
CERIAS Tech Report 2001-89
Query flocks: a generalization of association-rule mining

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Query Flocks: A Generalization of Association-Rule Mining*

Dick Tsur, Hitachi Corp.
Jeffrey D. Ullman, Stanford University

Serge Abiteboul, Stanford University and INRIA
Chris Clifton, MITRE Corp.

Rajeev Motwani, Stanford University
Svetlozar Nestorov, Stanford University

Arnon Rosenthal, MITRE Corp.

March 51998

Abstract

Association-rule mining has proved a highly successful tech-
nique for extracting useful information from very large
databases. This success is attributed not only to the ap-
propriateness of the objectives, but to the fact that a number
of new query-optimization ideas, such as the “a-priori” trick,
make association-rule mining run much faster than might
be expected. In this paper we see that the same tricks can
be extended to a much more general context, allowing ef-
ficient mining of very large databases for many different
kinds of patterns. The general idea, called “query flocks,”
is a generate-and-test model for data-mining problems. We
show how the idea can be used either in a general-purpose
mining system or in a next generation of conventional query
optimizers.

1 Introduction

We shall begin our discussion by reviewing the basics of
market-basket analysis and the a-priori algorithm for finding
items that tend to appear together in market baskets. We then
see how to generalize the market-basket problem to “query
flocks,” that is, parametrized queries with a filter condition to
eliminate values of the parameters that are “uninteresting.”

*This work was partially supported by the Community Management
Staff’s Massive Digital Data Systems Program, NSF grant W-96-3 1952,
AR0 grant DAAH04-95-l-0192, and grants of IBM and Hitachi Corp.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on serwrs or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMOD ‘96 Seattle, WA, USA
e 1998 ACM 0-69791~995~5/96/006...$5.00

By expressing the query flock in Datalog, we find a well-
known condition (query safety) that lets us enumerate the
queries that are candidates for use in a query optimization
technique that generalizes a-priori. Interestingly, the same
technique, while applicable to SQL queries directly, is more
apparent if we express queries in Datalog.

We then consider the pragmatics of implementing the gen-
eralized a-priori technique in a “query-flocks processor” or in
a conventional SQL query optimizer. One approach is to see
generalized a-priori as a cost-based optimization, principally
involving join order and selection of some useful subqueries.
Another approach is to view the technique as one that is
applied dynamically, with the decision to perform an extra
filtering step (analogous to the a-priori technique of eliminat-
ing low-support items) done only when we see the sizes of
some intermediate relations during the query-flock execution
process.

1.1 Review of Market-Basket Mining

The marker-basket problem represents an attempt by a retail
store to learn what items its customers frequently purchase
together. The goal is an understanding of the behavior of
typical customers as they navigate the aisles of the store. For
instance, if we learn that customers frequently buy hamburg-
ers and ketchup together, then we might suppose that many
customers will walk from one to the other. If the store owner
puts high-profit items tempting to such customers, e.g., rel-
ish, between, then they might induce more impulse buying
and thus increase profits.

In the query problem, we are given a database containing
information about “market baskets.” That is, each time a cus-
tomer appears at the cash register, the set of items they bought
is entered in the database. We shall assume for simplicity that
the database is a relation baskets (BID, Item), giving
pairs consisting of a basket “ID” and an item that appeared in
that basket. The goal of market basket analysis is to find sets

of items that are “associated,” and the fact of their associa-
tion is often called an association rule. Intuitively, associated
items appear together frequently. Three more precise mea-
sures of association that have been used are:

Support: The items must appear in many baskets.

Confidence: The probability of one item given that the
others are in the basket must be high.

Interest: That probability must be significantly higher
or lower than the expected probability if items were
purchased at random.

For example, an oft-repeated observation is that people
who buy diapers often buy beer. The statement that the set
{beer, diapers} has high support means that many people
buy both beer and diapers. That fact alone might be useful
to a marketer. The statement that the rule beer --) diapers
has high confidence means that a lot of people who buy
beer also buy diapers. That rule might be even more useful,
although it begs the question whether people who buy beer
are especially likely to buy diapers, or whether they buy
diapers just because everybody buys diapers. Finally, saying
that the rule beer -+ diapers has high interest means that if
you buy beer, then you are much more (or much less) likely
to buy diapers than the general population.

1.2 The A-Priori Optimization

There is an important trick for speeding up the search for high-
support sets of items, known as a-priori ([AIS93], [AS94]).
It uses the fact that if a set of items S appears in c baskets, then
any subset of S appears in at least c baskets. For example,
if we are looking for pairs of items that appear in at least
c baskets, then we can start by finding those items that by
themselves appear in at least c baskets. If c is high enough,
we can eliminate most of the tuples in the basket s relation
before we do the hard part: joining baskets with itself to
count the occurrences of pairs of items. This transformation
of the market-basket problem has been shown in the papers
cited above to make a great difference in the time taken to
find the answer to a question like “find all the pairs of items
that appear in at least c market baskets.”

1.3 The Problem With SQL as a Mining Lan-
g”atF

In principle, we can express a query about pairs of items that
appear in a large number of baskets in conventional SQL.
This approach was examined by [HS95], for instance. The
problem is that the right optimizations are beyond the state
of the art in commercial database systems. For example,
Fig. 1 shows how to express the query “find all pairs of items

that appear together in at least 20 market baskets.“’ There,
we join baskets with itself, with the condition that the
basket ID’s be the same, and the name of the first item be
lexicographically less than the name of the second item (to
avoid repeating pairs in both possible orders). We group the
joined relation by the pair of items involved and check in the
HAVING clause that the group has at least 20 baskets.

SELECT il.Item, i2.Item

FROM baskets il, baskets i2
WHERE il.Item < i2.Item AND

il.BID = iZ.BID
GROUP BY il.Item, i2.Item
HAVING 20 <= COUNT(il.BID)

Figure 1: Searching for association rules using SQL

The problem with this formulation is that the a-priori trick
will not be implemented by conventional optimizers. For
example, using a popular DBMS, we found that by rewriting
the query of Fig. 1 to first find those items that appeared in
at least 20 baskets (the data was actually word occurrences
in newspaper articles, so the threshold of 20 occurrences
made more sense than it would for retail-store data) and then
joining the set of these items with the baskets relation
before performing the query as written in Fig. 1, resulted in
a 20-fold speedup.

In principle, the necessary code optimizations could be
implemented in SQL systems. The idea is roughly “pushing
grouping down the expression tree,” and as such has been
studied in the abstract by [GHQ95]. However, until the ad-
vent of market-basket mining, there has been littlemotivation
for database vendors to invest a lot of time and effort in build-
ing these transformations into their systems. In this paper we
argue the following:

l There are many data-mining problems besides market-
basket analysis that could profit from building the a-
priori form of code optimization into existing systems.

o There are a number of approaches to optimization of the
a-priori type, including at least one that is significantly
different from existing optimization techniques.

l The formalism of “query flocks,” including their ex-
pression in Datalog, is an important tool for building
improved optimizers.

1.4 Can We Mine in SQL?

It was pointed out in several early papers cited above that
SQL systems are unable to compete with ad-hoc file process-

‘ln practice market basket analysis is done with a much higher floor than
20 baskets, typically 1% of all baskets. We have used 20 throughout this
paper as an example of a lower bound on support.

2

ing algorithms such as a-priori and its variants. However,
in this paper we assume that the data is stored in a conven-
tional relational system and that mining occurs by issuing a
sequence of SQL queries to the database. We cannot dispute
the demonstrated fact that ad-hoc file processing algorithms
can outperform, often significantly, DBMS-based algorithms.
However, this fact does not negate the importance of the ap-
proach we are taking for two reasons:

1. The algorithms for mining and the optimizations we
develop can be carried over to a file-based, rather than
DBMS-based setting, with corresponding speedup.

2. If mining of large-scale databases is ever to become
a routine matter, where mining queries can be issued
quickly to whatever data is appropriate, then DBMS’s,
probably SQL databases, must play an important role
in this process. Even if it is found more appropriate
to move the data out of a conventional DBMS into a
special-purpose system designed for mining, then the
algorithms we suggest, or improvements thereof, will
have to be a component of the special-purpose system.

1.5 Outline of Paper

In Section 2 we introduce our model of a query flock and
the running examples that we shall use to explicate the con-
cepts. We select as our flocks language unions of conjunctive
queries with arithmetic comparisons and negations allowed.

Section 3 discusses the ways in which the a-priori tech-
nique can be generalized to the setting of query flocks with
filters based on minimum support. We show how the old
concept of “safe conjunctive queries” guides the application
of this technique in the general setting.

Then, in Section 4 we introduce a notation for query plans.
The search for optimal plans is complicated by the fact that,
unlike conventional optimization problems, there is not even
an exponential space of possible plans to which we can re-
strict our search. We therefore suggest some reasonable
heuristics for limiting the search to an exponential set of
plans, including a “dynamic” technique where we select a
join order in advance, but choose whether or not to apply a
filter operation only after seeing an intermediate result.

2 Query Flocks

Intuitively, a query Jock is a generate-and-test system, in
which a family of queries that are identical except for the
values of one or more “parameters” are asked simultaneously.
The answers to these queries are filtered and those that pass
the filter test enable their parameters to become part of the
answer to the query flock. The setting for a query flock
system is:

A language in which we can express queries that are
parametrized by one or more parameters.

A language in which to express filter conditions about
the results of a query.

Given these two languages, we can specify a particular
query flock by designating:

1. One or more predicates that represent data stored as
relations.

2. A set of parameters, which we shall always denote with
names beginning with $.

3. A query expressed in our query language, using the
parameters in roles normally reserved for constants.

4. Afrlter that specifies a condition that the result of the
query must satisfy in order for a given assignment of
values to the parameters to be acceptable.

The meaning of such a query flock is a set of tuples that
represent the “acceptable” assignments of values for the pa-
rameters. We determine the acceptable parameter assign-
ments by, in principle, trying all such assignments in the
query, evaluating the query, and seeing whether the result
passes the filter test. Of course there are often more efficient
ways to compute the meaning of a query flock, and these
optimizations are the subject of the balance of this paper.

l Remember: a query flock is a query about its param-
eters. The result of the flock is not the result of the
parametrized query that is used to help specify the flock.

2.1 Our Languages for Flocks

The idea of expressing both a query form and a filter condition
has been proposed before. For example, Mannila ([Man97])
talks about a logic in which both can be expressed. However,
Mannila’s formulation puts more in the filter, e.g., “one of the
items in a market basket must be beer,” while for us the role
of the filter is limited to a condition about the result of the
query. We would simply eliminate one of the parameters and
mention beer explicitly in the query flock, should we require
one of the items to be beer.

We shall use as our query language “conjunctive queries”
[CM773, augmented with arithmetic (introduced in Sec-
tion 2.3 and with union, as introduced in Section 3.4. In the
following and subsequent examples, we shall use Datalog
([Ull88]) notation, rather than SQL, to express our queries.
Datalog gives us two capabilities whose utility will become
clear in Section 3:

1. The notion of “safe query” for Datalog figures into po-
tential optimizations.

3

2. The set of options for adapting the a-priori trick to arbi-
trary flocks is most easily expressed in Datalog.

However, each of the advantages mentioned above can be
translated to SQL terms.

For the filter language, we use SQL conditions, as might
appear in a HAVING ClaUSe. Tht! filter language turns out to
be less important, since our principal results concern flocks
for which the filter is a support condition,and such a condition
is essentially a single constant, the minimum threshold for
support.

2.2 Market Basket Analysis as a Query Flock

As our first example, we shall consider the simplest market-
basket problem as a query flock. We are given a relation
baskets (BID, Item) asunderlyingdata,andwewantto
find those pairs of items $1 and $2 that appear in at least c
baskets. This query flock easily generalizes to finding sets of
JZ items that appear together for any fixed k.2

QUERY:

answer(B) :-
baskets(B,$l) AND
baskets(B,$2)

FILTER:

COUNT(answer.B) >= 20

Figure 2: Market basket association rules as a query flock

Example 2.1: The query flock for finding pairs of items that
appear in at least 20 baskets is seen in Fig. 2. For any values
of $1 and $2, the query asks for the set of baskets B in
which items $1 and $2 both appear. The answer relation
for this pair of items is the set of such baskets. Then, the
filter condition requires that the set of such baskets number
at least 20. The result of the query flock is thus the set of
pairs of items ($1, $2) such that there are at least 20 baskets
containing both items $1 and $2. •I

2.3 Adding Arithmetic and Negation to Our
Query-Flocks Language

The market-basket problem corresponds to a very simple
query flock. The query is a conjunctive query whose only
subgoals are positive, relational subgoals. In principle, any

‘However, finding something more complex, like the set of maximal sets
of items that appear in at least c baskets (regardless of the cardinal&y of the
set of items), is more awkward and would be expressed as a sequence of
query flocks for increasing cardinalities, with each flock depending on the
result of the previous Rock.

4

query language whatsoever could be used as the query flock
language. However, in order to apply the query optimization
techniques we propose, there are some limitations on the
query language. The extensions to conjunctive queries that
we shall allow are:

1.

2.

Negated subgoals.

Arithmetic subgoals, e.g., X < Y, where X and Y are
variables or parameters.

We shall refer to this broader class of conjunctive queries as
extended conjunctive queries. In addition, we shall allow a
query that is the union of these extended CQ’s, which we
discuss in Section 3.4. However, as with the original CQ’s,
we assume that extended CQ’s follow the conventional set
semantics rather than bag semantics, where duplicate tuples
are allowed. Some of our claims would not hold for bag
semantics.

As a simple example of where arithmetic subgoals are use-
ful, the original query flock for market baskets, Example 2.1,
produces each successful pair of items in two orders. We can
restrict the result to have each pair of items appear only in
lexicographic order if we add an arithmetic condition to the
query, as:

answer(B) :- baskets(B,$l) AND
baskets(B,$2) AND $1 < $2

‘Ibe other two extensions (negation and union) are also quite
useful. We introduce them in the following two examples,
which we use throughout the rest of the paper to illustrate our
ideas.

Example 2.2 : The following is an example of a query flock
that searches for unexplained side-effects. That is, we want
to find symptoms $s and medicines $m such that there are
many patients (and as before, we take 20 to be the thresh-
old of “many”) that exhibit the symptom and are taking the
medicine, yet the patient’s disease does not explain the symp-
tom. The underlying data with which we work consists of
the following relations:

1.

2.

3.

4.

diagnoses(Patient, Disease): The patient
has been diagnosed as having the disease.

exhibits(Patient, Symptom) : The patient ex-
hibits the symptom.

treatments(Patient,
Medicine) : The medicine has been prescribed for
the patient.

causes(Disease, Symptom): The disease is
known to cause the symptom.

The query flock for the problem described above is shown
in Fig. 3. In order for this query to make sense, we assume that
each patient has one disease only. To include patients with
several diseases simultaneously, we would have to extend our
query-flocks language to allow intermediate predicates (in
particular, a predicate relating patients to the set of symptoms
from all their diseases). That extension is feasible but we
shall concentrate on the simpler cases in order to explore
their query-optimization opportunities.

QUERY:

answer(P) :-
exhibits(P,$s) AND
treatments(P, $m) AND
diagnoses(P,D) AND
NOT causes(D,$s)

QUERY:

answer(D) :-
inTitle(D,$l) AND
inTitle(D,$2) AND
$1 < $2

answer(A) :-
link(A,Dl,D2) AND
inAnchor(A,$l) AND
inTitle(D2,$2) AND
$1 < $2

answer(A) :-
link(A,Dl,D2) AND
inAnchor(A,$2) AND
inTitle(D2,$1) AND
$1 < $2

FILTER:
ALTER:

COUNT(answer.P) >= 20
COUNT(answer(*)) >= 20

Figure 3: Mining for side-effects in a medical database
Figure 4: A query flock defining strongly connected words

In the flock of Fig. 3, the parametrized query asks for the
set of patients P that exhibit a symptom $s, are receiving
medicine $m, have disease D, and yet the disease D doesn’t
explain the symptom $s. The filter requires that there be
at least 20 patients taking medicine $m and exhibiting unex-
plained symptom $ s. 0

Example 2.3 : In our next example, we are looking for words
that are strongly related in a collection of HTML documents.
While there are many notions of “strong connection” that
could be explored, we shall fix on one, in which we count

1. The number of times the words appear together in a title,
and

2. The number of times one word appears in an anchor and
the other appears in the title of the document the anchor
points to.

The query flock that searches for such pairs of words is based
on the following predicates or relations:

1. inTitle(D,W):WordWisinthetitleofdocument
D.

2. inAnchor (A, W) : Word W appears in the anchor text
of anchor A.

3. link (A, Dl, D2) : Anchor A links document Dl to
document 02.

Figure 4 shows the query flock that finds pairs of words
in the two desired relationships: together in title, or one in

anchor and the other in target title. To prevent pairs of words
from being generated twice, we have elected to require that
the tirst word, $1 lexically precede the second word, $2.
As a result, we are forced to use three rules, since we must
distinguish the case where the lexically first word is in the
anchor from the case where the second word is in the anchor.

Again we have taken 20 occurrences as the threshold of
significance. Notice that the count in the filter is counting
answers, which may be either anchor ID’s or document ID’s.
We assume that there are no values in common between these
two types of ID’s, or the count could be too low. •I

3 Generalizing the A Priori Technique

The essence of the a-priori trick applied to query flocks is that
we optimize by tirst evaluating a less expensive query whose
answer allows us to upper bound the size of the answer that
would be obtained with certain parameters. If that bound is
less than the threshold in the filter condition, we can eliminate
certain values of a parameter or parameters without further
consideration. But where do these less expensive queries
come from?

3.1 Containment for Conjunctive Queries

When the queries involvedare conjunctive ([CM77J, [U1189],
[AHV95]), there is a straightforward answer to the question.
The simplest way for a query &I to put an upper bound on

5

the size of the result of a query 92 is for it to be provable that
for any database, the result of Q2 is a subset of the result of
91, a condition which we normally write 92 C &I. How-
ever, for conjunctive queries, this containment is decidable,
using the technique of containment mappings ([CM771). A
consequence of the containment-mapping theorem is that the
only way 92 _C Q1 can hold is if Q] is constructed from $2
by

1. Taking a subset of the subgoals of Q2, and

2. Splitting zero or more variables into several variables.

Splitting variables can neither decrease the number of so-
lutions to the query nor make the query simpler. Thus, we
shall limit our search to subsets of the subgoals of Q2, with
no variable splitting allowed. Picking a proper subset of the
subgoals also does not decrease the size of the solution, but
it can make the query simpler, and that simplification is the
essence of the a-priori trick. Using a subset of the subgoals
can also eliminate from consideration some of the parameters
of the query flock, another important aspect of “a-priori.”

Either can be used to prune values of one of the pa-
rameters. For instance, if we use the first, then
we can ask for what values of $1 does the query
answer(B) : - baskets (B, $1) produceanumberof
values of B that is over the threshold given in the filter. Any
other value of $1 can be eliminated from consideration as a
member of a pair of items meeting the filter condition.

By symmetry, the set of $ l's that survive a test based on
the first subquery is exactly the same as the set of $2’s that
will survive a test based on the second subquery. In fact, the
a-priori trick (at least for the case of item pairs) can be seen
as the combination of the use of one of these two subqueries
and the exploitation of their equivalence. •I

We may summarize the generalization of a-priori for CQ’s
without negation or arithmetic. as follows:

Optimization Principle for Conjunctive Queries: To op-
timize a query flock described as a conjunctive query Q and
a filter that puts a lower bound s on support, consider eval-
Mating only those safe subqueries formed by deleting one or
more subgoals from Q. Exploit such a query by eliminat-
ing values of the parameters that do not meet the support
threshold s when that subquery is evaluated.

3.2 Safe Queries

However, not every subset of the subgoals of a conjunctive
query makes sense as an intermediate step in the evaluation
of the query flock. In particular, if the variables that appear in
the head of the query do not also appear in the body, then the
query defines an infinite set of tuples for the head predicate,
and therefore could not provide a useful upper bound on
the size of the result for the full query. This condition has
been studied before (cU1188]) as a way to restrict Datalog
queries to be equivalent to relational algebra; it is called
safety, and CQ’s (without negation or arithmetic) that satisfy
the condition Each variable that appears in the head also
appears in the body are called safe queries.

3.3 Safe Queries with Negation and Arith-
metic

When we expand our horizon beyond conjunctive queries to
the Datalog queries with negation and arithmetic that we have
been using, matters get more complex in several ways. First,
the discovery of containing queries is not as easy. There
are decision procedures - [Klu82] or [ZO93] for Datalog
with arithmetic, and ES931 for Datalog with negation, in-
cluding arithmetic. However, there are some cases where the
containing query cannot be characterized as a subset of the
subgoals of the contained query.

Since these cases are unusual, we propose to continue our
Example 3.1: Consider the market-basket query flock from restriction that we look only at subsets of the subgoals of
Example 2.1, which we reproduce here: the query that defines the query flock. We then have only

to augment our search with the generalized notion of what a
answer(B) :- safe query is. There are now three conditions that must be

baskets(B,$l) AND satisfied ([uw97]):
baskets(B,$2)

There are only two nontrivial subqueries formed by taking a
nonempty, proper subset of the subgoals,

1. Every variable that appears in the head must appear in
a nonnegated, nonarithmetic subgoal of the body.

answer(B) :- baskets(B,$l)

2. Every variable that appears in a negated subgoal of the
body must appear in a nonnegated, nonarithmetic sub-
goal of the body.

and 3. Every variable that appears in an arithmetic subgoal of
the body must appear in a nonnegated, nonarithmetic

answer(B) :- baskets(B,$2) subgoal of the body.

6

However, parameters are variables, not constants, as far as
the above safety conditions are concerned. Since they cannot
appear in the head, they are not affected by rule (1). However,
the last two rules apply to parameters as well as to explicit
variables.

Example 3.2: Let us consider the flock of Example 2.2,
which includes a negated subgoal; we repeat it here:

answer(P) :-
exhibits(P,$s) AND
treatments(P) $m) AND
diagnoses(P,D) AND
NOT causes(D,$s)

Which of the 14 nontrivial subsets of the subgoals are safe?
First, to satisfy condition (l), one of the subgoals must in-
clude the head variable P. That condition rules out only one
possible subquery:

answer(P) :- NOT causes(D,$s)

Notice that this query makes no sense, since it is trying to
count a number of patients, but the only information we have
to go on says that some disease D does not cause the symptom
ss.

We also must assure condition (2) which says that if we
pick the subgoal NOT causes (D , $ s) , then since variable
D and parameter $ s appear in this subgoal, we must also pick
a positive subgoal that has D in it and a positive subgoal that
has $s in it. That is, if we pick NOT causes (D, $s),
then we must also pick both diagnoses (P, D) and
exhibits (P , $ s) , the only positive subgoals with D and
$s, respectively. Thus, condition (2) again rules out the
subquery above that has only NOT causes (D, $s) in its
body and also rules out the other five subqueries that have
this subgoal but do not have both of exhi bi t s (P , $ s) and
diagnoses(P,D).

The remaining eight subqueries are candidates for use in an
optimization where we use the subquery to eliminate values
for $ s, $m, or perhaps ($s, $m) pairs, before we evaluate
the entire query flock. Before considering the optimization
problem in general, let us consider some likely candidates.
In their interpretation, recall that the filter condition for the
original query flock is that there must be at least 20 patients
receiving the medicine $m and exhibiting the unexplained
symptom $s.

1. answer(P) :- exhibits(P,$s). At least 20
patients exhibit the symptom.

2. answer(P) :- treatments(P,$m). At least
20 patients must have been given the medicine.

3. answer(P) :- diagnoses(P,D) AND
exhibits(P,$s) AND NOT

4.

causes (D I $s) . There are at least 20 patients with a
disease that does not cause a symptom they exhibit.

answer(P) :- exhibits(P,$s) AND
treatments (PI $m) 0 There are at least 20 patients
taking the medicine and exhibiting the symptom.

We cannot pick a strategy without knowing something
about sizes of the relations and numbers of patients, diseases,
etc. However, there are some intuitive observations we can
make.

l

Either (1) or (3) could be used as a preliminary filter for
$s values, or both could be used, with (1) used before
(3). Which of these three options, or none, makes sense
depends on the statistics of the situation. For example,
(1) is attractive only if there are many exhibits tuples
for rare symptoms. Subquery (3) which is almost the
entire query except for the introduction of medicines, is
attractive if the number of different medicines adminis-
tered for a disease is small; then a symptom that qualifies
under (3) is very likely to be associated with a single
medicine that will meet the threshold of 20 patients.

(1) and (2) may both be useful subqueries. Subquery (1)
can be used to eliminate rare symptoms from consid-
eration, and (2) can be used to eliminate rarely used
medicines. However, whether it is worth basing a pre-
liminary step on (1) and/or (2) depends on the density of
rare symptoms and medicines. For example, if thresh-
old 20 patients were such that only l/10 of the symptom
reports were for symptoms that appeared in 20 or more
patients, then we could get significant advantage if we
eliminated from relation exhibits all those tuples
with rare symptoms. Conversely, if almost all symp-
tom reports were for symptoms appearing in at least 20
(or whatever the support threshold were) patients, then
subquery (1) would not be worth the extra effort.

Even though subquery (4) involves both $s and $m, it
might be a useful preliminary step. It might be easier to
jointhetwo relations exhibits and treatments
than to join all four relations that appear in the full
query. It is then likely that there are lots of symptom-
medicine pairs that do not appear in 20 patients, and
these can be eliminated from consideration before we
join in symptoms and causes to determine which
of the frequently occurring symptom-medicine pairs are
explained by the fact that the medicine is used to treat a
disease that causes the symptom.

3.4 Extension to Unions of Datalog Queries

Suppose a query flock consists of a union of Datalog queries
of the type that we have been considering. We can construct

a query that provides an upper bound on the result of the
union if we take the union of queries that provide an upper
bound on each query individually. Thus, we must look for a
subquery for each query in the union. Each query must be
safe, in the sense described in Section 3.2. If so, then the size
of the result of the union of the subqueries will be a bound on
the size of the result for the original query. We may thus use
the union of subqueries to eliminate values of a parameter
or parameters that cannot possibly appear in the result of the
query hock.

Optimization Principle for Unions of Conjunctive
Queries: To optimize a query flock described as a union
of conjunctive queries 91, Q2, . . . , Qn and a filter that puts a
lower bound s on support, consider evaluating only those
unions of safe subqueries PI, P2,. . . , P, such that Pi is
formed by deleting one or more subgoals from Qi, for
i= 1,2- , D s . , n. Exploit such a union-of queries by elim-
inating values of the parameters that do not meet the support
threshold s when that subquery is evaluated.

R(P) := FILTER(P,Q,C)

where

1 0 P is a set of parameters,

2. Q is a query involving the parameters P,

3. R is a relation whose tuples are values of the parameters
P, and

4. C is a condition on the result of the query Q

to mean: Create relation R to consist of one tuple for each as-
signment of values for the parameters P such that with those
parameter values the result of query Q meets the condition
C.

A query plan is a sequence of filter steps. Each step can
use in subgoals any of the relations that hold the data of the
problem and any of the relations about the parameters that

Example 3.3 : Let us consider the union in Example 2.3, and
suppose we want to find a subquery that involves only word
$1. Because of the safety condition, there is essentially only
one choice for each of the three queries in the union, and
these subqueries are:

answer(D) :- inTitle(D,$l)
answer(A) :- inAnchor(A,$l)
answer(A) :- link(A,Dl,D2) AND

inTitle(D2,$1)

That is, a word cannot be a candidate for $1 (or for $2 for
that matter) unless we get to at least 20 when we sum the:

were created by previous steps.

okS(Ss) := FILTER($s,
answer(P) :- exhibits(P,$s),
COUNT(answer.P) >= 20
);

0k.M (Sm) := FILTER($m,
answer(P) :- treatments(P,$m),
COUNT(answer.P) >= 20
);

ok(Ss, Sm) := FILTER(C$s,$m),
answer(P) :-

2. Number of times it appears in an anchor, and

1. Number of times it appears in a title, oks($s) AND
okM($m) AND
diagnoses(P,D) AND

3. Number of anchors that point to titles in which it appears. exhibits(P,$s) AND
treatments(P,$m) AND

0 NOT causes(D,$s),
COUNT(answer.P) >= 20

4 Search for Optimal Query-Flock
Evaluators Figure 5: A query plan for the medical mining problem

We have limited our search for evaluation strategies to the
selection of some subqueries that we use to restrict the values
of one or more parameters. In this section we introduce a
formal notation for the use of such subqueries and use them
to represent query plans.

4.1 Filter Steps

Let us use the expression

Example 4.1: Let us continue Example 3.2. Suppose that,
using some estimate for the expected sizes of relations and
joins, we conclude that the best strategy for finding unex-
petted side-effects is to filter the symptoms using subquery 1
(at least 20 patients exhibit the symptom) and also to filter
medicines using subquery 2 (at least 20 patients are taking
the medicine, but not to filter symptoms by subquery 3 or fil-
ter symptom-medicine pairs by subquery 4. Then our query
plan consists of three steps, as shown in Fig. 5:

8

Create a unary relation oks consisting of all those symp-
toms that appear in at least 20 patients.

Create a unary relation ok~ consisting of all those
medicines that are given to at least 20 patients.

Evaluate the entire query, using the original four sub-
goals plus additional subgoals that are the okS and ok~
relations.

In the first step of Fig. 5 we define the relation okS. The set
of parameters is $s alone. The query for the FILTER step
is the subquery that we suggested in Example 3.2 would be
useful for filtering out rarely occurring symptoms. The filter
condition in this step, as in all three steps, is the condition
that the result of the query contain at least 20 patients. The
second step is a similar and creates the set ok~ of medicines
that are used on at least 20 patients.

Then, the third step repeats the original query of Exam-
ple 3.2, but now there are two additional subgoals, okS ($s)
and ok~ ($m) . One might ask: have we not made things
harder? In addition to the first two FILTER steps, which
take some time, we finish the query plan with a step that is
the original query flock plus two extra subgoals.

However, the third step should be easier, not harder,
to answer than the original query. The intuitive rea-
son is that the subgoals okS ($s) and ok~ ($m) can be
joined with other subgoals - exhibits (P, $s) and
treatments (P, Sm) in particular - relatively quickly.
Moreover, the results of these joins will be smaller relations,
thus making subsequent join steps take less time than they
would in the original query flock. 0

4.2 Legal Query Plans

One can argue intuitively that the query plan expressed in
Example 4.1 meets its most basic requirement - the result
of the sequence of filter steps is equivalent to the original
query flock, which expressed as a single filter step is:

ok(Ss, Sm) := FILTER(($s,$m),
answer(P) :-

diagnoses(P,D) AND
exhibits(P,$s) AND
treatments(P,$m) AND
NOT causes(D,$s),

COUNT(answer.P) >= 20
);

One could ask under what conditions the plan of Fig. 5 is an
improvement on the original, and if so, what join order should
be used for the final step. We cannot give a definitive answer
to such questions without estimates for sizes of join results,
but the matter has been studied extensively, and the general
theory of cost-based optimization ([G*79], e.g.) applies here.

9

However, there is a more fundamental question that must
be settled: under what circumstances is a query plan equiv-
alent to a given query flock? We propose the following as a
natural consequence of the ideas presented so far. First, we
treat only filters that involve support; i.e., the filter condition
is a lower bound on the size of the query result. Handling
other filters remains open. Possibly there are more general
rules that could be proposed, even for support-typefilters, but
we believe that the space of options implied by the following
rule will omit the best option only in pathological cases.

Rule for Generating Query Plans for Conjunctive Query
Flocks with Support-Type Filter Conditions: Consider
only sequences of FILTER steps that meet all of the follow-
ing conditions:

1. Each step uses the same filter condition as the original
query flock.

2. Each step defines a uniquely named relation.

3. Each step is derived from the given query flock by the
following steps:

(a) Start with the original query flock.

(b) Add in zero or more subgoals that are copies of the
left side of the assignment (: =) in some previous
filter step.

(c) Delete zero or more subgoals but, following the
optimization principle for conjunctive queries,
make sure that the resulting query is safe.

4. The final step must not delete any subgoals of the origi-
nal query; it may have additional subgoals derived from
previous steps, of course.

Example 4.2 : In Fig. 5, each of the three steps use the same
filter condition as the original query flock. The first two
steps do not add any additional subgoals to the query, but
they delete all but one of the original subgoals. The result
is a safe query in each case. The last step retains all four
subgoals of the original query flock, and adds to it the left
sides of the l&t two steps. Notice that these left sides must be
copied literally, using the same relation name as the predicate
and the same parameters as arguments. 0

4.3 An Exponential Search for Query Plans

There is ample precedent for making exponential searches to
find the best query plan, for instance [G*79]. Because queries
tend to be small, exponential searches are often computation-
ally feasible. However, the space of query plans entailed by
the rule in Section 4.2 is not bounded by an exponential in the
size of the query defining the original query flock. Although
the number of safe subsets of the subgoals of the original
query is no more than exponential, there is also the option of

adding subgoals that are the left sides of prior queries. Thus,
each time we add a step to our query plan, we double the
number of options for the next step.

Moreover, there is some reason to believe that a long se-
quence of steps, in which each uses the result of the previous
step, is at least a candidate for being best-possible. The
following is an example that illustrates the point.

Example 4.3 : Suppose our query flock is based on an un-
derlying relation arc that represents arcs of a directed graph.
This query appears in Fig. 6. Intuitively, the query flock asks
about a node $1 whether it has at least 20 successors from
which there is a path of length n extending.

QUERY:

answer(X) :- arc($l,X) AND arc(X,Yl) AND
arc(Yl,Y2) AND . . . AND arc(Y,-l,Y,)

FIL’ER:

COUNT(answer.X) >= 20

Figure 6: A pathologicaI query flock

The first step of a query plan might use only the first
subgoal, i.e., restrict ourselves to nodes $1 that have at least
20 successors, regardless of what paths extend from these. A
second step might examine the nodes that past the first test
and, with the first two subgoals of the original query restrict
to nodes that have at least 20 successors that themselves have
successors. We can proceed in this fashion, winding up with
an n + l-step query plan, any step of which might make a
useful simplification of the query. The pattern of this query
plan is suggested by Fig. 7. 0

There are many reasonable ways that we could restrict
the search for a query plan to an exponential number of
possibilities. Here are two that can be said to generalize the
a-priori technique:

1. Select some sets of parameters. For each selected set S,
select a subset of the subgoals of the original query that
is safe and includes exactly the parameters of S. Use
this subquery to define a relation RS that restricts the
parameters S. Finally, at the last step, use the original
query together with all the subgoals formed from the
relations RS for each selected set of parameters S. This
approach generalizes a-priori for the case of two-item
sets, and it is also followed by the query plan of Fig. 5,
for instance.

2. Select a list of subsets of the subgoals of the original
query that form safe queries. Turn each subquery Q
into a FILTER step, first adding to Q any subgoals
that can be formed from the result of a prior step that

10

ok0 ($1) := FILTER($l,
answer(X) :- arc($l,X) (
COUNT(answer.X) >= 20

);
okl(S1) := FILTER($l,

answer(X) :- okO($l) AND
arc($l,X) AND arc(X,Yl),

COUNT(answer .X) >= 20
I I

~ ~ 0

okn(S1) := FILTER ($1,
answer(X) :- ok[n-11 ($1) AND

arc($l,X) AND arc(X,Yl) AND
. . . AND arc(Y[n-l],Yn),

COUNT(answer.X) >= 20
) a

Figure 7: A query plan with n + 1 steps

restricts parameters that appear in Q. This approach
would yield the a-priori method for sets of more than
two items. In that case, we compute candidate sets of
Ic items by restricting to those itemsets such that each
subset of Ic - 1 items previously has met the support
test.3

4.4 Dynamic Selection of Filter Steps

While the above strategies for limiting search to an exponen-
tial number of possible query plans are unremarkable, there
is another strategy that has no analog in conventional query
optimization. Instead of deciding on subqueries in advance,
we let the sizes of intermediate relations after we compute
them determine whether or not to apply a filter step. Intu-
itively, if the size of an intermediate relation is such that the
average number of tuples per assignment of values to the
parameters is significantly lower than it was at any previous
step that computed a relation with the same set of parameters,
then there is a good chance that many value-assignments for
the parameters will be eliminated on this step, even though
they were not eliminated previously.

There is one important special case: when the set of pa-
rameters for a relation has not previously been encountered.
This case includes expressions consisting of a single subgoal,
i.e., one of the relations upon which the query flock is based,
provided that subgoal has one or more parameters among
its arguments. For this special case, where there has been
no previous filtering, we should ask whether the number of
tuples per value-assignment for the parameters is low or high
compared with the support threshold.

3The a-priori methodtakes advantageof symmetry amongtheparameters
that represent items, making this process simpler than it would be in the
general case.

l If low, then we expect a lot of value-assignments to be
eliminated, and it is likely to be useful to filter.

l If high, then few value-assignments are likely to be elim-
inated, and even if they are, their elimination will not
reduce the size of the underlying relation significantly,
so we should not filter at this point.

Example 4.4 : Let us again consider the query flock of Ex-
ample 3.2, which searches for unexplained side-effects. We
start by choosing a join order for the four subgoals. Any of a
number of models and approaches to selecting this join order
may be used, our idea is independent of how the join order
is actually chosen We shall suppose for argument that the
ordering of Fig. 8 is chosen.

NOT causes(D,$s)

diagnoses(P,D)

exhibits(P,$s) treatments(P,$m)

Figure 8: A join order for the medical-mining example

We start with the leaves of the tree of Fig. 8. Before we
use leaf exhibits (P , $ s) , we have the option to apply a
FILTER step on $ s that is equivalent to the computation of
relation okS in Fig. 5. Whether we should do so depends on
how the number of patients mentioned in exhibits com-
pares with the number of symptoms mentioned there. As-
suming this ratio is somewhat below 20 (our usual assumed
threshold of support), then we shall elect to perform the filter-
ing step. Note that because we eliminate the rare symptoms,
we would normally want the ratio to be significantly less than
20 in order for this step to, say, reduce the size of the relation
by half. However, since the actual distribution of the sizes of
the groups for each symptom affects our expected reduction
in the relation size, we may want to do substantial gathering
of statistics to support the filter/don’t filter decision.

We also consider the leaf treatments (P, $m) . As-
suming that there are more than 20 patients per medicine,
we may decide that filtering $m at this time is likely to be
unproductive. We cannot filter the leaf diagnoses (P , D) ,
because there are no parameters present. We also cannot fil-
ter leaf NOT causes (D, $ s) , because the query with just
this subgoal is not safe.

Now, consider the lowest interior node of the tree in Fig. 8.
It represents the join

exhibits(P,$s) w treatments(P,$m)

and therefore involves both parameters. We have not seen a
lower node involving both parameters, so we again are in the
special case where we must decide whether the number of
($3, $m) pairs eliminated is worth the cost of filtering. That
is, we divide the size of the intermediate relation computed
at that node by the product of the number of symptoms and
medicines and compare this number with 20. Let us suppose
that the ratio is low enough that we decide filtering is a good
idea.

templ (Ss) := FILTER($s,
answer(P) :- exhibits(P.$s),
COUNT(answer.X) >= 20

)
temp2(P,$s,$m) := (templ($s) JOIN

exhibits(P,$s)) JOIN treatments(P,$m)
temp3 (Ss, Sm) := FILTER(($s,$m),

answer(P) :- temp2($s,$m).,
COUNT(answer.X) >= 20

1
temp4(P,D,$s,$m) := ((temp3($s,$m) JOIN

temp2(P,$s,Sm))
JOIN diagnoses(P,D)) JOIN
(NOT causes(D,$s)

sideEffect($s,$m) := FILTER(($s,$m),
answer(P) :- temp4(P,D,$s,$m),
COUNT(answer.X) >= 20

)

Figure 9: A possible query plan resulting from dynamic
evaluation

We then move to the node above, where diag-
noses (P, D) is joined in. Assuming that patients ap-
pearingin exhibits and treatments also appear in
diagnoses, the result of the second join cannot be smaller
than the first, so there will not be any advantage to another
FILTER step. However, we do not have to make this deci-
sion until after we join.

The final step is the join with NOT causes (D, $s) that
completes the query. We must filter at the root, simply be-
cause that filtering is necessary to find the answer to the query
flock. The resulting query plan looks a little different from
the pure FILTER programs we have discussed previously,
since the joins are performed explicitly. The plan appears in
Fig. 9. 0

5 Conclusions

We have presented a notation, called “query flocks,” for de-
scribing large-scale data-mining operations. A flock consists
of a parametrized query and a filter that selects certain assign-
ments of values for the parameters by applying a condition

11

to the result of the query for that value assignment. We have
explored the case where the query is described by a union
of one or more conjunctive queries with optional arithmetic
and negation, and the filter is a lower bound on the number
of tuples returned by the query.

We generalized the well-known a-priori technique for
market-basket analysis to apply to any query flock in our
class. By using the concept of query safety, we described the
possible subqueries that could be used to exploit the a-priori
idea, and we then suggested several techniques for further
limiting the search for query plans. These techniques are
either static heuristics, where we enumerate a class of plans
and estimate the cost of each, based on available size esti-
mates for relations, or dynamic, where we see the size of
intermediate results before deciding whether or not to apply
a filtering step.

Future Work: Monotone Filter Conditions

The techniques described in this paper appIy directly to any
monotone filter condition. By monotone we mean that if
the condition is true for a given set then it must also be
true for any superset of the original set. Examples in-
clude certain COUNT, MIN, MAX, SUM (in the case of
non-negative numbers) conditions. As a simple example,
we can extend the traditional market basket problem, whose
flock appeared in Fig. 2 to a weighted market basket, where
the baskets B have weights W associated through a relation
import ante (B , W) . For example, in conventional market-
basket mining, the importance of a basket might be the total
value of all items purchased, or in test mining, the baskets
could be documents, the items could be words, and the im-
portance of a document is the number of web hits it gets. In
any event, we can modify the original market-basket flock to
evaluate an answer by summing the weights of the baskets
returned in the answer, as in Fig. 10.

QUERY:

answer(B,W) :-
baskets(B,$l) AND
baskets(B,$2) AND
importance(B,W)

FILTER:

SUM(answer.W) >= 20

Figure 10: Weighted market basket, an example of a mono-
tone flock

References

[AI-IV951 S. Abiteboul, R. Hull, and V. Vianu, Foundations

[AIS93]

[AS941

[CM771

[G*79]

[GHQW

[HS953

[Klu82]

l&s931

[Man971

[u1188]

[U1189]

lJJw971

[ZO93]

of Databases, Addison-Wesley, Reading, Mass.,
1995.

R. Agrawal, T. Imielinski, and A. Swami, “Min-
ing association rules between sets of items in large
databases,” Proc. ACM SIGMOD Conf., pp. 207-
216,1993.

R. Agrawal and R. Srikant, “Fast algorithms
for mining association rules,” Proc. 20th VLDB
Conf., 1994.

A. K. Chandra and F! M. Merlin, “Optimal im-
plementation of conjunctive queries in relational
databases,” Proc. Ninth Annual ACM Sympos-
ium on the Theory of Computing, pp. 77-90.

P.P.Griffiths (Selinger) et al. [1979], “Accesspath
selection in a relational database management
system,” ACM SIGMOD International Conf. on
Management of Data, pp. 23-34., 1979.

A. Gupta, V. Harinarayan, and D. Quass, Gener-
alized projections, a powerful approach to aggre-
gation, Proc. 21st VLDB Conf., 1995.

M. Houtsma and A. Swami, “Set-oriented mining
of association rules,” Proc. lntl. Conf. on Data
Engineering, pp. 25-34.

A. Klug, “Equivalence of relational algebra and
relational calculus query languages having aggre-
gate functions,” J. ACM 29:3, pp. 699-717.

A. Y. Levy and Y. Sagiv, “Queries independent of
update,” Proc. International Conference on Very
Large Data Bases, pp. 171-181,1993.

H. Mannila, “Methods and problems in data min-
ing,” Proc. Intl. Conf. on Database Theory, 1997,
pp. 41-55, Springer-Verlag.

J. D. Ullman, Principles of Data-
base and Knowledge-Base Systems, Volume I-
Fundamental Concepts, Computer Science Press,
New York., 1988.

J. D. Ullman, Principles of Database and
Knowledge-Base Systems, Volume II-The New
Technologies, Computer Science Press, New
York., 1989.

J. D. Ullman and J. Widom, A First Course
in Database Systems, Addison-Wesley, Reading,
Mass., 1997.

X. Zhang and M. Z. Ozsoyoglu [1993]. “On ef-
ficient reasoning with implication constraints,”
Proc. Third DOOD Conf., pp. 236-252,1993.

12

