

CERIAS Tech Report 2003-04

DEPENDENCIES AND SEPARATION
OF DUTY CONSTRAINTS IN GTRBAC

by James B D Joshi, Elisa Bertino,

Basit Shafiq, Arif Ghafoor

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907

Dependencies and Separation of Duty Constraints in
GTRBAC

James B D Joshi
School of Electrical and
Computer Engineering,

Purdue University,
West Lafayette, IN, USA
joshij@purdue.edu

Elisa Bertino
Dipartmento di Scienze

dell’’Informazione,
Universita’ di Milano,

Milan, Italy
bertino@dsi.unimi.it

Basit Shafiq
School of Electrical and
Computer Engineering,

Purdue University,
West Lafayette, IN, USA
shafiq@purdue.edu

Arif Ghafoor
School of Electrical and
Computer Engineering,

Purdue University,
West Lafayette, IN, USA

ghafoor@purdue.edu

ABSTRACT
A Generalized Temporal Role Based Access Control (GTRBAC)
model that captures an exhaustive set of temporal constraint needs
for access control has recently been proposed. GTRBAC’s
language constructs allow one to specify various temporal
constraints on role, user-role assignments and role-permission
assignments. In this paper, we identify various time-constrained
cardinality, control flow dependency and separation of duty
constraints (SoDs). Such constraints allow specification of
dynamically changing access control requirements that are typical
in today’s large systems. In addition to allowing specification of
time, the constraints introduced here also allow expressing access
control policies at a finer granularity. The inclusion of control
flow dependency constraints allows defining much stricter
dependency requirements that are typical in workflow types of
applications.

Categor ies and Subject Descr iptors
D.4.6 [Secur ity and Protection]: Access control; H.2.7
[Database Administration] Security, integrity, and protection.

General Terms
Security, Theory.

Keywords
Role based access control, security, separation of duty, temporal
constraints, cardinality constraint

1. INTRODUCTION
Role based access control (RBAC) has emerged as a promising
alternative to traditional discretionary and mandatory access
control (DAC and MAC) models [7, 11, 15, 16], which have some
inherent limitations [11]. Several key features such as policy
neutrality, support for least privilege, efficient access control
management, are associated with RBAC models [7, 11, 16]. Such

features make RBAC better suited for handling access control
requirements of diverse organizations. Furthermore, the concept
of role is associated with the notion of functional roles in an
organization, and hence RBAC models provide intuitive support
for expressing organizational access control policies [5]. RBAC
models have also been found suitable for addressing security
issues in the Internet environment [2, 11], and have shown
prospects for supporting secure interoperation in a heterogeneous
multidomain environment [10].

One of the important aspects of access control is that of time
constraining accesses to limit resource use. Such constraints are
essential for controlling time-sensitive activities that may be
present in various applications such as workflow management
systems (WFMSs). Tasks in a WFMS may be time dependent and
need to be executed in some order [3]. To address general time-
based access control needs, Bertino et al. propose a Temporal
RBAC model (TRBAC) [4], which has been recently generalized
by Joshi et al. [12]. The Generalized-TRBAC (GTRBAC) model
[12] incorporates a set of language constructs for the specification
of various temporal constraints on roles, including constraints on
their activations as well as on their enabling times, user-role
assignment and role-permission assignment. In particular,
GTRBAC makes a clear distinction between role enabling and
role activation. A role is enabled if a user can acquire the
permissions assigned to it. An enabled role becomes active when
a user acquires the permissions assigned to it in a session. An
open issue in the GTRBAC model, as well as in the TRBAC
model [4] is the specification and enforcement of time-
constrained cardinality, control flow dependency and separation
of duty (SoD) constraints.

Cardinality and SoD constraints are crucial for securing many
applications in a commercial environment. Many researchers have
highlighted the importance and use of cardinality and SoD
constraints in RBAC models [8, 17, 18]. However, no one has
addressed the time-based cardinality and SoD constraints. Use of
a particular constraint for a period of time or duration is important
for emerging applications as access requirements frequently
change with time. Dependency constraints are relevant to role
based systems as roles often embody organizational functions that
may be inter-dependent. For instance, a doctor in training may be
allowed to work only if some senior doctor who can supervise
him, is also on duty. Some aspect of dependency constraints such
as history based access control, operational SoD, etc., have been
mentioned in general access control literature [3, 18], but they
have not been adequately addressed for general RBAC systems. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’03, June 1-4, 2003, Como, Italy
Copyright 2003 ACM 1-58113-681-1/03/0006…$5.00.

.

this paper, we focus on these constraints within the GTRBAC
modeling framework [12]. The key contributions of this paper are
as follows:

- We introduce a generic framework for expressing a wide
range of time-based cardinality constraints with the help of
GTRBAC status predicates, a function to evaluate these
predicates and a projection operator that extracts a set of
elements from the evaluation of the function.

- We develop an elaborate trigger expression that can capture
complex dependencies among events and conditions. In
particular, we define CFD constraints that can be used to
express stricter control flow dependencies. Furthermore, we
show that the trigger framework and the CFD constraint
expressions can be easily extended to provide an elaborate
time based RBAC model for context-based access control.

- We identify a large set of possible SoD constraints using the
GTRBAC status predicates. These SoDs subsumes the SoDs
that have been identified in the RBAC literature, and at the
same time provide much finer modeling capability.

The paper is organized as follows. In section two, we briefly
present the constraints of GTRBAC. In section three, we present
the status predicates for a GTRBAC system and the cardinality
constraints. In section 4, we present the GTRBAC triggers and the
control flow dependency constraints. The time-constrained SoD
constraints are presented next, in section 5. The related work is
presented in section 6. Section 7 concludes the paper and provides
some future directions.

2. THE GTRBAC MODEL
The GTRBAC model provides a temporal framework for
specifying an extensive set of temporal constraints [12]. This
model is an extension of the TRBAC model [4] and uses a
language-based framework. GTRBAC allows various types of
temporal constraints such as temporal constraints on role
enabling/disabling, temporal constraints on user-role and role-
permission assignments/de-assignments, role activation-time
constraints, etc. GTRBAC’s administrative run-time events allow
an administrator to dynamically initiate events. Another set of
run-time events allows users to make activation requests to the
system. Furthermore, constraint-enabling expressions include
events that enable or disable duration constraints and role
activation constraints. The GTRBAC triggers allow the
expression of dependencies among GTRBAC events, and
capturing past events. GTRBAC can capture the dynamically
changing access control needs of a system [12, 13]. The periodic
expressions are written as (I, P), where I is an interval and P is a
set of infinite number of intervals. (I, P) represents the set of all
the intervals of P that are contained in I. For example, (I, P) =
([1/1/2002, 12/31/2002], Mondays) considers all the Mondays of
the year 2002. D is used to express the duration specified for a
duration constraint. Temporal constraints are expressed by a
generic form, (I, P, E), where (I, P) is the periodic expression, or a
duration constraint c = ([I, P| D], Dx, E), where Dx specifies the
duration in which the event E is valid, and D or (I, P) specifies the
duration/interval in which the duration constraint c is valid. The
periodic expressions (I, P) used in the constraint expressions are
based on those in [4]. For more details, we refer the readers to

[12, 13]. An example of a GTRBAC policy for a medical
information system is illustrated below.

Exampl e: Table 1 contains the GTRBAC policy for a hospital.
The periodicity constraint 1a specifies the enabling times of
DayDoctor and NightDoctor roles. For simplicity, we use
DayTime and NightTime instead of their (I, P) forms. The
periodicity constraint 1b allows the DayDoctor role to be
assigned to Adams on Mondays, Wednesdays and Fridays, and
to Bill on Tuesdays, Thursdays, Saturdays and Sundays.
Similarly, Alice and Ben are assigned to the NightDoctor role
on the different days of the week. Furthermore, the assignment
in 1c allows Carol to assume the DayDoctor role everyday
between 10am and 3pm. In 2a, Ami and Elizabeth are assigned
to roles NurseInTraining and DayNurse respectively with no
temporal restriction, i.e., the assignment is valid at all times. 2b
specifies a duration constraint of 2 hours on the enabling time
of the NurseInTraining role, but this constraint is valid for
only 6 hours after the constraint c1 has been enabled. Because
of this, Ami will be able to activate the NurseInTraining role at
the most for two hours whenever the role is enabled. In row 3,
we have a set of triggers. Trigger 3a indicates that constraint c1
is enabled when the DayNurse is enabled, which means, now,
the NurseInTraining role can be enabled within the next 6
hours. Trigger 3b indicates that 10 min after Elizabeth activates
the DayNurse role, the NurseInTraining role is enabled for a
period of 2 hours. This shows that a nurse in training will have
access to the system only if Elizabeth is present in the system,
that is, she may be acting as a training supervisor. It is possible
that Elizabeth activates the DayNurse role a number of times
in 6 hours after the DayNurse role has been enabled, and each
time the NurseInTraining role will also be enabled if these
activations (by Elizabeth) are more than 2 hours apart. This will
allow Ami to activate the NurseInTraining role a number of
times. The remaining triggers in 3 show that the DayNurse and
NightNurse roles are enabled (disabled) 10 min after the
DayDoctor and NightDoctor roles are enabled (disabled).

Table 1: Example GTRBAC access control policy for a
medical information System

a. (DayTime, enabl e DayDoctor), (NightTime, enabl e

NightDoctor)

b. ((M, W, F), assi gnU Adams t o DayDoctor), ((T, Th, S, Su),
assi gnU Bill t o DayDoctor);

((M, W, F), assi gnU Alice t o NightDoctor), ((T, Th, S, Su),
assi gnU Ben t o NightDoctor)

1

c. ([10am, 3pm], assi gnU Carol t o DayDoctor)

a. (assi gnU Ami t o NurseInTraining); (assi gnU Elizabeth t o
DayNurse)

2

b. c1 = (6 hours, 2 hours, enabl e NurseInTraining)

a. (enabl e DayNurse → enabl e c1)

b. (act i vat e DayNurse f or Elizabeth → enabl e
NurseInTraining af t er 10 min)

c. (enabl e NightDoctor →enabl e NightNurse af t er 10 min);

3

d. (enabl e DayDoctor → enabl e DayNurse af t er 10 min);
(di sabl e DayDoctor → di sabl e DayNurse af t er 10 min)

3. STATUS EXPRESSIONS AND
CARDINALITY CONSTRIANTS

Table 1 lists various GTRBAC status predicates. The predicate set
extends the set of status predicates defined in our previous work
[13]. Such an extension was needed in order to provide a finer
modeling capability required to represent various temporal
constraints that have been introduced in this paper. The non-
temporal counterparts of each predicate can be simply obtained by
removing the time parameter. A non-temporal predicate s simply
indicates that its corresponding temporal predicate st applies at all
times, i.e., s →∀t, st. Inversely, st means that status predicate s
holds at time t. The second column of Table 2 specifies the
evaluation domain for the predicates in the first column. The third
column describes the semantics of the predicate.

Table 2: Various status predicates

Predicate(st) Evaluation

Domain(DOM)

Semantics

P:permission set, R:role set, U:user set, S:set of sessions, T:time instants, and

r∈ R, p∈ P, u ∈ U, s ∈ S, t ∈ T

enabl ed(r, t) R × T r is enabled at time t

u_assi gned(u, r, t) U ×R × T u is assigned to r at time
t

p_assi gned(p, r, t) P × R ×T p is assigned to r at t

can_act i vat e (u, r, t) U ×R × T u can activate r at t

can_acqui r e (u, p, t) U ×P × T u can acquire p at t

r _can_acqui r e (u,p, r, t) U ×P × R ×T u can acquire p through
r at t

can_be_acqui r ed(p, r,t) P × R ×T p can be acquired
through r at t

act i ve(u, r, t) U × R ×T r is active in u’s session
at t

s_act i ve(u, r, s, t) U ×R × S ×T r is active in u’s session
s at t

acqui r es (u, p, t) U ×P ×T u acquires p at t

r _acqui r es (u, p, r, t) U ×P × R ×T u acquires p through r at
t

s_acqui r es (u, p, s, t) U ×P × S ×T u acquires p in session s
at t

r s_acqui r es (u, p, r, s, t) U ×P × R × S ×T u acquires p through r in
session s at t

Predicate enabl ed(r, t), u_assi gned(u, r, t) and
p_assi gned(p, r, t) refer to the status of roles, and user-role
and role-permission assignments at time t. Predicate
can_act i vat e(u, r, t) implies that user u can activate role r at
time t. It allows us to capture the fact that a user u may be able to
activate role r without being explicitly assigned to it, as it is
possible in a hierarchy that incorporates the activation-inheritance
semantics [13]. In other words, “u can activate r” implies that
user u is implicitly or explicitly assigned to role r. It does not rule
out the possibility that some activation or SoD constraints prevent
the actual activation of r by u at time t. Predicate
can_acqui r e(u, p, t) implies that “u can acquire permission p”

at time t. Predicate r _can_acqui r e(u, p, r, t) provides much
finer level of information than can_acqui r e(u, p, t) and
indicates that “u can acquire permission p through role r” at time
t. can_acqui r e(u, p, t) can be semantically defined in terms of
r _can_acqui r e(u, p, r, t) as shown in Table 3.
can_be_acqui r ed(u, r, t) implies that permission “p can be
acquired through role r” at time t.

Table 3: Semantic relation between GTRBAC status

1 can_acqui r e (u, p, t) ↔ ∃ r ∈ R, r _can_acqui r e (u, p, r, t)

2 act i ve (u, r, t) ↔ ∃ s ∈ S, act i ve (u, r, s, t)

3 acqui r es (u, p, t) ↔ ∃ r ∈ R, r _acqui r es (u, p, r, t)

4 acqui r es (u, p, t) ↔ ∃ s ∈ S, s_acqui r es (u, p, s, t)

5 acqui r es (u, p, r, t) ↔ ∃ s ∈ S, r s_acqui r es (u, p, r, s, t)

6 acqui r es (u, p, s, t) ↔ ∃ r ∈ R, r s_acqui r es (u, p, r, s, t)

It is important to note that can_act i vat e(u, r, t),
can_acqui r e(u, p, t), r _can_acqui r e(u, p, r, t) and
can_be_acqui r ed(u, r, t) predicates do not assume anything
about the state of a role. That is, they do not say in which state
role r is at time t. For example, if can_act i vat e(u, r, t) and
enabl ed(r, t) hold, then a user u’ s request to activate r at time t
is granted provided there are no other activation or SoD
constraints prohibiting it. However, if can_act i vat e(u, r, t)
holds but not enabl ed(r, t), then u’ s request to activate r at time
t is denied. Thus, these predicates indicate possibility rather than
what actually occurs.

Predicates act i ve(u, r, t), s_act i ve(u, r, s, t), acqui r es (u,
p, t), r _acqui r es (u, p, r, t), s_acqui r es (u, p, s, t) and
r s_acqui r es (u, p, r, s, t) refer to what actually occurs at time
instant t. act i ve(u, r, t) indicates that role r is active in a user
u’ s session at time t and can be expressed using predicate
s_act i ve(u, r, t) as shown in the Table 3. acqui r es (u, p, t)
implies that a user “ u acquires permission p at time t” and can be
expressed in terms of r _acqui r es (u, p, r, t) and
s_acqui r es (u, p, s, t), which in turn can be defined in terms of
r s_acqui r es (u, p, r, s, t). The following axioms, as introduced
in [13], capture the key relationships among various predicates in
Tabl e 1 and provide the basis for defining precisely the
permission-acquisition and role-activation semantics of a
GTRBAC system.

Axioms: For all r ∈ R, u ∈ U, p ∈ P, s ∈ S, and time instant t ∈

T = { 0,∝} , the following implications hold:

1. assi gned(p, r, t)→ can_be_acqui r ed(p, r, t)

2. assi gned(u, r, t) → can_act i vat e (u, r, t)

3. can_act i vat e (u, r, t) ∧ can_be_acqui r ed(p, r, t) →

can_acqui r e (u, p, t)

4. act i ve(u, r, t) ∧ can_be_acqui r ed(p, r, t) →

acqui r es (u, p, t)

Axiom (1) states that if a permission is assigned to a role, then it
“can be acquired” through that role. Axiom (2) states that all

users assigned to a role can activate that role. Axiom (3) states
that if a user u can activate a role r, then all the permissions that
can be acquired through r can be acquired by u. Thus, for the
case where user u and permission p are assigned to r, the axioms
imply that u can acquire p. Similarly, axiom (4) states that if there
is a user session in which a user u has activated a role r then u
acquires all the permissions that can be acquired through role r.
We note that axioms (1) and (2) indicate that permission
acquisition and role activation semantics is governed by explicit
user-role and role permission assignments. Next, we define a
predicate evaluation function ���� over the status predicates and a
projection operation Ππ1, π2, .., πm over the evaluation of a predicate
as follows.

Definition 3.1(������Πi): Let st(alist) be a status predicate, where
alist is a list of arguments a1, …, ai, …, an associated with
domains D1, …, Di, …, Dn, respectively (∀j∈{ 1, ..n} , Dj ∈{ R, P,
U, S, T}) . If DOM is the evaluation domain of st(alist), then, we
define evaluation function ���� and projection operator Ππ1, π2, ..,

πm as follows:

• ����(st(alist))={ (x1, …, xi, …, xn) | ((x1, …, xi, …, xn)
∈DOM) ∧ st(x1, …, xi, …, xn)}

• Ππ1, π2, .., πm����(st(alist))={ (xπ1, xπ2 .., xπm) | { π1, π2, …, πm}
⊆ { 1, 2, …, n} ; ∀xπi∈Dπi,; and for all pairs (x1, x2… , xn), (y1,
y2… , yn) ∈ ����(st(a1, … ai-1, ai, ai+1,…, an)), xj = yj for all
all j ∈ { 1, 2, …, n} /{ π1, π2, …, πm} ; moreover, for all such j
we replace the argument by its constant value in quotes, i.e.,
we denote a constant value x∈D by “x” in the argument list}

Evaluation function ���� returns the subset of the evaluation
domain corresponding to the predicate that it evaluates. For
instance, ���� (enabl ed(r, t)) is a subset of domain (R × T).
Similarly, Ππ1, π2, .., πm allows us to project the evaluation of a
predicate over a particular argument indexed by i. For instance,
Π1����(enabl ed(r, “ t”)) returns the set of all roles that are
enabled at time “ t” . Similarly, Π2����(enabl ed(“ r” , t)) returns
the set of all time instants at which role “ r” is enabled. Let us
denote the set of all projection functions over the predicates
defined in Table 2 as Π. Note that we can also have evaluation of
the negation of the predicates of Table 2, for instance, Π1����
(¬enabl ed(r, “ t”)). Π-1 denotes the set of projection operators
over negated predicates. Based on these projection operators and
the original set of set elements ��	
={ R, U, P, S, T} , we build a
framework for expressing exhaustive set of cardinality constraints
as follows. Let �� ∈ { ∪, ∩, ⁄ } be a set operation, then we have a
generic set function f as follows:

1. f ∈(Π�∪ Π-1��

2. f = (f �� X), where X ⊆ E ∈���	
;�

3. f = (f1 �� f2), where f1 and f2 are generic set functions.

We can express a cardinality constraint as (|f| ��� n), where |f| is
the number of elements in set f, ��� ∈{ =, ≠, <, >, ≥, ≤} is a
comparator operator, and n is a positive number. Some examples
of the cardinality constraint expressions are shown in Table 4. It is
to be noted that while projection operators in Π make sense in
general context (as shown in Table 4), those in Π-1 may not have a

clear meaning. Therefore, care should be taken in constructing
cardinality constraints based on them. For example, the function
Π2����(¬act i ve(“u” , r, “ t”)) refers to a set of roles that are
not active in any of user u’ s sessions at time t. Hence,
| Π2����(¬act i ve(“u” , r, “ t”))| ≤ n states that the number of
roles not active in any of user u’ s sessions at time t cannot be
more than n. However, it is not clear whether it is n out of those
that u can activate or that are in R. Depending upon application,
distinction may need to be made a priori. For instance, we can say
that, “by default, out of those that u can activate” . Periodicity and
duration constraints on a cardinality constraint C = (|f| ��� n) can
be simply defined using the GTRBAC temporal framework as (I,
P, C), which indicates that the cardinality constraint is valid for
each instant in intervals defined by (I, P), and as ([I, P,| D], Dx C),
with Dx indicating the duration in which the cardinality constraint
is valid.

We note that some cardinality constraints of type C = (|Ππ1, π2, ..,

πm����(st(plist))| ��� n) may not have direct application in a
general RBAC framework. For example, Π1����(s_act i ve(u,
“ r” , “ s” , “ t”)) (set of users that have activated r in session s at
time t) associates multiple users with the same session. Such cases
may be useful if we consider a collaborative system where a
session is created with multiple active users.

4. GTRBAC TRIGGERS AND CONTROL
FLOW DEPENDENCCY CONSTRAINTS

Another set of constraints that are often needed in the commercial
systems is that of dependencies between roles and other events
associated with RBAC entities. GTRBAC provides a trigger
mechanism that can be used to express some dependency
constraints. However, there are much stricter forms of dependency
constraints known as control flow dependency (CFD) constraints,
which are needed in various applications. In this section, we
extend the original GTRBAC triggers and define the CFD
constraints using extended triggers

4.1 Extended-GTRBAC Tr iggers
The basic trigger expression of GTRBAC is of the form: (E1 ,…,
Em, C1 ,…, Ck → pr:E af t er �t), where Ei is an event and Ci
is a status condition [12]. Semantically, it means that the
prioritized event pr:E with priority pr can take place �t time units
after the trigger fires. The definition, however, is limiting in the

Table 4. Examples of cardinality constraints

1 |Π1����(enabl ed(r, “ t”)| ≥ n

Number of roles enabled at

time “ t” cannot be less than

n

2 |Π1����(¬enabl ed(r, “ t”)| ≤ n

Number of roles disabled at

time “ t” cannot be more than

n.

3 |Π2����(u_assi gned(“ u” , r, “ t”))| ≤ n

Number of roles assigned to

“ u” at time “ t” cannot be

more than n

4 |Π2����(can_act i vat e(“ u” , r,"t”))| ≤ n)

Set of roles that u can

activate at time t cannot be

more than n.

5 (Daytime, |Π1����(u_assi gnedSet (u, “Nurse”, t)| ≤ n) indicates
Number of users assigned to Nurse role in Daytime cannot exceed n

following ways: (1) it only allows scenarios in which all the
antecedent events E1,…, and Em occur at the same time and all the
conditions C1 ,…, and Ck hold; it does not allow capturing history
information in which events are spread in the temporal dimension;
(2) it does not allow specifying temporal intervals in which the
occurence of an event Ei can take place, or a condition Ci is
satisfied; (3) it is possible that in some cases a condition Ci must
be valid for a specified duration before triggering the event E;
such a requirement is also not captured by the current triggers;
and (4) the current trigger considers that E ≠ s: act i vat e r
f or u; this needlessly prevents specifying any preconditions for
activation events. In some cases, an activation request may need
to be granted only if certain conditions have been satisfied. We
define the extended trigger form, which is temporally more
expressive than the current GTRBAC triggers and does not have
the above limitations, as follows:

Definition 4.1 (Extended Tr iggers): The extended trigger
expression has the following form:

(E1 i n π1) op1 … opm -1 (Em i n πm) op m (C1 i n τ1 f or d1)
opm+1… opm+n-1 (Cn i n τn f or dn)

→ pr:E af t er �t f or �d, where

• Eis are simple event expressions or run time requests; and
Cis are GTRBAC status expressions,

• pr:E is a prioritized event expression with priority pr.

• If (E =s: act i vat e r f or u) is an activation request at
time ta ≥ (t +�t) then act i ve(u, r, s, t) is true in the
interval (ta, ta+�d), provided that the trigger fires at time t,

• the trigger is fired if τi (πi) is an interval such that there
exists a t ∈τi (πi) at which Ci (Ei) becomes valid, and Ci
remains valid for duration di; we simply write “Ci i n τi” to
mean that there exists a t ∈ τi at which C i is valid for some
duration; we write “Ci at t” (“Ei at t”) instead of “Ci i n
τi” (“Ei i n t”) when τi (πi) = (t, t); we write “Ci f or di” to
mean that Ci is valid for some duration di.

• �t is the duration between the firing of the trigger and the
occurence of the event E, and �d is the duration for which
the event E remains valid. If not specified, �t = 0, and �d =
∝ opi ∈{ ∨, ∧} and ∧ has precedence over ∨. For simplicity,
we use “ ,” to denote the ∧ operator and “ |” to denote the ∨
operator.

We note that the old trigger form cannot be used to specify the
temporal information such as “Ei i n πi” or “Ci i n τi” . The earlier
form is actually a special case of the extended form, in which all
the antecedent events and conditions are associated with the same
time instant. That is, for any t,

E1 at t,.., Em at t, C1 at t,.., Ck at t

→ pr:E af t er �t, (a)

The duration information �d associated with the triggered event
E in the extended trigger simplifies specification but does not
increase the expressive power over the earlier form. The following
trigger:

(E1 at t,…, Em at t, C1 at t,…, Ck at t →

pr:E af t er �t f or �d) (b)

is semantically equivalent to the combination of the following two
old triggers

1. E1 ,…, Em, C1 ,…, Ck → pr:E af t er �t,

2. E → pr’ :Conf(E) af t er �d, where Conf(E) is the
conflicting event of E and pr’ ≥ pr.

We note that the triggers of form (a) (one with “at tn” phrase) can
represent the extended form (one with “ i n πm” phrase), however,
it is easy to see that the extended form achieves compaction in
expression over the form (a). For instance, the extended trigger
form without the “ f or d1” part can only be represented by using
multiple triggers of form (a), each with a permutation of time
instants from π1, π2,…, πm, τ1, τ2,…, τn. Similar compaction is
achieved by the use of the two logical operators.

Note that triggers allow GTRBAC events and status conditions
only [12, 13]. However, it can easily be extended to include other
events and conditions. For instance, condition Ci can be any
predicate expression that evaluates contextual information that
affects access control decisions. Consider the following trigger;

(Location(x) = “EmergencyRoom”) | (situation ()=
“LifeThreatening”) → pr:E enabl e EmergencyDoctor

Here, if the room, indicated by variable x, is EmergencyRoom, or
the current situation is LifeThreatening then the
EmergencyDoctor role is enabled, thus capturing environmental
context. Similarly, we can allow event E to be any system related
event. With a predefined set of predicates to capture static as well
as dynamic environmental conditions and events, the extended
GTRBAC trigger framework can easily provide a very elaborate
support for context-based access control.

4.2 Control Flow Dependency Constraints
Control flow dependency (CFD) constraints often occur in task-
oriented systems and are stricter forms of dependency constraints
than those that can be expressed using GTRBAC triggers. The
following example illustrates such CFD constraints.

Exampl e: Consider the following requirements: (1) a junior
employee of an office is allowed to activate the
Junior_Employee role in the system only if his manager has
activated the Manager role; (2) whenever a system
administrator makes some changes in the system, the activation
of the SysAdmin role that he uses must enable the SysAudit
role so that another user can activate the SysAudit role and log
those changes. The SysAudit role may need to be activated by
the user within the next τ minutes; (3) everyday, if both the
roles SysAdmin and SysAudit are activated, then the
SysAdmin role must be activated before the SysAudit role.

The three requirements imply (1) pre-condition, (2) post-
condition and (3) precedence constraints. Next, we show that
GTRBAC does not adequately model these constraints, but, we
can semantically define CFDs in terms of these triggers.

4.2.1 Pre-condition Constraints
A pre-condition constraint between two events essentially implies
that an event can occur only if the other event has already
occurred and/or the required conditions have already become true,
as in the first case above. The following trigger closely resembles
the pre-condition constraint (1):

s: act i vat e Manager for John → enabl e
Junior_Employee

(assume John is the manager)

However, the “only if” semantics of the pre-condition constraint
requires that there be no other events that will enable the
Junior_Employee role, i.e., the Junior_Employee role is not
enabled if John does not activate the Manager role. This means
the above trigger can enforce the pre-condition constraint only if
we also enforce additional restriction that no other constraint or
trigger allows the enabling of the Junior_Employee role.
However, GTRBAC’s trigger mechanism currently does not imply
such an additional restriction, hence, it falls short in providing
support for the pre-condition constraint. For instance, in addition
to the above trigger, assume that we also have the following
periodicity constraint:

Everday between 9am and 6pm, enabl e Junior_Employee

Presence of this periodicity constraint does not allow the above
trigger to enforce the pre-condition constraint as it allows the role
to be enabled even if the Manager role is not enabled.

4.2.2 Post-condition Constraints
A post-condition constraint between two events essentially
implies that if an event occurs or a condition is satisfied then the
other event also must occur, as indicated in the second case in the
example above. Here, if the SysAdmin role is enabled then the
SysAudit role must also be enabled, otherwise, it may incur
certain security risks. However, the activation of the SysAudit
role may also be triggered by other events in the system. In
essence, the post-condition constraint will not be enforced if there
are some other triggers or constraints that do not allow the
SysAudit role to be enabled even though the SysAdmin role has
been enabled. Thus, it is easy to see that the following trigger:

enabl e SysAdmin → enabl e SysAudit

enforces the post-condition constraint only if the system
additionally makes sure that there are no other constraints or
triggers that prohibits enabling of the SysAudit role when this
trigger fires; this cannot be expressed using GTRBAC triggers

4.2.3 Precedence Constraints
A precedence constraint is said to exist between two events if
there is a condition that if the two events occur then one must
always precede the other, as shown in requirement (3). Another
real world scenario in which such a precedence semantics applies
is a pair of tasks involving authorizing a check and cashing it. It
is easy to see that such precedence semantics is not enforced by
triggers alone.

4.2.4 Definitions of CFD Constraints
Next, we formalize syntax and semantics of the CFD constraints
in GTRBAC using triggers. In the definitions we will use (ts, te),

such that (ts, te) is in an interval of (I, P), or (ts, te) is some
duration D. For (ts, te) = D, ts is the time instant when D starts and
is non-deterministic. A constraint c = (D, C) needs to be enabled
by a trigger or a runtime event [12]. Assume that T is the set of all
GTRBAC constraints and Causes (c, pr:E, t) is a predicate that
evaluates to true if there is a constraint c in T which causes event
pr:E to fire at time t. Furthermore, we use Y to denote the left
hand side of a trigger expression, i.e.,

Y =

E1 i n π1, …, Em i n πm, C1 i n τ1 f or d1,…, Cn i n τn f or dn

The following precedence rule is applied in a GTRBAC system -
if there are conflicting pairs of events (e.g., assi gn and
deassi gn, act i vat e and deact i vat e, etc.) then the
negative event takes precedence (e.g., deassi gn takes
precedence over assi gn) if the priority of the two events are the
same; otherwise the higher priority event takes precedence.

Definition 4.2 (Pre-condition constraint): The pre-condition
constraint is expressed as ([I, P|D,] pre, Y, pr:E af t er �t f or
�d). Semantically, to say that ([I, P|D,] pre, Y, pr:E af t er �t
f or �d) ∈ T is equivalent to saying that:

(1) (Y → pr:E af t er �t f or �d) t ∈ T is an extended-
trigger, and

(2) ¬∃ c ∈ T s.t. (∀tx ∈ (t +�t, t + �t + �d) and pr’≥ pr,
Causes (c, pr’ : E, tx)) is true for pr’≥ pr.

Definition 4.3 (Post-condition constraint): The post-condition
constraint is expressed as ([I, P|D,] post, Y, pr:E af t er �t).
Semantically, to say that ([I, P|D,] post, Y, pr:E af t er �t f or
�d) is in T is equivalent to saying that:

(1) (Y → pr:E af t er �t f or �d) t ∈ T is an extended-
trigger;

(2) (2) ¬∃ c ∈ T s.t. ∀ tx ∈ (t +�t, t + �t + �d), Causes (c,
pr’ : ����(E), tx) is true for pr’≥ pr.

Note that condition (2) in each definition ensures that the
additional condition required for the two CFDs, as discussed
earlier, are enforced. Next, we define a precedence constraint,
which relates two events. We can also define a CFD with “ if and
only if” by combining above two constraints. Next we define
precedence constraint that essentially relates two events.

Definition 4.4 (Precedence constraint): Let pr1:E1 and pr2:E2 be
prioritized events such that ([I, P|D,] prec, pr1:E1, pr2:E2 af t er
�t), i.e. pr2:E2 is precedent on pr1:E1. Then, for all t such that t ∈
(ts, te):

 ([I, P|D,] precedence, pr1:E1, pr2:E2) →

(for each pair c1, c2 ∈ T, Causes (c1, pr:E1, t1) ∧
Causes (c2, pr:E2, t2) → (te≤t1+�t ≤ t2≤ ts))

The safety notion introduced in TRBAC identifies scenarios that
have ambiguous execution semantics, for example, the existence
of a cycling dependency among events through triggers [12]. The
safety checking algorithm can be easily extended to identify the
violation of the CFD constraint by introducing extra checks to
ensure that additional restrictions are enforced for the CFDs.

5. TIME BASED SEPRATION OF DUTY
Separation of Duty (SoD) policies have been found to be very
crucial for securing commercial applications. Role-based systems
are particularly very beneficial for expressing and enforcing such
policies. Various SoDs have been identified in the literature [8,
14, 17, 18]. However, all earlier researches focus on SoDs in a

non-temporal environment. The CFD constraints introduced in
previous section can also be used to define SoD constraints that
are based on access history, such as history-dependent SoD,
order-dependent SoD, object-based SoD, which are identified in
[18], as the triggers can capture timing information. In this
section, we define various SoD constraints that cannot be captured

Tabl e 5. Enabling time and Assignment SoDs

SoD Type Expression (SoD)
Semantics

∀u, u1, u2∈ U, ∀r, r1, r2∈ R, ∀p, p1, p2∈ R, ∀t ∈ Sol(I, P), (u1≠ u2), (r1≠ r2) and (p1≠ p2) the following holds:

Enabling/Disabling SoD

(I, P, EN , R) SoD ∧ enabl ed(r1, t) → ¬enabl ed(r2, t) EN-SoD

 No two roles in R can be enabled at the same time in interval (I, P)

(DIS-SoD)

(DIS-SoD)
(I, P, DIS, R) SoD ∧ di sabl ed(r1, t) → ¬di sabl ed(r2, t)

 No two roles in R can be disabled at the same time in interval (I, P)

User-Role assignment/de-assignment SoDs

(I, P, UAS1, U, R) SoD ∧ u_assi gned(u, r1, t) → ¬u_assi gned(u, r2, t)
UAS-SoD1

No two roles in R can be assigned to a user in U at the same time in interval (I, P)

(I, P, UAS1, U, R) ∀r∈ R, SoD ∧ u_assi gned(u1, r, t) → ¬u_assi gned(u2, r, t)
UAS-SoD2

No two users in U can be assigned to a role in R at the same time in interval (I, P).

(I, P, UAS3, U, R) SoD ∧ u_assi gned(u1, r1, t)
 → ¬u_assi gned(u2, r2, t)

 UAS-SoD3
Different users in U cannot be assigned different roles in R at the same time in interval (I, P)

(I, P, UAS4, U, R) SoD ↔ UAS-SoD2 ∧ UAS-SoD3
UAS-SoD4

Roles in R can be assigned to only one of the users in U at the same time in interval (I, P)

(I, P, UAS5, U, R) SoD ↔ UAS-SoD1 ∧ UAS-SoD3
UAS-SoD5

Users in U can be assigned only one of the roles in R at the same time in interval (I, P)

(I, P, UAS6, U, R) SoD ↔ UAS-SoD1 ∧ UAS-SoD2
UAS-SoD6

A role in R can be assigned to only one user in U (and vice versa) at the same time in interval (I, P)

Role-Permission assignment/de-assignment SoDs

(I, P, PAS1, P, R) ∀p∈P, SoD ∧ p_assi gned(p, r1, t) → ¬p_assi gned(p, r2, t) PAS-SoD1

 No two roles in R can be assigned a permission in P at the same time in interval (I, P)

(I, P, PAS2, P, R) ∀r∈ R, SoD ∧ p_assi gned(p1, r, t) → ¬p_assi gned(p2, r, t)
PAS-SoD2

No two permissions in P can be assigned to a role in R at the same time in interval (I, P).

(I, P, PAS3, P, R) ∀p1, p2∈P, SoD ∧ p_assi gned(p1, r1, t)
 → ¬p_assi gned(p2, r2, t)

PAS-SoD3
Different permissions in P cannot be assigned to different roles in R at the same time in interval (I, P)

(I, P, PAS4, P, R) SoD ↔ PAS-SoD2 ∧ PAS-SoD3
PAS-SoD4

Roles in R can be assigned only one of the permissions in P at the same time in interval (I, P).

(I, P, PAS5, P, R) SoD ↔ PAS-SoD1 ∧ PAS-SoD3
PAS-SoD5

Permissions in P can be assigned to only one of the roles in R at the same time in interval (I, P)

(I, P, PAS6, P, R) SoD ↔ PAS-SoD1 ∧ PAS-SoD2

PAS-SoD6
Permissions in P can be assigned to only one of the roles in R at the same time in interval (I, P)

by such CFD constraints, and some of which correspond to those
already identified in the literature. These SoDs will be defined
with respect to GTRBAC status predicates introduced in Table 2.

5.1 Role Enabling/Disabling Time SoDs
(predicates: enabl ed/ di sabl ed)

The SoD constraints related to enabling and disabling events are
shown in Table 5. EN-SoD indicates that roles from a given role
set cannot be enabled at the same time. If there are role enabling
events that attempt to enable more than one role at the same time
then the enforcement mechanism must use some criteria to enable
only one of the roles. SoD DIS-SoD is defined with respect to the
role disabling event. The difference between them is that EN-SoD
does not allow all the roles to be enabled at the same time but
allows them to be disabled at the same time, whereas DIS-SoD
allows all to be enabled at the same time but does not allow them
to be disabled at the same time. Role enabling SoDs (EN-SoD) are
cases where limiting access is a primary concern. Similarly, role
disabling SoD (DIS-SoD) is more useful in cases where
availability is the key concern, for example, in a hospital, a
requirement may state that “Both the ����� and ������ roles
cannot be disabled at the same time” . These SoDs can be
expressed in the form of cardinality constraints introduced earlier,
e.g., EN-SoD can be expressed as |Π1����(enabl ed(r, t)) ∩ R| ≤
1. Similarly, other SoDs defined below can also be expressed in
this form; however, we use uniformly the implication rule to
provide the semantics of these SoDs.

5.2 Assignment SoDs
(predicates: u_assi gned, p_assi gned)

Table 5 defines various user-role and role-permission assignment
time constraints. UAS-SoD1 indicates that multiple roles from R
cannot be assigned to a user in U at the same time. Accordingly,
the roles from R can be assigned to any user not included in U. In
other words, this implies that the role set R has conflicting
semantics only with respect to the user set U. Allowing
specification of such a set of conflicting roles with respect to a
particular user set provides the benefit of expressing fine-grained
SoD constraints. UAS-SoD2 states that different users of U cannot
be assigned to a role in R, i.e., the users in U are conflicting with
respect to role set R. Figure 1 depicts various assignment
combinations that are not allowed by the user-role assignment
constraints for U = { u1, u2} and R = { r1, r2} . Here, a line from u
to r indicates that u is assigned to r. In general, set U can be
expected to be the set User s . In figure 1, UAS-SoD1 does not
allow assignment combinations depicted in (c), whereas, UAS-
SoD2 does not allow assignment combinations shown in (b).

UAS-SoD3 states that different users from set R cannot be
assigned to different roles. Here, U and R have conflicting
semantics with respect to each other. Note that the notion of
conflict here is slightly different from that of UAS-SoD1 and UAS-
SoD2. However, this constraint allows a single user from U to be
assigned to multiple roles of R, and a single role from R to be
assigned to multiple users. UAS-SoD3 does not allow assignment
scenario depicted in (a). In real world scenario, U of UAS-SoD3
may refer to a set of employees who are related. Assignment of
any two of these employees to different roles will allow them to
commit fraud. If, for instance, one employee is assigned to role

�����	���	������
��� �that� authorizes checks) and another is
assigned to role ����	�
����� (for cashing authorized checks),
they can easily commit fraud. Another practical scenario in which
this constraint can be applicable is when a set of roles represents
subtasks of a bigger task, with the constraint that the different
users of U cannot carry out different subtasks.

u1 r1

u2 r2

u1 r1

u2 r2

r1

u2 r2

u1 r1

u2 r2

u1

u1 r1

u2 r2

u1 r1

u2 r2

SoD Doesn’ t Allow SoD Doesn’ t Allow

UAS-SoD1 (c) UAS-SoD4 (a), (b)

UAS-SoD2 (b) UAS-SoD5 (a), (c)

UAS-SoD3 (a) UAS-SoD6 (b), (c)

Figure 1. User-assignment SoDs with U={ u1,u2} and R={ r1,r2}

UAS-SoD4, UAS-SoD5 and UAS-SoD6 can be derived as
combinations of earlier SoDs, as shown in Table 5. We note that,
although UAS-SoD3 allows defining constraints such as all the
subtask roles need be assigned to the same user, it also allows the
assignment scenario (b), which may not be relevant with regards
to such a requirement. UAS-SoD4, for instance, omits the
possibility of assigning all the users to the same subtask role
rendering the overall task un-accomplishable. As shown in the
figure, UAS-SoD5 prevents the set of assignments of type shown
in (a) and (c) – i.e. it allows multiple users to be assigned to only
one of the roles, such as those in Figure 1(b). That is, as soon as
one of the roles, say role r, is assigned to a user then none of the
users can be assigned to any other roles; however, role r can be
assigned to any number of users. An example of application of
UAS-SoD5 is the assignment of a given set of consultants (set U)
to the same consultancy duty (assignment of all the users to the
role ������������������ �).

The role-permission assignments have semantics similar to that of
the user-role assignments. Note that, here, we are using the notion
of conflicting permission, for example in PAS-SoD2.

5.3 Role Activation Time SoDs
(predicate: act i ve)

Activation time constraints are listed in Table 6. ACT-SoD1
implies that activation of conflicting roles at the same time in the
same session or different sessions by a user in U is not allowed.
Figure 2 depicts the scenarios for U = { u1, u2} and R = { r1, r2}
when both the roles are active. Here, s: u1(r1, r2) indicates that
roles r1 and r2 are active in u1’ s session s. ACT-SoD1 does not

(a) (b) (c)

allow activation combinations depicted in 2(b) and 2(c). ACT-
SoD2 does not allow activation of a role by conflicting users at the
same time. Similarly, ACT-SoD3 does not allow conflicting roles
to be active in different users’ sessions, as depicted in 2(a).

ACT-SoD4 does not allow 2(c), i.e. it prevents activation of the
conflicting roles in the same session simultaneously. ACT-SoD5
does not allow scenarios depicted in 2(b), i.e. it prevents
activation of the conflicting roles in the different sessions of the
same user simultaneously. ACT-SoD6 and ACT-SoD7 are
combinations of the earlier SoDs, as indicated in the table.

Figure 3 illustrates the usefulness of SoD constraints ACT-SoD1 -
ACT-SoD5. In Figure 3(a), roles r1 and r2 have a common set of
permissions. Now suppose, we allow users u1 and u2 assigned to
roles r1 and r2, respectively, to activate the respective roles at the
same time. As the read permission on the object Ox is available to
both the roles, the information that each role writes to object Ox is
visible to the other. Hence, Ox opens up the information flow
channel between the two users. Common permissions like these
may occur explicitly, in a non-hierarchical case, or implicitly
through an I-hierarchy relation such as in the one shown in Figure
3(a). In a non-hierarchical case, declaring the two roles as
conflicting and applying ACT-SoD3 is a straightforward solution if
such information flow needs to be contained. Kuhn [14] indicates
that roles that have common permissions cannot form a
conflicting pair. We believe that such semantics is too restrictive.
Moreover, with that semantics, we indirectly impose mutual
exclusion on the permission sets of the two roles. This may not be

what is required in the practice. For example, there may be
situations where only the private permissions of a pair of roles are
conflicting, but the roles may have a common set of permissions.

(c)

s: ux (r 1, r 2)

(a)

(b)

s1: u1 (r x)

s2: u2 (r y)

r x, r y∈ { r 1, r 2} ;r x ≠ r y

s1: ux (r 1)

s2: ux (r 2)

ux ∈ { u1, u2}

ux ∈ { u1, u2}

(d)

s1: u1 (r x)

s2: u2 (r x)

r x ∈ { r 1, r 2}

Tabl e 6. Activation time SoDs

Activation Time SoDs

Type SoD

Semantics

∀u, u1, u2∈ U, ∀s, p1, p2∈ R, ∀r, r1, r2∈ R, ∀t ∈ Sol(I, P), (u1≠ u2), (r1≠ r2) and (p1≠ p2), the following holds:

(I, P, ACT-SoD1, U, R) ∀u∈U, SoD ∧ act i ve(u, r1, t) → ¬act i ve(u, r2, t) ACT-SoD1

No two roles in R can be in active state in session(s) of a user in U at the same time in interval (I, P)

(I, P, ACT-SoD2, U, R) ∀u∈U, SoD ∧ act i ve(u1, r, t) → ¬act i ve(u2, r, t) ACT-SoD2

No two users in U can have a role in R active at the same time in interval (I, P)

(I, P, ACT-SoD3 U, R) ∀u1, u2∈U, SoD ∧ act i ve(u1, r1, t) → ¬act i ve(u2, r2, t)
ACT-SoD3

No two users in U can have two different roles in R active at the same time in interval (I, P)

(I, P, ACT-SoD4, U, R) ∀u∈U,∀s ∈S, SoD ∧ act i ve(u, r1, s, t) → ¬act i ve(u, r2, s, t)
ACT-SoD4

Two roles in R cannot be in active state at the same time in a single session of a user in U in interval (I, P)

(I, P, ACT-SoD5, U, R) ∀u∈U,∀s1, s2∈S, SoD ∧ act i ve(u, r1, s1, t) → ¬act i ve(u, r2, s2, t) ACT-SoD5

No two sessions of a user in U can have two roles in R active at the same time in interval (I, P)

(I, P, ACT-SoD6, U, R) SoD ↔ ACT-SoD2∧ ACT-SoD4 ACT-SoD6

Roles in R can be active in a session(s) of only one of the users in U at the same time in interval (I, P)

(I, P, ACT-SoD7, U, R) SoD ↔ ACT-SoD5 ∧ ACT-SoD6
ACT-SoD7

Roles in R can be active in a single session of only one of the users U at the same time in interval (I, P)

SoD Does not allow SoD Does not allow

ACT-SoD1 (b), (c) ACT-SoD5 (b)

ACT-SoD2 (d) ACT-SoD6 (a), (d)

ACT-SoD3 (a) ACT-SoD7 (a), (b) , (d)

ACT-SoD4 (c)

Figure 2. Activation time SoDs for U = { u1, u2} and R = { r1, r2}

In such scenarios, conflicting roles imply conflicting set of private
permissions only. For example, an !���� �� role in general can
be used to group the basic set of permissions available to all the
employees of an organization. We may have two roles such as
������	���	�����
�� and ����	�
�����, which are both senior
to !���� �� but are considered to be conflicting; however,
conflicting semantics is obviously limited to their private
permissions rather than the common permissions inherited from
!���� ��. Kuhn’s strict mutual exclusion semantics necessitates
partitioning even such basic roles in order to enforce mutual
exclusion over the total sets of permissions associated with the
two roles. However, sometimes in such a scenario, common
permissions may create information flow when the private
permissions of the two roles conflict. In Figure 3(a), for example,
when user u1 activates role r1, and u2 activates role r2 at the same
time, they can exchange information contained in O1i and O2j to
each other. ACT-SoD3 prevents such possibilities.

r ea d/w r i te

r ea d/w r i te

r ea d/w r i te

r ea d/w r i te

r ea d/w r i te

r ea d/w r i te

r b

r a

T ask T

Sub- task T 2

Sub - task T 1

(i i) r a r b

r
(u 1, u 2) assi gned to

u 2 assi gn ed to

r ead/w r i te O 1 1

r ead/w r i te O 1 2

r ead/w r i te O 1n

r ead/w r i te O x

r ead/w r i te

r ead/w r i te

r ead/w r i te

O 2 1

O 2 2

O 2n

r 2

r 1

(i) r x

r 1 r 2

u 1 assi g ned to

Figure 3. Session time SoD examples

ACT-SoD1 can be used in cases where a user needs to be restricted
from acquiring permissions that give him/her enough power to
carry out some activities. For example, Figure 3(b) shows two
roles that contain permissions for the subtasks of a bigger task. If
we want that the same user do not carry out the two subtasks, then
we can employ ACT-SoD1 constraint. Furthermore, the roles may
be organized as an A-hierarchy, where role r represents the actual

task role and is the senior of roles r1 and r2 that represent sub-
tasks 1 and 2. If users from U are assigned to r and the ACT-SoD1
is defined with respect to R = { r1, r2} , then the task can only be
performed by two different users of U working at the same time.

ACT-SoD2 can be used to enforce the requirement that a particular
task can be performed by only one person at a time by assuming
the task role. ACT-SoD4 limits the access capability of a user by
not allowing the conflicting roles to be active in a single user
session. Its usefulness comes from the fact that a session in RBAC
system is semantically the same as a subject in traditional access
control models (DAC, MAC, etc.) [17]. Similarly, ACT-SoD5
prevents a user from simultaneously acting as two subjects.

5.4 Possibilistic Activation Time SoDs
(predicates: can_act i vat e, can_be_acqui r ed)

We also define SoDs based on the can_act i vat e predicate, as
shown in Table 7. CACT-SoD1 prevents all possible activation of
conflicting roles by users in U. Note that the purpose of UAS-
SoD1 is essentially to prevent activation of conflicting roles by a
user by not allowing explicit assignments to conflicting roles in
the first place. For example, when U = { u1, u2} and R = { r1, r2} ,
we can prevent the possibility of activation of both the roles by a
user by explicitly denying assignments to conflicting roles by
using UAS-SoD1. Let’s assume that because of this constraint u1 is
assigned to r1 but not r2. Now, assume that there is a role x such
that x� is senior����r2 with respect to an A-hierarchy, i.e. any user
assigned to x can also activate role r2, as depicted in Figure 4(a).
Now, if we allow the assignment of u1 to x, the purpose of
preventing u1 from activating both r1 and r2 at the same time is not
fulfilled. This is because, the A-hierarchy between s and r2 makes
the predicate can_act i vat e(u1, r2, t) true [13], hence allowing
u1 to activate r2 even when u1 is already assigned to r1. Therefore,
when we have role hierarchies, implicit assignment may be
possible through the use of can_act i vat e(u, r, t) predicate
(we refer to [13] for more details), which may make it possible for
a user to activate conflicting roles even if the constraint UAS-
SoD1 is already employed. CACT-SoD1 prevents such scenarios,
i.e. it prevents both implicit and explicit assignments of a user to

Tabl e 7. Possibilistic role activation SoDs

Possibilistic Activation (can_act i vat e) SoDs

Type SoD
Semantics

∀u, u1, u2∈ U, ∀r, r1, r2∈ R, ∀t ∈ Sol(I, P), (u1≠ u2) and (r1≠ r2), the following holds:

(I, P, CACT-SoD1, U, R) ∀u∈U, SoD ∧ can_act i vat e(u, r1, t) → ¬can_act i vat e(u, r2, t)
CACT-SoD1

No two roles in R can be activated by a user in U at the same time in interval (I, P).

(I, P, CACT-SoD1, U, R) ∀u1, u2∈U, SoD ∧ can_act i vat e(u1, r1, t) → ¬can_act i vat e(u2, r2, t)
CACT-SoD2

No two users in U can activate two roles in R at the same time in interval (I, P)

(I, P, CACT-SoD3, U, R) SoD ↔ CACT-SoD1 ∧ CACT-SoD2
CACT-SoD3

Users in U can activate only one of the roles in R at the same time in interval (I, P)

(I, P, CACT-SoD4, U, R) ∀u∈U, SoD ∧ can_act i vat e(u, r1, s, t) → ¬can_act i vat e(u, r2, s, t)

No two roles in R can be activated by a user in U in a single session s at the same time in interval (I, P). CACT-SoD4

Users in U can activate only one of the roles in R in a single session s at the same time n interval (I, P)

(a) (b)

conflicting roles. Furthermore, CACT-SoD2 is an activation-time
counterpart of UAS-SoD3, and CACT-SoD3 is the activation-time
counterpart of UAS-SoD5. CACT-SoD4 is a session specific
counterpart of CACT-SoD1.

Note that one way to prevent the scenarios depicted in Figure 4(a)
is to consider that r1 is in conflict with all the roles hierarchically
superior to r2, as in [8, 14]. However, this approach is very
restrictive, and makes the task of properly designing a role
hierarchy very difficult.

5.5 Possibilistic Permission Acquisition SoDs
(predicates: can_acqui r e, can_be_acqui r ed)

Table 8 lists the possibilistic permission acquisition SoDs. CACQ-
SoD1 prevents the acquisition of permissions through the
conflicting roles that will not be caught by PAS-SoD3, similar to
the way CACT-SoD1 prevents the activation of conflicting roles
not prevented by ACT-SoD1. That is, constraint CACQ-SoD1
employs the “can acquire” semantics and hence captures both
explicit and implicit role-permission assignments. Note that PAS-

Tabl e 8. Possibilistic permission acquisition SoDs

Possibilistic User-Permission Acquisition (can_be_acqui r ed and can_acqui r e) SoDs

Type SoD
Semantics

∀u, u1, u2∈ U, ∀r, r1, r2∈ R, ∀p, p1, p2∈ P, ∀t ∈ Sol(I, P), (u1≠ u2), (r1≠ r2) and (p1≠ p2) the following holds:

(I, P, CACQ1, U, P, R) SoD ∧ can_acqui r e(u2, r1, t)→ ¬can_acqui r e(u, p, r2, t)
CACQ_SoD1

A permission in P cannot be acquired by a user in U through different roles in R at the same time

(I, P, CACQ2, U, P, R) ∀u∈U, ∀p1, p2∈P, SoD ∧ can_acqui r e(u, p1, r1, t)→ ¬can_acqui r e(u, p2, r2, t) CACQ_SoD2

 No two permissions in P can be acquired by a user in U through roles in R at the same time

(I, P, CACQ3, U, P, R) ∀u1,u2∈U,∀p∈P, SoD ∧ r _can_acqui r e(u1,p, r1,t)→ ¬can_acqui r e(u2,p, r2,t) CACQ_SoD3

No two users in U can acquire a permission in P through different roles at the same time

(I, P, CACQ4, U, P, R) ∀u1,u2∈U,∀p1,p2∈P, SoD∧r _can_acqui r e(u1,p1, r1,t)→ ¬r _can_acqui r e(u2,p2, r2,t)
CACQ_SoD4

No two users in U can acquire different permissions in U through two roles at the same time

(I, P, CACQ5, U, P) ∀p, SoD ∧ can_acqui r e (u1,p,t) → ¬can_acqui r e (u2, p, t) CACQ_SoD5

No two users in C can acquire a permission in P at the same time.

(I, P, CACQ6, U, P) ∀p1, p2∈P, SoD ∧ can_acqui r e (u1, p1, t) → ¬can_acqui r e (u2, p2, t) CACQ_SoD6

No two permissions in P can be acquired by the different users in U at the same time

(I, P, CACQ7, U, P, R) ∀ p∈ P, ∀r∈ R, SoD ∧ can_acqui r e (u1, p, r, t) → ¬acqui r es (u2, p, r, t) CACQ_SoD7

A permission in P cannot be acquired by different users in U through the same role in R at the same time.

(I, P, CACQ8, U, P, R) ∀p1, p2∈ P, ∀r∈ R, SoD ∧ can_acqui r e (u1, p1, r, t) → ¬acqui r es (u2, p2, r, t) CACQ_SoD8

No two permissions in P can be acquired by two users through the same role in R at the same time.

(I, P, CACQ9, R, P) ∀r∈ R, SoD ∧ can_be_acqui r ed(p1, r, t) → ¬can_be_acqui r ed(p2, r, t) CACQ_SoD9

No two permissions in P can be acquired through a role in R at the same time.

(I, P, CACQ10, R, P) ∀r1,r2∈ R, SoD ∧can_be_acqui r ed(p1, r1, t) → ¬can_be_acqui r ed(p2, r2, t) CACQ_SoD10

Different permissions in P cannot be acquired through different roles in R at the same time.

(I, P, CACQ11, U, P)
∀u∈ U, SoD ∧ can_acqui r e(u, p1, t) → ¬can_acqui r e (u, p2, t)

CACQ_SoD11

A user in U cannot acquire different permissions in P at the same time.

(I, P, CACQ12, U, P)
∀u1, u2∈ U, SoD ∧ can_acqui r e(u1, p1, t) → ¬can_acqui r e (u2, p2, t)

CACQ_SoD12

No two users in U can acquire different permissions in P at the same time.

(I, P, CACQ13, U, P, R) ∀r ∈R, ∀u, SoD ∧ can_acqui r e (u, p1, r, t) → ¬ can_acqui r e (u, p2, r, t)
CACQ_SoD13

Permissions in P cannot be acquired by a user in U through a role in R at the same time.

SoD3 can prevent the acquisition of permissions through the
conflicting roles by a user by restricting explicit role-permission
assignment. However, permission acquisition may also be allowed
through the implicit role-permission assignment because of some
hierarchical relations. For example, let us consider P = { p1, p2}
and R = { r1, r2} . Suppose, we have the SoD constraint PAS-
SoD3, then the same permission in P cannot be assigned to the
two roles. Provided there are no hierarchies in the system, the
effect (and hence the purpose) of this SoD constraint is that the
same permission is not acquired through two roles even if a user
is allowed to activate them both. Now, assume there is a role x
such that r2 is senior of x with respect to an I-hierarchy, as shown
in Figure 4(b). Suppose we allow the assignment of p1 to x.
Furthermore, suppose we have the following assignment: p1 is
assigned to r1, and hence p1 is not assigned to r2 by virtue of the
constraint PAS-SoD2. But, as p1 is also assigned to x, and (r2≥tx),
p1 is also implicitly assigned to r2, the SoD constraint PAS-SoD2
does not prevent p1 being acquired through role r2 using hierarchy
semantics. CACQ-SoD1 prevents such permission-acquisitions
through implicit assignments. CACQ-SoD2 is to CACQ-SoD1 the
way UAS-SoD3 was to UAS-SoD1.

C o n f l i c t i n g r o l es

r 2r 1

x

a ssi g n ed
n o t

a ssi g n edu 1 u 1

a ssi g n e d
u 1

A - h i e r a r c h y

(a)

C o n f l i c t i n g r o l e s

r 2r 1

a s si g n e d t o
n o t

a s si g n e d t op 1 p 1

x
a s si g n e d t o

p 1

I - h i e r a r c h y

(b)

Figure 4. Implication of SoDs in presence of hierarchy

CACQ-SoD3 allows acquisition of permissions in R by users
through only one of the conflicting roles, whereas CACQ-SoD4
does not allow different users to acquire different permissions
through the conflicting roles. Similar to the CACQ-SoD1
constraint, CACQ-SoD5 prevents acquisition of permissions that is
allowed by both explicit and implicit assignments. As depicted in
the table of Figure 4, CACQ-SoD5 prevents conflicting users from
acquiring a permission of P through the same role, as in (a), or
though different roles, as in (b). CACQ-SoD6, on the other hand
does not allow two separate permissions to be acquired by
conflicting users neither through the same role (as in (c)) nor the
different roles (as in (d)). CACQ-SoD7 prevents conflicting users
from acquiring a permission in P through the same role in R at the
same time and hence does not allow case (a). Similarly, the table
in Figure 5 shows the cases depicted in Figure 5 that are not
allowed by CACQ-SoD8, CACQ-SoD3 and User-SoD4. Various
combinations of these SoDs define the SoDs from CACQ-SoD7 to
CACQ-SoD13.

r x r y

r x r yr x r y

r x r y

u x

p x p yp x

u x

u yu x

p x p y

u yu x

p x

(a) (b)

(c) (d)

r x

u 2u 1

p x

r x

u 2u 1

p x p y

(e)

(f)

r x

p x p y

(g)
u x

SoD Does not allow SoD Does not allow

CACQ-SoD1 (i) CACQ-SoD8 (iv), (vi)

CACQ-SoD2 (ii) CACQ-SoD9 (vi), (vii)

CACQ-SoD3 (iii) CACQ-SoD10 (ii), (iv)

CACQ-SoD4 (iv) CACQ-SoD11 (ii), (vii)

CACQ-SoD5 (v) CACQ-SoD12 (iv), (vi)

CACQ-SoD6 (vi) CACQ-SoD13 (vii)

CACQ-SoD7 (iii), (v)

Figure 4. Implication of SoDs in presence of hierarchy

5.6 Compar ison with other SoDs
Table 9 shows the correspondence between the major SoDs
identified in the literature and the ones proposed here. First, we
note that our SoDs take into account time that has not been
considered earlier. Secondly, we can express all the SoDs in [1]
with our constraint expressions or their combinations. The table
also shows how our SoDs correspond to those proposed in [18].
We note that the SoDs in rows 10 through 15 are more task
oriented. However, with the help of the triggers and dependency
constraint along with some transformation of the problem to map
into RBAC domain, our framework can easily express them. Since
previously identified SoDs are non-temporal, they correspond to
the special case of the time-constrained SoDs proposed here,
where (I, P) = all and any occurrence of U, R or P in GTRBAC
SoDs refer to the complete sets User s , Rol es and
Per mi ssi ons . Furthermore, by using the GTRBAC status
predicates, several new SoDs have been identified.

6. RELATED WORK
Mainly two kinds of cardinality constraints are often mentioned in
the literature - user cardinality and role cardinality [6, 9, 15].
However, our approach of using status predicate, an evaluation
function and a projection operator to define cardinality constraints
allows one to express cardinality constraints associated with all
states - role enabling, user or permission assignment as well as
activation time including session.

Several papers in the literature deal with separation of duty
constraints, with efforts focused on identifying various forms of
SoDs as well as to categorize them [1, 8, 14, 18]. Simon and
Zurko [18] discuss informally a wide variety of SoD constraints
that are required in systems. Gligor et. al. [8] provide a formalism
for these SoDs. One limitation of this work, however, is that it
does not consider the session-based dynamic SoD needed for
simulating lattice-based access control and Chinese Walls in
RBAC [15, 17]. Another limitation is that the SoDs defined do
not capture the hierarchical semantics. Improvements along these
lines can be seen in the SoDs listed by Ahn et. al. [1]. Unlike
these approaches, we follow a predicate-based definition of
general exclusion and inclusion of various kinds of assignments
and activations to define the SoD properties in GTRBAC. This
approach, while subsumes the SoDs defined in the above-
mentioned literature, also provides the overall capability of an

RBAC model to capture the separation of duty constraints that
may exist.

Dependency constraints form a less explored aspect in RBAC.
While some form of dependency is implied by role triggers
introduced in TRBAC [4] and GTRBAC [12], the control flow
dependency constraints, where a strict dependencies are implied,
have not been included within an RBAC framework. Such control
flow dependencies are typically used in workflow type of systems
to define inter-dependencies between workflow tasks [3]. We
believe that using such dependency constraints, GTRBAC can
better handle access control requirements in time-sensitive,
workflow types of applications, by providing a much broader
framework for mapping tasks into roles and using these
constraints to capture the interdependencies between the tasks.

No earlier work has addressed the issue of time-based cardinality,
SoD and dependency constraints. Applying periodicity/duration

Table 9. Comparison with SoDs proposed elsewhere

SH: Simon-Zurko’s SoD list [18]; AH: Ahn’s SoDs list [1]. GTRBAC (non-temporal forms)

SZ Strong SSoD (no user can be assigned to conflicting roles) UAS-SoD1

1

AH
SSoD-CR (no user should be (implicitly and explicitly) assigned to conflicting roles, i.e., no user
can-activate conflicting roles)

CACT-SoD1

2 AH SSoD-CP (a user cannot acquire conflicting permissions) CACTs-SoD9

3 AH Variation of 2 (2 + conflicting permissions cannot be acquired through a role) CACTs-SoD9 ∧ CACQ-SoD4.1

4 AH
Variation of 1 (1 + conflicting permissions cannot be acquired through a role + conflicting
permissions cannot be assigned to a role

CACT-SoD1 ∧ CACQ-SoD13 ∧ PAS-SoD2

5 AH SSoD-CU (1` + conflicting users cannot be assigned to a role) CACT-SoD1 ∧ CACQ-SoD1 ∧ UAS-SoD2

6 AH Variation: (4) ∧∧∧∧ (5) (4) ∧∧∧∧ (5) above

SZ Simple DSoD
7

AH User-based DSoD (Conflicting roles cannot be active at the same time for a user)
ACT-SoD1

8 AH
User-based DSoD with CU (Conflicting roles cannot be active at the same time for a user) only
difference between this and (7) is that here we are taking a conflicting user set other wise it is the
same

Same as 7 but U is also a conflicting set

9 AH Session-based DSoD (Conflicting roles cannot be active at the same in the same user session) ACT-SoD4

10 AH
Session-based DSoD with CR (Conflicting roles cannot be active at the same in the same user
session) Only difference from 9 is that it has conflicting set of users

Same as 9 but R is also a conflicting set

11 SZ
Object-based DSoD (no user may act upon a target that that user has previously acted upon) Can be rephrased as: if a user acquires a

permission then he cannot acquire it again. Post-
condition constraint can be used here.

12 SZ
Operational DSoD (no user may assume a set of roles that have capability for a complete business
job)

Task oriented: if the task can be represented by
atleast two roles (sub-tasks) then it can be easily
represented using UAS-SoD1 or ACT-SoD1

13 SZ
History-based DSoD (no user is allowed to perform all the actions in a business task in the same
target or collection of targets)

Comment similar to 12 can be made here, too.

14 SZ
Order-dependent SoD (The roles must perform their actions in a particular order) It can be expressed as a sequence of precedence

constraints

15 SZ
Order-independent SoD (Order does not matter as long as both happen) Triggers x→y after �t , y→ x after �t can be

used to enforce this.

constraints for these SoDs is more suitable for supporting access
control needs of dynamically evolving systems that are prevalent
today.

7. CONCLUSION AND FUTURE WORK
We have presented constraints for GTRBAC model including
cardinality constraints, control flow dependency constraints, and
separation of duty constraints. We used an evaluation function
and a projection operator associated with a set of GTRBAC status
predicates to build an elaborate framework for expressing
cardinality constraints. GTRBAC’s trigger has been extended so
that more complex time-based past information can be captured.
A set of control flow dependency constraints have been
introduced using the trigger framework to enforce much stricter
dependency constraints than those that can be expressed using
triggers. We also showed that by generalizing to system events
and conditions, the triggers and CFD framework provides an
elaborate model for capturing context-based access requirements.
Our approach to separation of duty constraints is based on the fact
that the notion of conflict between elements in a set is often
associated with another set. This allows us to consider SoDs that
are of much finer-granularity. We have shown that the separation
duty constraints identified in the literature can be easily expressed
by a subset of our separation duty constraint expressions. One key
future work that we plan to pursue is to develop a SQL or XML
like language to specify the GTRBAC constraints. Another
direction we plan to investigate is to use GTRBAC for workflow
type of systems.

8. ACKNOWLEDGMENTS
Portions of this work have been supported by the sponsors of the
Center for Education and Research in Information Assurance and
Security (CERIAS) at Purdue University.

9. REFERENCES
[1] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization

constraints specification. ACM Transactions on Information
and System Security (TISSEC), v.3 n.4, November 2000,

[2] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila, and D.R.
Kuhn. Role based access control for the World Wide Web. In
Proceedings of 20th National Information System Security
Conference, NIST/NSA, 1997.

[3] E. Bertino, E. Ferrari, and V. Atluri. The specification and
enforcement of authorization constraints in workflow
management systems. ACM Transactions on Information and
System Security, 2(1), 1999, p. 65-104.

[4] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A temporal
role-based access control model. ACM Transactions on
Information & System Security, 4(3), Aug.2001, p.191-233.

[5] D. F. Ferraiolo, D. M. Gilbert, N Lynch. An examination of
federal and commercial access control policy needs. In
Proceedings of NISTNCSC National Computer Security
Conference, Baltimore, MD, Sep 20-23 1993, p. 107-116.

[6] D. F. Ferraiolo, R. Sandhu , S. Gavrila , D. Richard Kuhn ,
 R. Chandramouli. Proposed NIST standard for role-based
access Control. ACM Transactions on Information and
System Security (TISSEC) Volume 4, Issue 3, August 2001.

[7] L. Giuri. Role-based access control: A natural approach. In
Proceedings of the 1st ACM Workshop on Role-Based
Access Control. ACM, 1997.

[8] Gligor, V.D., S.I. Gavrila, and D. Ferraiolo. On the formal
definition of separation-of-duty policies and their
composition. Proceedings 1998 IEEE Computer Society
Symposium on Research in Security and Privacy (Oakland,
Calif., May 1998), IEEE Computer Society, p. 172- 183.

[9] T. Jaeger, J. E. Tidswell. Practical safety in flexible access
control models. ACM Transactions on Information System
Security, 4(2), May 2001.

[10] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford. Digital
government security infrastructure design challenges. IEEE
Computer, Vol. 34, No. 2, Feb.2001, p. 66-72.

[11] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford.
Security models for web-based applications.
Communications of the ACM, 44 (2), Feb. 2001, p. 38-72.

[12] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor. Generalized
temporal role based access control model (GTRBAC) (Part
I)– specification and modeling. CERIAS TR 2001-47,
Purdue University.

[13] J. B. D. Joshi, E. Bertino, A. Ghafoor. Temporal hierarchy
and inheritance semantics for GTRBAC. 7th ACM
Symposium on Access Control Models and Technologies.
Monterey, CA, June 3-4, 2002.

[14] D. Richard Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access control
systems. Proceedings of the second ACM workshop on Role-
based access control, p.23-30, November 06-07, 1997,
Fairfax, Virginia, United States

[15] S. Osborn, R. Sandhu, Q. Munawer. Configuring role-based
access control to enforce mandatory and discretionary access
control policies. ACM Transactions on Information and
System Security, 3(2), May 2000, 85-106.

[16] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman.
Role-based access control models. IEEE Computer 29(2),
IEEE Press, 1996,p 38-47.

[17] R. Sandhu. Role hierarchies and constraints for lattice-based
access controls. In E. Bertino, H. Kurth, G. Martella, and E.
Montolivo Eds., Computer Security - Esorics'96, LNCS N.
1146, Rome, Italy, 1996, p. 65-79.

[18] R. Simon and M. Zurko. Separation of duty in role-based
environments. In Proceedings of 10th IEEE Computer
Security Foundations Workshop, Rockport, Mass., June 1, p.
183-194.

	purdue.edu
	Microsoft Word - p313-joshi.doc

