 
essential for controlling time-sensitive activities that may be 
present in various applications such as workflow management 
systems (WFMSs). Tasks in a WFMS may be time dependent and 
need to be executed in some order [3]. To address general time-
based access control needs, Bertino et al. propose a Temporal 
RBAC model (TRBAC) [4], which has been recently generalized 
by Joshi et al. [12]. The Generalized-TRBAC (GTRBAC) model 
[12] incorporates a set of language constructs for the specification 
of various temporal constraints on roles, including constraints on 
their activations as well as on their enabling times, user-role 
assignment and role-permission assignment. In particular, 
GTRBAC makes a clear distinction between role enabling and 
role activation. A role is enabled if a user can acquire the 
permissions assigned to it. An enabled role becomes active when 
a user acquires the permissions assigned to it in a session. An 
open issue in the GTRBAC model, as well as in the TRBAC 
model [4] is the specification and enforcement of time-
constrained cardinality, control flow dependency and separation 
of duty (SoD) constraints. 

Cardinality and SoD constraints are crucial for securing many 
applications in a commercial environment. Many researchers have 
highlighted the importance and use of cardinality and SoD 
constraints in RBAC models [8, 17, 18]. However, no one has 
addressed the time-based cardinality and SoD constraints. Use of 
a particular constraint for a period of time or duration is important 
for emerging applications as access requirements frequently 
change with time. Dependency constraints are relevant to role 
based systems as roles often embody organizational functions that 
may be inter-dependent. For instance, a doctor in training may be 
allowed to work only if some senior doctor who can supervise 
him, is also on duty. Some aspect of dependency constraints such 
as history based access control, operational SoD, etc., have been 
mentioned in general access control literature [3, 18], but they 
have not been adequately addressed for general RBAC systems. In 
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this paper, we focus on these constraints within the GTRBAC 
modeling framework [12]. The key contributions of this paper are 
as follows: 

- We introduce a generic framework for expressing a wide 
range of time-based cardinality constraints with the help of 
GTRBAC status predicates, a function to evaluate these 
predicates and a projection operator that extracts a set of 
elements from the evaluation of the function.  

- We develop an elaborate trigger expression that can capture 
complex dependencies among events and conditions. In 
particular, we define CFD constraints that can be used to 
express stricter control flow dependencies. Furthermore, we 
show that the trigger framework and the CFD constraint 
expressions can be easily extended to provide an elaborate 
time based RBAC model for context-based access control. 

- We identify a large set of possible SoD constraints using the 
GTRBAC status predicates. These SoDs subsumes the SoDs 
that have been identified in the RBAC literature, and at the 
same time provide much finer modeling capability.  

The paper is organized as follows. In section two, we briefly 
present the constraints of GTRBAC. In section three, we present 
the status predicates for a GTRBAC system and the cardinality 
constraints. In section 4, we present the GTRBAC triggers and the 
control flow dependency constraints. The time-constrained SoD 
constraints are presented next, in section 5. The related work is 
presented in section 6. Section 7 concludes the paper and provides 
some future directions. 

2. THE GTRBAC MODEL 
The GTRBAC model provides a temporal framework for 
specifying an extensive set of temporal constraints [12]. This 
model is an extension of the TRBAC model [4] and uses a 
language-based framework. GTRBAC allows various types of 
temporal constraints such as temporal constraints on role 
enabling/disabling, temporal constraints on user-role and role-
permission assignments/de-assignments, role activation-time 
constraints, etc. GTRBAC’s administrative run-time events allow 
an administrator to dynamically initiate events. Another set of 
run-time events allows users to make activation requests to the 
system. Furthermore, constraint-enabling expressions include 
events that enable or disable duration constraints and role 
activation constraints. The GTRBAC triggers allow the 
expression of dependencies among GTRBAC events, and 
capturing past events. GTRBAC can capture the dynamically 
changing access control needs of a system [12, 13]. The periodic 
expressions are written as (I, P), where I is an interval and P is a 
set of infinite number of intervals. (I, P) represents the set of all 
the intervals of P that are contained in I. For example, (I, P) = 
([1/1/2002, 12/31/2002], Mondays) considers all the Mondays of 
the year 2002. D is used to express the duration specified for a 
duration constraint. Temporal constraints are expressed by a 
generic form, (I, P, E), where (I, P) is the periodic expression, or a 
duration constraint c = ([I, P| D], Dx, E), where Dx specifies the 
duration in which the event E is valid, and D or (I, P) specifies the 
duration/interval in which the duration constraint c is valid. The 
periodic expressions (I, P) used in the constraint expressions are 
based on those in [4]. For more details, we refer the readers to 

[12, 13]. An example of a GTRBAC policy for a medical 
information system is illustrated below. 

Exampl e:  Table 1 contains the GTRBAC policy for a hospital. 
The periodicity constraint 1a specifies the enabling times of 
DayDoctor and NightDoctor roles. For simplicity, we use 
DayTime and NightTime instead of their (I, P) forms. The 
periodicity constraint 1b allows the DayDoctor role to be 
assigned to Adams on Mondays, Wednesdays and Fridays, and 
to Bill on Tuesdays, Thursdays, Saturdays and Sundays. 
Similarly, Alice and Ben are assigned to the NightDoctor role 
on the different days of the week. Furthermore, the assignment 
in 1c allows Carol to assume the DayDoctor role everyday 
between 10am and 3pm. In 2a, Ami and Elizabeth are assigned 
to roles NurseInTraining and DayNurse respectively with no 
temporal restriction, i.e., the assignment is valid at all times. 2b 
specifies a duration constraint of 2 hours on the enabling time 
of the NurseInTraining role, but this constraint is valid for 
only 6 hours after the constraint c1 has been enabled. Because 
of this, Ami will be able to activate the NurseInTraining role at 
the most for two hours whenever the role is enabled.  In row 3, 
we have a set of triggers. Trigger 3a indicates that constraint c1 
is enabled when the DayNurse is enabled, which means, now, 
the NurseInTraining role can be enabled within the next 6 
hours. Trigger 3b indicates that 10 min after Elizabeth activates 
the DayNurse role, the NurseInTraining role is enabled for a 
period of 2 hours. This shows that a nurse in training will have 
access to the system only if Elizabeth is present in the system, 
that is, she may be acting as a training supervisor. It is possible 
that Elizabeth activates the DayNurse role a number of times 
in 6 hours after the DayNurse role has been enabled, and each 
time the NurseInTraining role will also be enabled if these 
activations (by Elizabeth) are more than 2 hours apart. This will 
allow Ami to activate the NurseInTraining role a number of 
times. The remaining triggers in 3 show that the DayNurse and 
NightNurse roles are enabled (disabled) 10 min after the 
DayDoctor and NightDoctor roles are enabled (disabled). 

Table 1:  Example GTRBAC access control policy for a 
medical information System 

 
a. (DayTime, enabl e DayDoctor), (NightTime, enabl e 

NightDoctor) 

b. ((M, W, F), assi gnU Adams t o DayDoctor), ((T, Th, S, Su), 
assi gnU Bill t o DayDoctor); 

((M, W, F), assi gnU Alice t o NightDoctor), ((T, Th, S, Su), 
assi gnU Ben t o NightDoctor) 

1 

c. ([10am, 3pm], assi gnU Carol t o DayDoctor) 

a. (assi gnU Ami t o NurseInTraining); (assi gnU Elizabeth t o 
DayNurse) 

2 

b. c1 = (6 hours, 2 hours, enabl e NurseInTraining) 

a. (enabl e DayNurse → enabl e c1)  

b. (act i vat e DayNurse f or  Elizabeth → enabl e 
NurseInTraining af t er  10 min) 

c. (enabl e NightDoctor →enabl e NightNurse af t er  10 min); 

3 

d. (enabl e DayDoctor →  enabl e DayNurse af t er  10 min); 
(di sabl e DayDoctor →  di sabl e DayNurse af t er  10 min) 



    

3. STATUS EXPRESSIONS AND 
CARDINALITY CONSTRIANTS  

Table 1 lists various GTRBAC status predicates. The predicate set 
extends the set of status predicates defined in our previous work 
[13]. Such an extension was needed in order to provide a finer 
modeling capability required to represent various temporal 
constraints that have been introduced in this paper. The non-
temporal counterparts of each predicate can be simply obtained by 
removing the time parameter. A non-temporal predicate s simply 
indicates that its corresponding temporal predicate st applies at all 
times, i.e., s →∀t, st.  Inversely, st means that status predicate s 
holds at time t. The second column of Table 2 specifies the 
evaluation domain for the predicates in the first column. The third 
column describes the semantics of the predicate. 

Table 2:  Various status predicates 

Predicate(st) Evaluation 

Domain(DOM) 

Semantics 

P:permission set, R:role set, U:user set, S:set of sessions, T:time instants, and 

r∈ R, p∈ P, u ∈ U, s ∈ S, t ∈ T 

enabl ed(r, t) R × T   r is enabled at time t 

u_assi gned(u, r, t) U ×R × T u is assigned to r at time 
t 

p_assi gned(p, r, t) P × R ×T p is assigned to r at  t 

can_act i vat e (u, r, t) U ×R × T u can activate r at t 

can_acqui r e (u,  p, t) U ×P × T u can acquire p at t 

r _can_acqui r e (u,p, r, t) U ×P × R ×T u can acquire p through 
r at t 

can_be_acqui r ed(p, r,t) P × R ×T p can be acquired 
through r at t 

act i ve(u, r, t) U × R ×T r is active in u’s session 
at t 

s_act i ve(u, r, s, t) U ×R × S ×T r is active in u’s session 
s at t 

acqui r es (u, p, t) U ×P ×T u acquires p at t 

r _acqui r es (u, p, r, t) U ×P × R ×T u acquires p through r at 
t 

s_acqui r es (u, p, s, t) U ×P × S ×T u acquires p in session s 
at t  

r s_acqui r es (u, p, r,  s, t) U ×P × R × S ×T u acquires p through r in 
session s at t 

 

Predicate enabl ed(r, t), u_assi gned(u, r, t) and 
p_assi gned(p, r, t) refer to the status of roles, and user-role 
and role-permission assignments at time t. Predicate 
can_act i vat e(u, r, t) implies that user u can activate role r at 
time t. It allows us to capture the fact that a user u may be able to 
activate role r without being explicitly assigned to it, as it is 
possible in a hierarchy that incorporates the activation-inheritance 
semantics [13]. In other words, “u can activate r”  implies that 
user u is implicitly or explicitly assigned to role r. It does not rule 
out the possibility that some activation or SoD constraints prevent 
the actual activation of r by u at time t. Predicate 
can_acqui r e(u, p, t) implies that “u can acquire permission p”  

at time t. Predicate r _can_acqui r e(u, p, r, t) provides much 
finer level of information than can_acqui r e(u, p, t) and 
indicates that  “u can acquire permission p through role r”  at time 
t. can_acqui r e(u, p, t) can be semantically defined in terms of 
r _can_acqui r e(u, p, r, t) as shown in Table 3. 
can_be_acqui r ed(u, r, t) implies that permission “p can be 
acquired through role r”  at time t. 

Table 3:  Semantic relation between GTRBAC status 

1 can_acqui r e (u,  p, t)  ↔  ∃ r ∈ R, r _can_acqui r e (u, p, r, t) 

2 act i ve (u,  r, t)  ↔  ∃ s ∈ S, act i ve (u, r, s, t) 

3 acqui r es  (u,  p, t)  ↔ ∃ r ∈ R, r _acqui r es  (u, p, r, t) 

4 acqui r es  (u,  p, t)  ↔  ∃ s ∈ S, s_acqui r es  (u, p, s, t) 

5 acqui r es  (u,  p, r, t)  ↔ ∃ s ∈ S, r s_acqui r es  (u, p, r,  s, t)  

6 acqui r es  (u,  p, s, t)  ↔  ∃ r ∈ R, r s_acqui r es  (u, p, r,  s, t) 

 

It is important to note that can_act i vat e(u, r, t), 
can_acqui r e(u, p, t), r _can_acqui r e(u, p, r, t) and 
can_be_acqui r ed(u, r, t) predicates do not assume anything 
about the state of a role. That is, they do not say in which state 
role r is at time t. For example, if can_act i vat e(u, r, t) and 
enabl ed(r, t) hold, then a user u’ s request to activate r at time t 
is granted provided there are no other activation or SoD 
constraints prohibiting it. However, if can_act i vat e(u, r, t) 
holds but not enabl ed(r, t), then u’ s request to activate r at time 
t is denied. Thus, these predicates indicate possibility rather than 
what actually occurs. 

Predicates act i ve(u, r, t), s_act i ve(u, r, s, t), acqui r es (u, 
p, t), r _acqui r es (u, p, r, t), s_acqui r es (u, p, s, t) and 
r s_acqui r es (u, p, r, s, t) refer to what actually occurs at time 
instant t. act i ve(u, r, t) indicates that role r is active in a user 
u’ s session at time t and can be expressed using predicate 
s_act i ve(u, r, t) as shown in the Table 3. acqui r es (u, p, t) 
implies that a user  “  u acquires permission p at time t”  and can be 
expressed in terms of r _acqui r es (u, p, r, t) and 
s_acqui r es (u, p, s, t), which in turn can be defined in terms of 
r s_acqui r es (u, p, r, s, t). The following axioms, as introduced 
in [13], capture the key relationships among various predicates in 
Tabl e 1 and provide the basis for defining precisely the 
permission-acquisition and role-activation semantics of a 
GTRBAC system. 

Axioms:  For all r ∈ R, u ∈ U, p ∈ P, s ∈ S,  and time instant t ∈ 

T = { 0,∝} , the following implications hold: 

1. assi gned(p, r, t)→  can_be_acqui r ed(p, r, t) 

2. assi gned(u, r, t) → can_act i vat e (u, r, t) 

3. can_act i vat e (u, r, t) ∧ can_be_acqui r ed(p, r, t)  →  

can_acqui r e (u,  p, t) 

4. act i ve(u, r, t) ∧ can_be_acqui r ed(p, r, t) →  

acqui r es (u, p, t) 

Axiom (1) states that if a permission is assigned to a role, then it 
“can be acquired”  through that role. Axiom (2) states that all 



    

users assigned to a role can activate that role. Axiom (3) states 
that if a user u can activate a role r, then all the permissions that 
can be acquired through r can be acquired by u. Thus, for the 
case where user u and permission p are assigned to r, the axioms 
imply that u can acquire p. Similarly, axiom (4) states that if there 
is a user session in which a user u has activated a role r then u 
acquires all the permissions that can be acquired through role r. 
We note that axioms (1) and (2) indicate that permission 
acquisition and role activation semantics is governed by explicit 
user-role and role permission assignments. Next, we define a 
predicate evaluation function ���� over the status predicates and a 
projection operation Ππ1, π2, .., πm over the evaluation of a predicate 
as follows. 

Definition 3.1(������Πi): Let st(alist) be a status predicate, where 
alist is a list of arguments a1, …, ai, …, an associated with 
domains D1, …, Di, …, Dn, respectively (∀j∈{ 1, ..n} , Dj ∈{ R, P, 
U, S, T} ) . If DOM is the evaluation domain of st(alist), then, we 
define evaluation function ���� and projection operator Ππ1, π2, .., 

πm as follows: 

• ����(st(alist))={ (x1, …, xi, …, xn) | ((x1, …, xi, …, xn) 
∈DOM) ∧ st(x1, …, xi, …, xn)}  

• Ππ1, π2, .., πm����(st(alist))={ (xπ1, xπ2 .., xπm) | { π1, π2, …, πm}  
⊆ { 1, 2, …, n} ; ∀xπi∈Dπi,; and for all pairs (x1, x2… , xn), (y1, 
y2… , yn) ∈ ����(st(a1, … ai-1, ai, ai+1,…, an)), xj = yj for all 
all j ∈ { 1, 2, …, n} /{ π1, π2, …, πm} ;  moreover, for all such j 
we replace the argument by its constant value in quotes, i.e., 
we denote a constant value x∈D  by “x”  in the argument list}  

Evaluation function ���� returns the subset of the evaluation 
domain corresponding to the predicate that it evaluates. For 
instance, ���� (enabl ed(r, t)) is a subset of domain (R × T). 
Similarly, Ππ1, π2, .., πm allows us to project the evaluation of a 
predicate over a particular argument indexed by i. For instance, 
Π1����(enabl ed(r, “ t” )) returns the set of all roles that are 
enabled at time “ t” . Similarly, Π2����(enabl ed(“ r” , t)) returns 
the set of all time instants at which role “ r”  is enabled. Let us 
denote the set of all projection functions over the predicates 
defined in Table 2 as Π. Note that we can also have evaluation of 
the negation of the predicates of Table 2, for instance, Π1���� 
(¬enabl ed(r, “ t” )). Π-1 denotes the set of projection operators 
over negated predicates. Based on these projection operators and 
the original set of set elements ��	
={ R, U, P, S, T} , we build a 
framework for expressing exhaustive set of cardinality constraints 
as follows. Let �� ∈ { ∪, ∩, ⁄ }  be a set operation, then we have a 
generic set function f as follows: 

1. f ∈( Π�∪ Π-1��

2. f = (f �� X),  where X ⊆ E ∈���	
;�

3. f = (f1 �� f2), where f1 and f2 are generic set functions. 

We can express a cardinality constraint as (|f| ��� n), where |f| is 
the number of elements in set f, ��� ∈{ =, ≠, <, >, ≥, ≤}  is a 
comparator operator, and n is a positive number. Some examples 
of the cardinality constraint expressions are shown in Table 4. It is 
to be noted that while projection operators in Π make sense in 
general context (as shown in Table 4), those in Π-1 may not have a 

clear meaning. Therefore, care should be taken in constructing 
cardinality constraints based on them. For example, the function 
Π2����(¬act i ve(“u” , r, “ t” )) refers to a set of  roles that are 
not active in any of user u’ s sessions at time t. Hence, 
| Π2����(¬act i ve(“u” , r, “ t” ))| ≤ n states that the number of 
roles not active in any of user u’ s sessions at time t cannot be 
more than n. However, it is not clear whether it is n out of those 
that u can activate or that are in R. Depending upon application, 
distinction may need to be made a priori. For instance, we can say 
that, “by default, out of those that u can activate” . Periodicity and 
duration constraints on a cardinality constraint C = (|f| ��� n) can 
be simply defined using the GTRBAC temporal framework as (I, 
P, C), which indicates that the cardinality constraint is valid for 
each instant in intervals defined by (I, P), and as ([I, P,| D], Dx C), 
with Dx indicating the duration in which the cardinality constraint 
is valid. 

We note that some cardinality constraints of type C = (|Ππ1, π2, .., 

πm����(st(plist))| ��� n) may not have direct application in a 
general RBAC framework. For example, Π1����(s_act i ve(u, 
“ r” , “ s” , “ t” )) (set of users that have activated r in  session s at 
time t) associates multiple users with the same session. Such cases 
may be useful if we consider a collaborative system where a 
session is created with multiple active users. 

4. GTRBAC TRIGGERS AND CONTROL 
FLOW DEPENDENCCY CONSTRAINTS 

Another set of constraints that are often needed in the commercial 
systems is that of dependencies between roles and other events 
associated with RBAC entities. GTRBAC provides a trigger 
mechanism that can be used to express some dependency 
constraints. However, there are much stricter forms of dependency 
constraints known as control flow dependency (CFD) constraints, 
which are needed in various applications.  In this section, we 
extend the original GTRBAC triggers and define the CFD 
constraints using extended triggers 

4.1 Extended-GTRBAC Tr iggers 
The basic trigger expression of GTRBAC is of the form: (E1 ,…, 
Em, C1 ,…, Ck   →  pr:E af t er  �t), where Ei is an event and Ci 
is a status condition [12]. Semantically, it means that the 
prioritized event pr:E with priority pr can take place �t time units 
after the trigger fires. The definition, however, is limiting in the 

Table 4. Examples of cardinality constraints 

1 |Π1����(enabl ed( r, “ t” )|  ≥ n 

Number of roles enabled at 

time “ t”  cannot be less than 

n 

2 |Π1����(¬enabl ed( r, “ t” )|   ≤ n 

Number of roles disabled at 

time “ t”  cannot be more than 

n. 

3 |Π2����(u_assi gned(“ u” , r, “ t” ))| ≤ n 

Number of roles assigned to 

“ u”  at time “ t”  cannot be 

more than n 

4 |Π2����(can_act i vat e(“ u” , r,"t” ))| ≤  n) 

Set of roles that u can 

activate at time t cannot be 

more than n. 

5 ( Daytime, |Π1����(u_assi gnedSet (u, “Nurse”, t)| ≤ n) indicates  
Number of users assigned to Nurse role in Daytime cannot exceed n 



    

following ways: (1) it only allows scenarios in which all the 
antecedent events E1,…, and Em occur at the same time and all the 
conditions C1 ,…, and Ck hold; it does not allow capturing history 
information in which events are spread in the temporal dimension; 
(2) it does not allow specifying temporal intervals in which the 
occurence of an event Ei can  take place, or a condition Ci is 
satisfied; (3) it is possible that in some cases a condition Ci must 
be valid for a specified duration before triggering the event E; 
such a requirement is also not captured by the current triggers; 
and (4) the current trigger considers that E ≠ s: act i vat e r 
f or  u; this needlessly prevents specifying any preconditions for 
activation events. In some cases, an activation request may need 
to be granted only if certain conditions have been satisfied. We 
define the extended trigger form, which is temporally more 
expressive than the current GTRBAC triggers and does not have 
the above limitations, as follows: 

Definition 4.1 (Extended Tr iggers): The extended trigger 
expression has the following form: 

(E1 i n π1) op1 … opm -1 (Em i n πm) op m  (C1 i n τ1 f or  d1) 
opm+1… opm+n-1 (Cn i n τn f or  dn)  

→ pr:E af t er  �t  f or  �d, where  

• Eis are simple event expressions or run time requests; and 
Cis are GTRBAC status expressions, 

• pr:E is a prioritized event expression with priority pr.   

• If (E =s: act i vat e r f or  u) is an activation request at 
time ta ≥ (t +�t) then act i ve(u, r, s, t) is true in the 
interval (ta, ta+�d), provided that the trigger fires at time t, 

• the trigger is fired if τi (πi) is an interval such that there 
exists a t ∈τi (πi) at which Ci (Ei) becomes valid, and Ci 
remains valid for duration di; we simply write “Ci i n τi”  to 
mean that there exists a t ∈ τi at which C i is valid for some 
duration; we write “Ci at  t”  (“Ei at  t”  ) instead of  “Ci i n 
τi”  (“Ei i n t”  ) when τi (πi) = (t, t); we write “Ci f or  di”  to 
mean that Ci is valid for some duration di.  

• �t is the duration between the firing of the trigger and the 
occurence of the event E, and �d is the duration for which 
the event E remains valid. If not specified, �t = 0, and �d = 
∝ opi ∈{ ∨, ∧}  and ∧ has precedence over ∨. For simplicity, 
we use “ ,”  to denote the ∧ operator and “ |”  to denote the ∨ 
operator.  

We note that the old trigger form cannot be used to specify the 
temporal information such as “Ei i n πi”  or “Ci i n τi” . The earlier 
form is actually a special case of the extended form, in which all 
the antecedent events and conditions are associated with the same 
time instant. That is, for any t, 

E1 at  t,.., Em at  t, C1 at  t,.., Ck at  t  

→ pr:E af t er  �t,  (a) 

The duration information �d associated with the triggered event 
E in the extended trigger simplifies specification but does not 
increase the expressive power over the earlier form. The following 
trigger: 

(E1 at  t,…, Em at  t, C1 at  t,…, Ck at  t →   

pr:E af t er  �t f or  �d)   (b) 

is semantically equivalent to the combination of the following two 
old triggers 

1. E1 ,…, Em, C1 ,…, Ck  →  pr:E af t er  �t, 

2. E →  pr’ :Conf(E) af t er  �d, where Conf(E) is the 
conflicting event of E and pr’  ≥  pr. 

We note that the triggers of form (a) (one with “at  tn”  phrase) can 
represent the extended form (one with “ i n πm”  phrase), however, 
it is easy to see that the extended form achieves compaction in 
expression over the form (a). For instance, the extended trigger 
form without the “ f or  d1”  part can only be represented by using 
multiple triggers of form (a), each with a permutation of time 
instants from π1, π2,…, πm, τ1, τ2,…, τn. Similar compaction is 
achieved by the use of the two logical operators. 

Note that triggers allow GTRBAC events and status conditions 
only [12, 13]. However, it can easily be extended to include other 
events and conditions. For instance, condition Ci can be any 
predicate expression that evaluates contextual information that 
affects access control decisions. Consider the following trigger; 

(Location(x) = “EmergencyRoom” ) | (situation ()= 
“LifeThreatening” ) →  pr:E enabl e EmergencyDoctor 

Here, if the room, indicated by variable x, is EmergencyRoom, or 
the current situation is LifeThreatening then the 
EmergencyDoctor role is enabled, thus capturing environmental 
context. Similarly, we can allow event E to be any system related 
event. With a predefined set of predicates to capture static as well 
as dynamic environmental conditions and events, the extended 
GTRBAC trigger framework can easily provide a very elaborate 
support for context-based access control. 

4.2 Control Flow Dependency Constraints 
Control flow dependency (CFD) constraints often occur in task-
oriented systems and are stricter forms of dependency constraints 
than those that can be expressed using GTRBAC triggers. The 
following example illustrates such CFD constraints. 

Exampl e: Consider the following requirements: (1) a junior 
employee of an office is allowed to activate the 
Junior_Employee role in the system only if his manager has 
activated the Manager role; (2) whenever a system 
administrator makes some changes in the system, the activation 
of the SysAdmin role that he uses must enable the SysAudit 
role so that another user can activate the SysAudit role and log 
those changes. The SysAudit role may need to be activated by 
the user within the next τ minutes; (3) everyday, if both the 
roles SysAdmin and SysAudit are activated, then the 
SysAdmin role must be activated before the SysAudit role. 

The three requirements imply (1) pre-condition, (2) post-
condition and (3) precedence constraints. Next, we show that 
GTRBAC does not adequately model these constraints, but, we 
can semantically define CFDs in terms of these triggers.  



    

4.2.1 Pre-condition Constraints  
A pre-condition constraint between two events essentially implies 
that an event can occur only if the other event has already 
occurred and/or the required conditions have already become true, 
as in the first case above. The following trigger closely resembles 
the pre-condition constraint (1): 

s: act i vat e Manager for John → enabl e 
Junior_Employee  

(assume John is the manager) 

However, the “only if”  semantics of the pre-condition constraint 
requires that there be no other events that will enable the 
Junior_Employee role, i.e., the Junior_Employee role is not 
enabled if  John does not activate the Manager role. This means 
the above trigger can enforce the pre-condition constraint only if 
we also enforce additional restriction that no other constraint or 
trigger allows the enabling of the Junior_Employee role. 
However, GTRBAC’s trigger mechanism currently does not imply 
such an additional restriction, hence, it falls short in providing 
support for the pre-condition constraint. For instance, in addition 
to the above trigger, assume that we also have the following 
periodicity constraint:  

Everday between 9am and 6pm, enabl e Junior_Employee 

Presence of this periodicity constraint does not allow the above 
trigger to enforce the pre-condition constraint as it allows the role 
to be enabled even if the Manager role is not enabled. 

4.2.2 Post-condition Constraints  
A post-condition constraint between two events essentially 
implies that if an event occurs or a condition is satisfied then the 
other event also must occur, as indicated in the second case in the 
example above. Here, if the SysAdmin role is enabled then the 
SysAudit role must also be enabled, otherwise, it may incur 
certain security risks. However, the activation of the SysAudit 
role may also be triggered by other events in the system. In 
essence, the post-condition constraint will not be enforced if there 
are some other triggers or constraints that do not allow the 
SysAudit role to be enabled even though the SysAdmin role has 
been enabled. Thus, it is easy to see that the following trigger:  

enabl e SysAdmin → enabl e SysAudit 

enforces the post-condition constraint only if the system 
additionally makes sure that there are no other constraints or 
triggers that prohibits enabling of the SysAudit role when this 
trigger fires; this cannot be expressed using GTRBAC triggers  

4.2.3 Precedence Constraints  
A precedence constraint is said to exist between two events if 
there is a condition that if the two events occur then one must 
always precede the other, as shown in requirement (3). Another 
real world scenario in which such a precedence semantics applies 
is a pair of tasks involving authorizing a check and cashing it.  It 
is easy to see that such precedence semantics is not enforced by 
triggers alone. 

4.2.4 Definitions of CFD Constraints 
Next, we formalize syntax and semantics of the CFD constraints 
in GTRBAC using triggers. In the definitions we will use (ts, te), 

such that (ts, te) is in an interval of (I, P), or (ts, te) is some 
duration D. For (ts, te) = D, ts is the time instant when D starts and 
is non-deterministic. A constraint c = (D, C) needs to be enabled 
by a trigger or a runtime event [12]. Assume that T is the set of all 
GTRBAC constraints and Causes (c, pr:E, t) is a predicate that 
evaluates to true if there is a constraint c in T which causes event 
pr:E to fire at time t. Furthermore, we use Y to denote the left 
hand side of a trigger expression, i.e.,  

Y =  

E1 i n π1, …, Em i n πm, C1 i n τ1 f or  d1,…, Cn i n τn f or  dn 

The following precedence rule is applied in a GTRBAC system - 
if there are conflicting pairs of events (e.g., assi gn and 
deassi gn, act i vat e and deact i vat e, etc.) then the 
negative event takes precedence (e.g., deassi gn takes 
precedence over assi gn) if the priority of the two events are the 
same; otherwise the higher priority event takes precedence. 

Definition 4.2 (Pre-condition constraint): The pre-condition 
constraint is expressed as ([I, P|D,]  pre, Y, pr:E af t er  �t f or  
�d). Semantically, to say that ([I, P|D,]  pre, Y, pr:E af t er  �t 
f or  �d)  ∈ T is equivalent to saying that:   

(1) (Y →  pr:E af t er  �t f or  �d) t ∈ T is an extended-
trigger, and  

(2) ¬∃ c ∈ T s.t. (∀tx ∈ (t +�t,  t + �t + �d) and pr’≥ pr, 
Causes (c, pr’ : E, tx)) is true for pr’≥ pr. 

Definition 4.3 (Post-condition constraint): The post-condition 
constraint is expressed as ([I, P|D,]  post, Y, pr:E af t er  �t). 
Semantically, to say that ([I, P|D,]  post, Y, pr:E af t er  �t f or  
�d)  is in T is equivalent to saying that:  

(1) (Y →  pr:E af t er  �t f or  �d) t ∈ T is an extended-
trigger;  

(2) (2) ¬∃ c ∈ T s.t. ∀ tx ∈ (t +�t,  t + �t + �d), Causes (c, 
pr’ : ����(E), tx) is true for pr’≥ pr. 

Note that condition (2) in each definition ensures that the 
additional condition required for the two CFDs, as discussed 
earlier, are enforced. Next, we define a precedence constraint, 
which relates two events. We can also define a CFD with “ if and 
only if”  by combining above two constraints. Next we define 
precedence constraint that essentially relates two events. 

Definition 4.4 (Precedence constraint): Let pr1:E1 and pr2:E2 be 
prioritized events such that ([I, P|D,]  prec, pr1:E1, pr2:E2 af t er  
�t), i.e. pr2:E2 is precedent on pr1:E1. Then, for all t such that t ∈ 
(ts, te):  

 ([I, P|D,]  precedence, pr1:E1, pr2:E2) →  

(for each pair c1, c2 ∈ T, Causes (c1, pr:E1, t1) ∧ 
Causes (c2, pr:E2, t2) →  (te≤t1+�t ≤ t2≤ ts)) 

The safety notion introduced in TRBAC identifies scenarios that 
have ambiguous execution semantics, for example, the existence 
of a cycling dependency among events through triggers [12]. The 
safety checking algorithm can be easily extended to identify the 
violation of the CFD constraint by introducing extra checks to 
ensure that additional restrictions are enforced for the CFDs. 



    

5. TIME BASED SEPRATION OF DUTY 
Separation of Duty (SoD) policies have been found to be very 
crucial for securing commercial applications. Role-based systems 
are particularly very beneficial for expressing and enforcing such 
policies. Various SoDs have been identified in the literature [8, 
14, 17, 18]. However, all earlier researches focus on SoDs in a 

non-temporal environment. The CFD constraints introduced in 
previous section can also be used to define SoD constraints that 
are based on access history, such as history-dependent SoD, 
order-dependent SoD, object-based SoD, which are identified in 
[18], as the triggers can capture timing information. In this 
section, we define various SoD constraints that cannot be captured 

Tabl e 5. Enabling time and Assignment SoDs 

SoD Type Expression  (SoD) 
Semantics 

∀u, u1, u2∈ U, ∀r, r1, r2∈ R, ∀p, p1, p2∈ R, ∀t ∈ Sol(I, P),  (u1≠ u2), (r1≠ r2) and (p1≠ p2) the following holds: 

Enabling/Disabling SoD  

(I, P, EN , R)  SoD ∧ enabl ed(r1, t) → ¬enabl ed(r2, t) EN-SoD 

 No two roles in R can be enabled at the same time in interval (I, P) 

(DIS-SoD) 

(DIS-SoD) 
(I, P, DIS, R)  SoD ∧ di sabl ed(r1, t) → ¬di sabl ed(r2, t) 

 No two roles in R can be disabled at the same time in interval (I, P) 

User-Role assignment/de-assignment SoDs  

(I, P, UAS1, U, R) SoD ∧ u_assi gned(u, r1, t) → ¬u_assi gned(u, r2, t)  
UAS-SoD1 

No two roles in R can be assigned to a user in U at the same time in interval (I, P) 

(I, P, UAS1, U, R) ∀r∈ R, SoD ∧ u_assi gned(u1, r, t) → ¬u_assi gned(u2, r, t) 
UAS-SoD2 

No two users in U can be assigned to a role in R at the same time in interval (I, P). 

(I, P, UAS3, U, R) SoD ∧ u_assi gned(u1, r1, t)
 → ¬u_assi gned(u2, r2, t) 

 UAS-SoD3 
Different users in U cannot be assigned different roles in R at the same time in interval (I, P) 

(I, P, UAS4, U, R) SoD ↔ UAS-SoD2 ∧ UAS-SoD3  
UAS-SoD4 

Roles in R can be assigned to only one of the users in U at the same time in interval (I, P) 

(I, P, UAS5, U, R)  SoD ↔ UAS-SoD1 ∧ UAS-SoD3 
UAS-SoD5 

Users in U can be assigned only one of the roles in R at the same time in interval (I, P) 

(I, P, UAS6, U, R) SoD ↔ UAS-SoD1 ∧ UAS-SoD2 
UAS-SoD6 

A role in R can be assigned to only one user in U (and vice versa) at the same time in interval (I, P) 

Role-Permission assignment/de-assignment SoDs  

(I, P, PAS1, P, R) ∀p∈P, SoD ∧ p_assi gned(p, r1, t) → ¬p_assi gned(p, r2, t) PAS-SoD1 

 No two roles in R can be assigned a permission in P at the same time in interval (I, P) 

(I, P, PAS2, P, R) ∀r∈ R, SoD ∧ p_assi gned(p1, r, t) → ¬p_assi gned(p2, r, t) 
PAS-SoD2  

No two permissions in P can be assigned to a role in R at the same time in interval (I, P).  

(I, P, PAS3, P, R) ∀p1, p2∈P, SoD ∧ p_assi gned(p1, r1, t)
 → ¬p_assi gned(p2, r2, t) 

PAS-SoD3 
Different permissions in P cannot be assigned to different roles in R at the same time in interval (I, P) 

(I, P, PAS4, P, R) SoD ↔ PAS-SoD2 ∧ PAS-SoD3 
PAS-SoD4 

Roles in R can be assigned only one of the permissions in P at the same time in interval (I, P). 

(I, P, PAS5, P, R) SoD ↔ PAS-SoD1 ∧ PAS-SoD3 
PAS-SoD5 

Permissions in P can be assigned to only one of the roles in R at the same time in interval (I, P) 

(I, P, PAS6, P, R) SoD ↔ PAS-SoD1 ∧ PAS-SoD2 

PAS-SoD6 
Permissions in P can be assigned to only one of the roles in R at the same time in interval (I, P) 



    

by such CFD constraints, and some of which correspond to those 
already identified in the literature. These SoDs will be defined 
with respect to GTRBAC status predicates introduced in Table 2.  

5.1 Role Enabling/Disabling Time SoDs 
(predicates: enabl ed/ di sabl ed) 

The SoD constraints related to enabling and disabling events are 
shown in Table 5. EN-SoD indicates that roles from a given role 
set cannot be enabled at the same time. If there are role enabling 
events that attempt to enable more than one role at the same time 
then the enforcement mechanism must use some criteria to enable 
only one of the roles. SoD DIS-SoD is defined with respect to the 
role disabling event. The difference between them is that EN-SoD 
does not allow all the roles to be enabled at the same time but 
allows them to be disabled at the same time, whereas DIS-SoD 
allows all to be enabled at the same time but does not allow them 
to be disabled at the same time. Role enabling SoDs (EN-SoD) are 
cases where limiting access is a primary concern. Similarly, role 
disabling SoD (DIS-SoD) is more useful in cases where 
availability is the key concern, for example, in a hospital, a 
requirement may state that “Both the ����� and ������ roles 
cannot be disabled at the same time” . These SoDs can be 
expressed in the form of cardinality constraints introduced earlier, 
e.g., EN-SoD can be expressed as |Π1����(enabl ed(r, t)) ∩ R| ≤ 
1. Similarly, other SoDs defined below can also be expressed in 
this form; however, we use uniformly the implication rule to 
provide the semantics of these SoDs.  

5.2 Assignment SoDs                                
(predicates: u_assi gned,  p_assi gned) 

Table 5 defines various user-role and role-permission assignment 
time constraints. UAS-SoD1 indicates that multiple roles from R 
cannot be assigned to a user in U at the same time. Accordingly, 
the roles from R can be assigned to any user not included in U. In 
other words, this implies that the role set R has conflicting 
semantics only with respect to the user set U. Allowing 
specification of such a set of conflicting roles with respect to a 
particular user set provides the benefit of expressing fine-grained 
SoD constraints. UAS-SoD2 states that different users of U cannot 
be assigned to a role in R, i.e., the users in U are conflicting with 
respect to role set R. Figure 1 depicts various assignment 
combinations that are not allowed by the user-role assignment 
constraints for U = { u1, u2}  and R = { r1, r2} . Here, a line from u 
to r indicates that u is assigned to r.  In general, set U can be 
expected to be the set User s . In figure 1, UAS-SoD1 does not 
allow assignment combinations depicted in (c), whereas, UAS-
SoD2 does not allow assignment combinations shown in (b). 

UAS-SoD3 states that different users from set R cannot be 
assigned to different roles. Here, U and R have conflicting 
semantics with respect to each other. Note that the notion of 
conflict here is slightly different from that of UAS-SoD1 and UAS-
SoD2. However, this constraint allows a single user from U to be 
assigned to multiple roles of R, and a single role from R to be 
assigned to multiple users. UAS-SoD3 does not allow assignment 
scenario depicted in (a). In real world scenario, U of UAS-SoD3 
may refer to a set of employees who are related. Assignment of 
any two of these employees to different roles will allow them to 
commit fraud. If, for instance, one employee is assigned to role 

�����	���	������
��� �that� authorizes checks) and another is 
assigned to role ����	�
����� (for cashing authorized checks), 
they can easily commit fraud. Another practical scenario in which 
this constraint can be applicable is when a set of roles represents 
subtasks of a bigger task, with the constraint that the different 
users of U cannot carry out different subtasks. 

u1 r1

u2 r2

u1 r1

u2 r2

r1

u2 r2

u1 r1

u2 r2

u1

u1 r1

u2 r2

u1 r1

u2 r2

 

SoD Doesn’ t Allow SoD Doesn’ t Allow 

UAS-SoD1 (c) UAS-SoD4 (a), (b) 

UAS-SoD2 (b) UAS-SoD5 (a), (c) 

UAS-SoD3 (a) UAS-SoD6 (b), (c) 

Figure 1. User-assignment SoDs with U={ u1,u2}  and R={ r1,r2}  

 

UAS-SoD4, UAS-SoD5 and UAS-SoD6 can be derived as 
combinations of earlier SoDs, as shown in Table 5. We note that, 
although UAS-SoD3 allows defining constraints such as all the 
subtask roles need be assigned to the same user, it also allows the 
assignment scenario (b), which may not be relevant with regards 
to such a requirement. UAS-SoD4, for instance, omits the 
possibility of assigning all the users to the same subtask role 
rendering the overall task un-accomplishable. As shown in the 
figure, UAS-SoD5 prevents the set of assignments of type shown 
in (a) and (c) – i.e. it allows multiple users to be assigned to only 
one of the roles, such as those in Figure 1(b). That is, as soon as 
one of the roles, say role r, is assigned to a user then none of the 
users can be assigned to any other roles; however, role r can be 
assigned to any number of users. An example of application of 
UAS-SoD5 is the assignment of a given set of consultants (set U) 
to the same consultancy duty (assignment of all the users to the 
role ������������������ �). 

The role-permission assignments have semantics similar to that of 
the user-role assignments. Note that, here, we are using the notion 
of conflicting permission, for example in PAS-SoD2. 

5.3 Role Activation Time SoDs             
(predicate: act i ve) 

Activation time constraints are listed in Table 6. ACT-SoD1 
implies that activation of conflicting roles at the same time in the 
same session or different sessions by a user in U is not allowed. 
Figure 2 depicts the scenarios for U = { u1, u2}  and R = { r1, r2}  
when both the roles are active. Here, s: u1(r1, r2) indicates that 
roles r1 and r2 are active in u1’ s session s. ACT-SoD1 does not 

(a) (b) (c) 



    

allow activation combinations depicted in 2(b) and 2(c). ACT-
SoD2 does not allow activation of a role by conflicting users at the 
same time. Similarly, ACT-SoD3 does not allow conflicting roles 
to be active in different users’  sessions, as depicted in 2(a).  

ACT-SoD4 does not allow 2(c), i.e. it prevents activation of the 
conflicting roles in the same session simultaneously. ACT-SoD5 
does not allow scenarios depicted in 2(b), i.e. it prevents 
activation of the conflicting roles in the different sessions of the 
same user simultaneously.  ACT-SoD6 and ACT-SoD7 are 
combinations of the earlier SoDs, as indicated in the table. 

Figure 3 illustrates the usefulness of SoD constraints ACT-SoD1 - 
ACT-SoD5. In Figure 3(a), roles r1 and r2 have a common set of 
permissions. Now suppose, we allow users u1 and u2 assigned to 
roles r1 and r2, respectively, to activate the respective roles at the 
same time. As the read permission on the object Ox is available to 
both the roles, the information that each role writes to object Ox is 
visible to the other. Hence, Ox opens up the information flow 
channel between the two users. Common permissions like these 
may occur explicitly, in a non-hierarchical case, or implicitly 
through an I-hierarchy relation such as in the one shown in Figure 
3(a). In a non-hierarchical case, declaring the two roles as 
conflicting and applying ACT-SoD3 is a straightforward solution if 
such information flow needs to be contained. Kuhn [14] indicates 
that roles that have common permissions cannot form a 
conflicting pair. We believe that such semantics is too restrictive. 
Moreover, with that semantics, we indirectly impose mutual 
exclusion on the permission sets of the two roles. This may not be 

what is required in the practice. For example, there may be 
situations where only the private permissions of a pair of roles are 
conflicting, but the roles may have a common set of permissions.  

(c)

s:  ux (r 1, r 2 )

(a)

(b)

s1:  u1 (r x)

s2:  u2 (r y)

r x, r y∈ { r 1, r 2} ;r x ≠ r y

s1:  ux (r 1)

s2:  ux (r 2)

ux ∈ { u1, u2}

ux ∈ { u1, u2}

(d)

s1:  u1 (r x)

s2:  u2 (r x)

r x ∈ { r 1, r 2}

 

Tabl e 6. Activation time SoDs 

Activation Time SoDs 

Type SoD 

Semantics 

∀u, u1, u2∈ U, ∀s, p1, p2∈ R, ∀r, r1, r2∈ R, ∀t ∈ Sol(I, P),  (u1≠ u2), (r1≠ r2) and (p1≠ p2), the following holds: 

(I, P, ACT-SoD1, U, R) ∀u∈U, SoD ∧ act i ve(u, r1, t) → ¬act i ve(u, r2, t)  ACT-SoD1  

No two roles in R can be in active state in session(s) of a user in U at the same time in interval (I, P) 

(I, P, ACT-SoD2, U, R) ∀u∈U, SoD ∧ act i ve(u1, r, t) → ¬act i ve(u2, r, t)  ACT-SoD2  

No two users in U can have a role in R active at the same time in interval (I, P) 

(I, P, ACT-SoD3 U, R) ∀u1, u2∈U, SoD ∧ act i ve(u1, r1,  t) → ¬act i ve(u2, r2, t) 
ACT-SoD3  

No two users in U can have two different roles in R active at the same time in interval (I, P) 

(I, P, ACT-SoD4, U, R) ∀u∈U,∀s ∈S, SoD ∧ act i ve(u, r1, s, t) → ¬act i ve(u, r2, s, t) 
ACT-SoD4  

Two roles in R cannot be in active state at the same time in a single session of a user in U in interval (I, P) 

(I, P, ACT-SoD5, U, R) ∀u∈U,∀s1, s2∈S, SoD ∧ act i ve(u, r1, s1, t) → ¬act i ve(u, r2, s2, t) ACT-SoD5  

No two sessions of a user in U can have two roles in R active at the same time in interval (I, P) 

(I, P, ACT-SoD6, U, R) SoD ↔ ACT-SoD2∧ ACT-SoD4 ACT-SoD6 

Roles in R can be active in a session(s) of only one of the users in U at the same time in interval (I, P) 

(I, P, ACT-SoD7, U, R) SoD ↔ ACT-SoD5 ∧ ACT-SoD6 
ACT-SoD7 

Roles in R can be active in a single session of only one of the users U at the same time in interval (I, P) 

  

SoD Does not allow SoD Does not allow 

ACT-SoD1 (b), (c) ACT-SoD5 (b) 

ACT-SoD2 (d) ACT-SoD6 (a), (d) 

ACT-SoD3 (a) ACT-SoD7 (a), (b) , (d) 

ACT-SoD4 (c)   

Figure 2. Activation time SoDs for U = { u1, u2}  and R = { r1, r2}  



    

In such scenarios, conflicting roles imply conflicting set of private 
permissions only. For example, an !���� �� role in general can 
be used to group the basic set of permissions available to all the 
employees of an organization. We may have two roles such as 
������	���	�����
�� and ����	�
�����, which are both senior 
to !���� �� but are considered to be conflicting; however, 
conflicting semantics is obviously limited to their private 
permissions rather than the common permissions inherited from 
!���� ��. Kuhn’s strict mutual exclusion semantics necessitates 
partitioning even such basic roles in order to enforce mutual 
exclusion over the total sets of permissions associated with the 
two roles. However, sometimes in such a scenario, common 
permissions may create information flow when the private 
permissions of the two roles conflict. In Figure 3(a), for example, 
when user u1 activates role r1, and u2 activates role r2 at the same 
time, they can exchange information contained in O1i and O2j to 
each other.  ACT-SoD3 prevents such possibilities. 
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Figure 3. Session time SoD examples  

ACT-SoD1 can be used in cases where a user needs to be restricted 
from acquiring permissions that give him/her enough power to 
carry out some activities. For example, Figure 3(b) shows two 
roles that contain permissions for the subtasks of a bigger task. If 
we want that the same user do not carry out the two subtasks, then 
we can employ ACT-SoD1 constraint. Furthermore, the roles may 
be organized as an A-hierarchy, where role r represents the actual 

task role and is the senior of roles r1 and r2 that represent sub-
tasks 1 and 2. If users from U are assigned to r and the ACT-SoD1 
is defined with respect to R = { r1, r2} , then the task can only be 
performed by two different users of U working at the same time. 

ACT-SoD2 can be used to enforce the requirement that a particular 
task can be performed by only one person at a time by assuming 
the task role. ACT-SoD4 limits the access capability of a user by 
not allowing the conflicting roles to be active in a single user 
session. Its usefulness comes from the fact that a session in RBAC 
system is semantically the same as a subject in traditional access 
control models (DAC, MAC, etc.) [17]. Similarly, ACT-SoD5 
prevents a user from simultaneously acting as two subjects. 

5.4 Possibilistic Activation Time SoDs 
(predicates: can_act i vat e,  can_be_acqui r ed) 

We also define SoDs based on the can_act i vat e predicate, as 
shown in Table 7. CACT-SoD1 prevents all possible activation of 
conflicting roles by users in U.  Note that the purpose of UAS-
SoD1 is essentially to prevent activation of conflicting roles by a 
user by not allowing explicit assignments to conflicting roles in 
the first place. For example, when U = { u1, u2}  and R = { r1, r2} , 
we can prevent the possibility of activation of both the roles by a 
user by explicitly denying assignments to conflicting roles by 
using UAS-SoD1. Let’s assume that because of this constraint u1 is 
assigned to r1 but not r2. Now, assume that there is a role x such 
that x� is senior����r2 with respect to an A-hierarchy, i.e. any user 
assigned to x can also activate role r2, as depicted in Figure 4(a). 
Now, if we allow the assignment of u1 to x, the purpose of 
preventing u1 from activating both r1 and r2 at the same time is not 
fulfilled. This is because, the A-hierarchy between s and r2 makes 
the predicate can_act i vat e(u1, r2, t) true [13], hence allowing 
u1 to activate r2 even when u1 is already assigned to r1. Therefore, 
when we have role hierarchies, implicit assignment may be 
possible through the use of can_act i vat e(u, r, t) predicate 
(we refer to [13] for more details), which may make it possible for 
a user to activate conflicting roles even if the constraint UAS-
SoD1 is already employed. CACT-SoD1 prevents such scenarios, 
i.e. it prevents both implicit and explicit assignments of a user to 

 

Tabl e 7. Possibilistic role activation SoDs 

Possibilistic Activation (can_act i vat e) SoDs 

Type SoD 
Semantics 

∀u, u1, u2∈ U, ∀r, r1, r2∈ R, ∀t ∈ Sol(I, P),  (u1≠ u2)  and  (r1≠ r2), the following holds: 

(I, P, CACT-SoD1, U, R) ∀u∈U, SoD ∧ can_act i vat e(u,  r1, t) → ¬can_act i vat e(u,  r2, t) 
CACT-SoD1  

No two roles in R can be activated by a user in U at the same time in interval (I, P). 

(I, P, CACT-SoD1, U, R) ∀u1, u2∈U, SoD ∧ can_act i vat e(u1,  r1, t) → ¬can_act i vat e(u2,  r2, t) 
CACT-SoD2 

No two users in U can activate two roles in R at the same time in interval (I, P) 

(I, P, CACT-SoD3, U, R) SoD ↔  CACT-SoD1  ∧  CACT-SoD2 
CACT-SoD3 

Users in U can activate only one of the roles in R at the same time in interval (I, P) 

(I, P, CACT-SoD4, U, R) ∀u∈U, SoD ∧ can_act i vat e(u,  r1, s, t) → ¬can_act i vat e(u,  r2, s, t) 

No two roles in R can be activated by a user in U in a single session s at the same time in interval (I, P). CACT-SoD4 

Users in U can activate only one of the roles in R in a single session s at the same time n interval (I, P) 

(a) (b) 



    

conflicting roles. Furthermore, CACT-SoD2 is an activation-time 
counterpart of UAS-SoD3, and CACT-SoD3 is the activation-time 
counterpart of UAS-SoD5. CACT-SoD4 is a session specific 
counterpart of CACT-SoD1.  

Note that one way to prevent the scenarios depicted in Figure 4(a) 
is to consider that r1 is in conflict with all the roles hierarchically 
superior to r2, as in [8, 14]. However, this approach is very 
restrictive, and makes the task of properly designing a role 
hierarchy very difficult. 

5.5 Possibilistic Permission Acquisition SoDs 
(predicates: can_acqui r e,  can_be_acqui r ed) 

Table 8 lists the possibilistic permission acquisition SoDs. CACQ-
SoD1 prevents the acquisition of permissions through the 
conflicting roles that will not be caught by PAS-SoD3, similar to 
the way CACT-SoD1 prevents the activation of conflicting roles 
not prevented by ACT-SoD1. That is, constraint CACQ-SoD1 
employs the “can acquire”  semantics and hence captures both 
explicit and implicit role-permission assignments. Note that PAS-

Tabl e 8. Possibilistic permission acquisition SoDs 

Possibilistic User-Permission Acquisition (can_be_acqui r ed  and can_acqui r e) SoDs 

Type SoD 
Semantics 

∀u, u1, u2∈ U, ∀r, r1, r2∈ R, ∀p, p1, p2∈ P, ∀t ∈ Sol(I, P), (u1≠ u2), (r1≠ r2) and (p1≠ p2) the following holds: 

(I, P, CACQ1, U, P, R) SoD ∧ can_acqui r e(u2,  r1, t)→ ¬can_acqui r e(u, p,  r2, t) 
CACQ_SoD1 

A permission in P cannot be acquired by a user in U through different roles in R at the same time  

(I, P, CACQ2, U, P, R) ∀u∈U, ∀p1, p2∈P, SoD ∧ can_acqui r e(u, p1,  r1, t)→ ¬can_acqui r e(u, p2,  r2, t) CACQ_SoD2 

 No two permissions in P can be acquired by a user in U through roles in R at the same time  

(I, P, CACQ3, U, P, R) ∀u1,u2∈U,∀p∈P, SoD ∧ r _can_acqui r e(u1,p, r1,t)→ ¬can_acqui r e(u2,p, r2,t) CACQ_SoD3 

No two users in U can acquire a permission in P through different roles at the same time 

(I, P, CACQ4, U, P, R) ∀u1,u2∈U,∀p1,p2∈P, SoD∧r _can_acqui r e(u1,p1, r1,t)→ ¬r _can_acqui r e(u2,p2, r2,t) 
CACQ_SoD4 

No two users in U can acquire different permissions in U through two roles at the same time 

(I, P, CACQ5, U, P) ∀p, SoD ∧ can_acqui r e ( u1,p,t) → ¬can_acqui r e ( u2, p, t) CACQ_SoD5 

No two users in C can acquire a permission in P at the same time.  

(I, P, CACQ6, U, P) ∀p1, p2∈P, SoD ∧ can_acqui r e ( u1, p1, t) → ¬can_acqui r e ( u2, p2, t)  CACQ_SoD6 

No two permissions in P can be acquired by the different users in U at the same time  

(I, P, CACQ7, U, P, R ) ∀ p∈ P, ∀r∈ R, SoD ∧ can_acqui r e (u1, p, r, t) → ¬acqui r es (u2, p, r, t) CACQ_SoD7 

A permission in P cannot be acquired by different users in U through the same role in R at the same time.  

(I, P, CACQ8, U, P, R) ∀p1, p2∈ P, ∀r∈ R, SoD ∧ can_acqui r e (u1, p1, r, t) → ¬acqui r es (u2, p2, r, t) CACQ_SoD8 

No two permissions in P can be acquired by two users through the same role in R at the same time.  

(I, P, CACQ9, R, P) ∀r∈ R, SoD ∧ can_be_acqui r ed(p1, r, t) → ¬can_be_acqui r ed(p2, r, t) CACQ_SoD9 

No two permissions in P can be acquired through a role in R at the same time. 

(I, P, CACQ10, R, P) ∀r1,r2∈ R, SoD ∧can_be_acqui r ed( p1, r1, t) → ¬can_be_acqui r ed(p2, r2, t) CACQ_SoD10 

Different permissions in P cannot be acquired through different roles in R at the same time. 

(I, P, CACQ11, U, P) 
∀u∈ U, SoD ∧ can_acqui r e(u,  p1, t) → ¬can_acqui r e (u,  p2, t) 

  
CACQ_SoD11 

A user in U cannot acquire different permissions in P at the same time.  

(I, P, CACQ12, U, P) 
∀u1, u2∈ U, SoD ∧ can_acqui r e(u1, p1, t) → ¬can_acqui r e (u2, p2, t) 

  
CACQ_SoD12 

No two users in U can acquire different permissions in P at the same time.  

(I, P, CACQ13, U, P, R) ∀r ∈R, ∀u, SoD ∧ can_acqui r e (u,  p1, r,  t) → ¬ can_acqui r e (u,  p2, r,  t)  
CACQ_SoD13 

Permissions in P cannot be acquired by a user in U through a role in R at the same time. 

  



    

SoD3 can prevent the acquisition of permissions through the 
conflicting roles by a user by restricting explicit role-permission 
assignment. However, permission acquisition may also be allowed 
through the implicit role-permission assignment because of some 
hierarchical relations. For example, let us consider P = { p1, p2}  
and R = { r1, r2} .  Suppose, we have the SoD constraint PAS-
SoD3, then the same permission in P cannot be assigned to the 
two roles. Provided there are no hierarchies in the system, the 
effect (and hence the purpose) of this SoD constraint is that the 
same permission is not acquired through two roles even if a user 
is allowed to activate them both. Now, assume there is a role x 
such that r2 is senior of x with respect to an I-hierarchy, as shown 
in Figure 4(b). Suppose we allow the assignment of p1 to x. 
Furthermore, suppose we have the following assignment:  p1 is 
assigned to r1, and hence p1 is not assigned to r2 by virtue of the 
constraint PAS-SoD2.  But, as p1 is also assigned to x, and (r2≥tx), 
p1 is also implicitly assigned to r2, the SoD constraint PAS-SoD2 
does not prevent p1 being acquired through role r2 using hierarchy 
semantics. CACQ-SoD1 prevents such permission-acquisitions 
through implicit assignments. CACQ-SoD2 is to CACQ-SoD1 the 
way UAS-SoD3 was to UAS-SoD1. 
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Figure 4. Implication of SoDs in presence of hierarchy 

CACQ-SoD3 allows acquisition of permissions in R by users 
through only one of the conflicting roles, whereas CACQ-SoD4 
does not allow different users to acquire different permissions 
through the conflicting roles. Similar to the CACQ-SoD1 
constraint, CACQ-SoD5 prevents acquisition of permissions that is 
allowed by both explicit and implicit assignments. As depicted in 
the table of Figure 4, CACQ-SoD5 prevents conflicting users from 
acquiring a permission of P through the same role, as in (a), or 
though different roles, as in (b). CACQ-SoD6, on the other hand 
does not allow two separate permissions to be acquired by 
conflicting users neither through the same role (as in (c)) nor the 
different roles (as in (d)). CACQ-SoD7 prevents conflicting users 
from acquiring a permission in P through the same role in R at the 
same time and hence does not allow case (a). Similarly, the table 
in Figure 5 shows the cases depicted in Figure 5 that are not 
allowed by CACQ-SoD8, CACQ-SoD3 and User-SoD4. Various 
combinations of these SoDs define the SoDs from CACQ-SoD7 to 
CACQ-SoD13. 
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CACQ-SoD1 (i) CACQ-SoD8 (iv), (vi) 
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CACQ-SoD5 (v) CACQ-SoD12 (iv), (vi) 
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Figure 4. Implication of SoDs in presence of hierarchy  

5.6 Compar ison with other  SoDs 
Table 9 shows the correspondence between the major SoDs 
identified in the literature and the ones proposed here. First, we 
note that our SoDs take into account time that has not been 
considered earlier. Secondly, we can express all the SoDs in [1] 
with our constraint expressions or their combinations. The table 
also shows how our SoDs correspond to those proposed in [18]. 
We note that the SoDs in rows 10 through 15 are more task 
oriented. However, with the help of the triggers and dependency 
constraint along with some transformation of the problem to map 
into RBAC domain, our framework can easily express them. Since 
previously identified SoDs are non-temporal, they correspond to 
the special case of the time-constrained SoDs proposed here, 
where (I, P) = all and any occurrence of U, R or P in GTRBAC 
SoDs refer to the complete sets User s , Rol es  and 
Per mi ssi ons . Furthermore, by using the GTRBAC status 
predicates, several new SoDs have been identified. 

6. RELATED WORK 
Mainly two kinds of cardinality constraints are often mentioned in 
the literature - user cardinality and role cardinality [6, 9, 15]. 
However, our approach of using status predicate, an evaluation 
function and a projection operator to define cardinality constraints 
allows one to express cardinality constraints associated with all 
states - role enabling, user or permission assignment as well as 
activation time including session. 



    

Several papers in the literature deal with separation of duty 
constraints, with efforts focused on identifying various forms of 
SoDs as well as to categorize them [1, 8, 14, 18]. Simon and 
Zurko [18] discuss informally a wide variety of SoD constraints 
that are required in systems. Gligor et. al. [8] provide a formalism 
for these SoDs.  One limitation of this work, however, is that it 
does not consider the session-based dynamic SoD needed for 
simulating lattice-based access control and Chinese Walls in 
RBAC [15, 17]. Another limitation is that the SoDs defined do 
not capture the hierarchical semantics. Improvements along these 
lines can be seen in the SoDs listed by Ahn et. al. [1]. Unlike 
these approaches, we follow a predicate-based definition of 
general exclusion and inclusion of various kinds of assignments 
and activations to define the SoD properties in GTRBAC. This 
approach, while subsumes the SoDs defined in the above-
mentioned literature, also provides the overall capability of an 

RBAC model to capture the separation of duty constraints that 
may exist. 

Dependency constraints form a less explored aspect in RBAC. 
While some form of dependency is implied by role triggers 
introduced in TRBAC [4] and GTRBAC [12], the control flow 
dependency constraints, where a strict dependencies are implied, 
have not been included within an RBAC framework. Such control 
flow dependencies are typically used in workflow type of systems 
to define inter-dependencies between workflow tasks [3]. We 
believe that using such dependency constraints, GTRBAC can 
better handle access control requirements in time-sensitive, 
workflow types of applications, by providing a much broader 
framework for mapping tasks into roles and using these 
constraints to capture the interdependencies between the tasks. 

No earlier work has addressed the issue of time-based cardinality, 
SoD and dependency constraints. Applying periodicity/duration 

Table 9. Comparison with SoDs proposed elsewhere 

SH: Simon-Zurko’s SoD list [18]; AH: Ahn’s SoDs list [1]. GTRBAC  (non-temporal forms) 

SZ Strong SSoD (no user can be assigned to conflicting roles)  UAS-SoD1 

1 

AH 
SSoD-CR (no user should be (implicitly and explicitly) assigned to conflicting roles, i.e., no user 
can-activate conflicting roles)  

CACT-SoD1  

2 AH SSoD-CP (a user cannot acquire conflicting permissions) CACTs-SoD9  

3 AH Variation of 2 (2 + conflicting permissions cannot be acquired through a role)  CACTs-SoD9  ∧ CACQ-SoD4.1 

4 AH 
Variation of 1 (1 + conflicting permissions cannot be acquired through a role + conflicting 
permissions cannot be assigned to a role 

CACT-SoD1 ∧ CACQ-SoD13 ∧ PAS-SoD2 

5 AH SSoD-CU (1` + conflicting users cannot be assigned to a role) CACT-SoD1 ∧ CACQ-SoD1 ∧ UAS-SoD2 

6 AH Variation: (4) ∧∧∧∧ (5) (4) ∧∧∧∧ (5) above 

SZ Simple DSoD  
7 

AH User-based DSoD (Conflicting roles cannot be active at the same time for a user) 
ACT-SoD1  

8 AH 
User-based DSoD with CU (Conflicting roles cannot be active at the same time for a user) only 
difference between this and (7) is that here we are taking a conflicting user set other wise it is the 
same  

Same as 7 but U is also a conflicting set 

9 AH Session-based DSoD (Conflicting roles cannot be active at the same in the same user session) ACT-SoD4 

10 AH 
Session-based DSoD with CR (Conflicting roles cannot be active at the same in the same user 
session) Only difference from 9 is that it has conflicting set of users 

Same as 9 but R is also a conflicting set 

11 SZ 
Object-based DSoD (no user may act upon a target that that user has previously acted upon)   Can be rephrased as: if a user acquires a 

permission then he cannot acquire it again. Post-
condition constraint can be used here. 

12 SZ 
Operational DSoD (no user may assume a set of roles that have capability for a complete business 
job)  

Task oriented: if the task can be represented by 
atleast two roles (sub-tasks) then it can be easily 
represented using UAS-SoD1 or ACT-SoD1 

13 SZ 
History-based DSoD (no user is allowed to perform all the actions in a business task in the same 
target or collection of targets) 

Comment similar to 12 can be made here, too.  

14 SZ 
Order-dependent SoD (The roles must perform their actions in a particular order)  It can be expressed as a sequence of precedence 

constraints  

15 SZ 
Order-independent SoD (Order does not matter as long as both happen)  Triggers x→y after �t , y→ x  after �t can be 

used to enforce this. 



    

constraints for these SoDs is more suitable for supporting access 
control needs of dynamically evolving systems that are prevalent 
today. 

7. CONCLUSION AND FUTURE WORK 
We have presented constraints for GTRBAC model including 
cardinality constraints, control flow dependency constraints, and 
separation of duty constraints. We used an evaluation function 
and a projection operator associated with a set of GTRBAC status 
predicates to build an elaborate framework for expressing 
cardinality constraints. GTRBAC’s trigger has been extended so 
that more complex time-based past information can be captured. 
A set of control flow dependency constraints have been 
introduced using the trigger framework to enforce much stricter 
dependency constraints than those that can be expressed using 
triggers. We also showed that by generalizing to system events 
and conditions, the triggers and CFD framework provides an 
elaborate model for capturing context-based access requirements. 
Our approach to separation of duty constraints is based on the fact 
that the notion of conflict between elements in a set is often 
associated with another set. This allows us to consider SoDs that 
are of much finer-granularity. We have shown that the separation 
duty constraints identified in the literature can be easily expressed 
by a subset of our separation duty constraint expressions. One key 
future work that we plan to pursue is to develop a SQL or XML 
like language to specify the GTRBAC constraints.  Another 
direction we plan to investigate is to use GTRBAC for workflow 
type of systems. 
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