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Abstract 
Classlfying sofhvare modules in a component library is a 

major problem in software reuse. Indexing criteria must 
adequately re$ect the semantics of the components. This 
must be done without undue effort in either classifying the 
software, or developing ‘“queries ’’ to find candidates for 
reuse. We present an architecture for automatically classi- 
fying and querying software based on design information. 
We present a method for d(etermining if indexing criteria are 
effective, and show results using a set of criteria automati- 
cally extracted from an existing collection of programs. 

1. Introduction 
Software reuse was first introduced at the 1968 NATO 

Software Engineering Conference. However, software reuse 
has failed to become a standard practice in software 
engineering. Most software is custom-built, rather than 
being assembled from existing components, even though 
standard components’ mainufacture and reuse is common 
practice in other engineering disciplines (e.g., computer 
hardware uses few custom chips). In order to reuse avail- 
able software components, these building blocks must be 
cataloged for easy reference, standardized for easy integra- 
tion, and validated to reduce development burdens. Software 
component reuse would allow large software projects to be 
accomplished with lower development costs. 

There are two very different software reuse scenarios: 

a Software development as a process of combining 
modules from a component library built specifically for 
reuse. 

a Software salvaging[ 141, the reuse of modules written for 
some specific initial use. 
Work based on the first approach has concentrated on 

building domain-specific software development environ- 
ments; the component libraries are built with a particular 
application area in mind. This is more likely to achieve the 
goal of software development as a process of assembling 
components than the second approach, however we believe 
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there will still be a need for software outside of the domains 
of the available component libraries. These applications will 
require writing custom software (as with traditional software 
development methods), however such applications can use 
legacy software modules in the new design. Even if such 
legacy components cannot be used directly, re-engineering 
them for the new application may be easier than writing new 
modules from scratch. Thus our “component library” is 
created from legacy software. 

For software salvaging to succeed, the cost to reuse 
legacy software must be less than that required to build from 
scratch. One possible problem is that a development 
environment supporting salvaging could increase the cost 
for custom development. Our solution is to view software 
salvaging as a low-cost option to an existing development 
process. Increased costs associated with a salvaging 
environment can be divided into two areas: The cost of 
making modules available for reuse, and that of finding and 
using existing code in a new design. We will first discuss 
the problem of making existing code available for reuse. 

Since most programmers are charged with making sure 
that the modules they create are suitable for their initial use, 
they have little incentive to expend effort in making their 
modules available for reuse. This is not to say that they will 
not write reusable code. Many other considerations, such as 
maintainability and portability of the initial application, will 
likely lead to modules that are appropriate for reuse. How- 
ever, we cannot expect the author of a module to expend 
effort in “advertising” it. Therefore, we impose the con- 
straint that adding software to a reuse library be automatic. 

Simply making source code widely available satisfies 
this constraint, however requiring a programmer to manually 
hunt for reuse candidates is unreasonable (particularly if no 
such candidates exist for a given design). This gives us a 
second constraint: Searching for reuse candidates must be a 
no (or low) cost addition to the custom development process. 

This paper focuses on development of software module 
indexes using information that meet the following criteria: 

0 Indexing information can be automatically extracted 
from software. 

0 Keys for searching the index can be automatically deter- 
mined from the design process. This can be used in con- 
junction with other design-level retrieval methods[6]. 

This enables software developers to treat reuse of legacy 
modules as a “value-added’ feature applied to their existing 
software development process, rather than an expensive 
effort of dubious value. 
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Our idea is to automatically extract certain discrimina- 
tors from software modules. These discriminators are infor- 
mation (such as type signatures) that are somehow depen- 
dent on the semantics of the module. We can then query the 
modules available for reuse by providing a set of discrimina- 
tors, and searching for modules with a similar set. These 
discriminators must be available from both the legacy 
modules and from a new design. Automatic extraction of 
the discriminators from legacy modules allows us to meet 
the first constraint; that adding modules to the software 
library be extremely low effort. Our approach to meeting 
the second goal (allowing users to easily develop a query) is 
to use as discriminators information we can automatically 
extract from from a structured design developed using a 
CASE tool. This allows module reuse at the design level; 
simply complete a structured design, then request modules 
that “best fit” that design. Extracting discriminators from 
existing modules can be done using reverse engineering 
tools. The remaining question is if the discriminators ade- 
quately characterize the semantics of modules. This paper 
describes a test of the ability of a given set of discriminators 
to perform this characterization of semantics. 

We originally developed this idea in the area of hetero- 
geneous databases. We extract discriminators describing an 
attribute in a database, and look for similar patterns i n  
discriminators in other databases[7]. We have been success- 
ful in finding attributes that contain the same information 
based on similarities in these discriminators. 

This paper presents a first step in applying this technique 
to software reuse. We evaiuate the hypothesis that discrimi- 
nators that can be obtained from a CASE-tool based design 
can be used to identify modules appropriate to that design. 
Specifically, we test if these discriminators can identify 
independently developed legacy modules that serve a com- 
mon purpose. If so, we should be able to map the appropri- 
ate modules of one program into the design of the other. 

The first step in this process is to extract factors describ- 
ing attributes from the legacy modules (a vector of discrimi- 
nators for each module). These vectors are used to train a 
back-propagation neural network[ 121. The trained network 
can then be used to determine similarity with vectors 
extracted from a design. Figure 1 outlines this process. 

One question is why do we use Neural Networks in this 
process? The discriminators provide a good deal of infor- 
mation to characterize modules. However, it is difficult to 
determine which discriminators will be helpful, and which 
m e  little more than “noise”. Programmed computing is best 
used in those situations where the processing can be defined 
in terms of a known procedure or set of rules. We are deal- 
ing with a situation where the information used (the discrim- 
inators) are related to the semantics of the modules, but how 
they characterize those modules is not clearly known. 

Neural networks have emerged as a powerful pattern 
recognition technique. They can perform tasks such as 
classification and generalization without being given rules 
since they are trained, not programmed. Neural networks 
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Figure 1: Automatic software module “query”. 

can also respond correctly to data not used in training. This 
is important, as we do not expect that reusable components 
to exactly match the design. We only hope to find candidate 
components that are close to our specifications, and we want 
to rank them based on their “closeness”. We train the neural 
network to recognize how the discriminators capture the 
semantics (precisely, how they differentiate modules) for 
one collection of modules. This has two advantages: 

We avoid having to manually determine “rules” for how 
the discriminators capture semantics. 

0 We can develop a different set of “rules” for each library 
of modules. 

We will first discuss related work in software indexing 
and reuse. In Section 3 we give specifics on the discrimina- 
tors we use, and outline a test of their ability to characterize 
module semantics. Section 4 gives results of this test. 

2. Related Work 
The survey paper by Krueger[S] discussed different 

approaches for software reuse. Eight categories, such as 
high-level languages, source code components, application 
generators, etc., are discussed. In[3] the point was made that 
reuse will most likely succeed in narrow, well-understood 
application with slowly changing technologies, such as MIS 
or business systems (e.g., The Information Processing Sys- 
tem Organization at Raytheon’s missile Systems Division 
examined over 5000 COBOL source programs and identified 
only three major module classes: edit, update, and report.) 

The effectiveness of a reuse technique can be measured 
in terms of cognitive distance - the effort required to use the 
technique. In[5], it was noted that cognitive distance can be 
reduced in two ways; 

e Higher level abstractions in a reuse technique reduce the 
effort to go from the initial concept of a software com- 
ponent to representations in the reuse technique. 
Automation reduces the effort to map abstractions in a 
reuse technique to an executable implementation. 
We are concerned with reuse of existing code, so we 

concentrate on improving automation at current levels of 
abstraction. There has been research in automatically 
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indexing and finding reuse candidates for code developed 
using existing programming methods. These can be divided 
into type-signature methods[ 13, 151 and keyword 
methods[4,8,9]. Type signatures are good for finding exact 
matches, but we also want to find cases where the reuse can- 
didates are “close”, and with some modification would serve 
the desired purpose. Keyword methods are effective for this 
purpose; however, they require consistency in word use so 
that keywords accurately reflect module semantics. This 
requires human effort and consistency, either on the part of 
the programmer (in choosing proper words), or an external 
librarian (who can build a dictionary of synonyms or more 
complex relationships between words). An example of an 
external librarian based method is faceted classification[ 1 11. 
This was shown to be effective in small, domain-specific 
environments, but did not prove descriptive enough for a 
heterogeneous environment. 

A third approach is given in[lO]. Here the inputloutput 
behavior of the routines is used to determine semantic 
equivalence. This is like type signatures, in that it is good 
for finding exact matches. The disadvantage is the necessity 
of specifying the complete I/O behavior of the routine in 
advance; an extra burden on the designer. 

One way to state the problem is that we need to find a set 
of factors that adequately characterize the semantics of a 
module. Our only constraints on these factors are that they: 

1. Can be automatically extracted from the program. 

2. Can be determined without actually writing the code 
(so as to make querying feasible). 

Keywords are one such factor, type signatures are 
another. In this paper we discuss an approach using non- 
keyword information, as with type signatures, that gives a 
“closeness” measure (ranking), as with keyword methods. 
In addition, we do not predetermine exactly how the infor- 
mation we use describes the semantics; this is determined 
based on the programs in the “reuse database”. We feel this 
will integrate well with keyword methods. 

An example of a system that uses such collections of 
information is MCC’s Domain Model/TAO, part of the 
DESIRE design recovery system[ 1,2]. It assumes that 
Domain Model (problem, program, and application) 
knowledge can be used as patterns of informal and semi- 
formal information, or “Conceptual Abstractions”. We fol- 
low this idea, in that we use a collection of information and 
a fuzzy matching process to recognize programs. However, 
we concentrate on automatically extractable knowledge and 
formalize the development of the fuzzy matching process. 
This gives an automated procedure, requiring very little 
human effort. 

we use the discriminators to find modules from different 
programs that serve the same purpose? If so, we could 
instead use the design of one of the programs to generate 
discriminators and find appropriate modules from the other 
program. This allows us to test this method without any bias 
such as attempting to design to make use of known modules. 

We now describe the specific details of this test. We will 
first discuss the discriminators used, and how they are 
obtained. We will then describe the programs used to gen- 
erate the test “reuse library”. 

3.1. Discriminator choice 
The first step is to extract discriminators (features we 

hope will capture the semantics of routines) from the pro- 
grams. Keyword or natural language based methods do not 
map well into our process; besides, these methods have been 
studied elsewhere. Therefore we concentrate on non- 
keyword information that we could expect to be available at 
the design stage of a program. In particular, we looked at 
information that could be automatically extracted from a 
structured design represented in a CASE tool. 

This meets our constraint that generating discriminators 
for a new module (to create a “query”) be easier than writing 
the code (assuming the design is completed before the code). 
It also solves the problem of extracting discriminators from 
existing modules to place them in the library. Tools already 
exist to retrieve design information from existing code - this 
is reverse engineering. We use Cadre’s Ensemble to reverse 
engineer programs into a structured design, and have written 
a program to extract discriminators from a structured design 
in Cadre’s Teamwork. Thus we can automatically reverse 
engineer programs and extract discriminators from the 
design, giving the “indexing criteria” for existing code with 
no human effort. In addition, given that this information is 
present in the design while forward engineering we can just 
request code that fits our design - the “query” is automati- 
cally generated from the design itself. 

The choice of discriminators is somewhat ad-hoc. We 
simply took all information we could extract from a 
reverse-engineered module that could be converted into 
numeric form that we felt might reasonably distinguish 
semantically related modules (such as type signatures). 
Such information has been used as part of a program under- 
standing system[2]; thus we felt that it had potential to deter- 
mine semantically related modules as well. The process 
given in Figure 1 automatically determines what information 
is and is not useful in discriminating between modules, SO 

we simply provide all available information. The discrimi- 
nators are shown in Table 1 .’ 

3. Test methodology 
We must first test the hypothesis that we can create a set 

of discriminators that adequately characterize the semantics 
of the module. To do this, we asked a similar question: Can 

’ Note that some of this information would not be present in forward 
engineering, making query generation more difficult. To verify the 
potentid of this method, we took all available information. In the last 
section we discuss how to eliminate some of these discriminators. 
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Table 1: Discriminators used in this test. 

Discriminators 1-6: Number of parameters fitting into each 
of the following (exclusive) categories: 

0 Primitive 
0 Integer 
0 Real 
0 Character 
0 String 
0 Other (including user-defined) 

Discriminators 7- 10: Number of parameters fitting into each 
of the following (non-exclusive) categories: 

0 data in 
0 data out 
o control in 
0 control out 

Discriminators 11-20: Number of local variables used by 
the routine fitting into each of the above 10 categories. 

Discriminators 21-30: Number of global variables used by 
the routine fitting into each of the above 10 categories. 
Discriminators 3 1-34: The following information describing 
relationship to other routines (either in the design, or in the 
program from which the routine came): 
o Total calls to the module 
0 Total number of routines making calls to the module 
0 Fan-out (calls to other routines by the module in 

o Calls to library routines by the module 
question) 

Discriminators 35-36: The following information describing 
the complexity of the routine: 

0 data complexity 
0 cyclomatic complexity 

The pattern matching process requires a vector of values 
in the range [0..1]. Discriminators in Table 1 are all non- 
negative values; to map them to the desired range we com- 
pute a normalized discriminator for each value as follows: 

1 
normalized discriminator = 1 - Cdiscriminaror 

C is chosen to provide a reasonable range of normalized 
values near the estimated median for value (for example, 
C ~ l . 1 2  for normalizing the first 30 discriminators in Table 
1. Thus routines with 0 vs. 6 integer parameters (mapping to 
0 and %) are considered roughly as “close” as those with 6 
vs. a huge number of integer parameters (% and l).) This 
discounts extremely high values for the input value (for 
example character output routines may be called thousands 
of times in a large program and hundreds in a small pro- 
grain; they are still more likely to be similar than a routine 
called once and a routine called ten times). 

3.2. Sample programs for reuse 
In order to test this idea, we need “test data”. We want a 

collection of programs that are likely to have semantically 
similar modules (routines that serve a similar purpose and 
thus would be good candidates for reuse), without having 
such similar routines be identical (if semantically similar 
routines are identical, the problem is too easy - not a good 
simulation of actual reuse scenarios). The X11 contributed 
clients serve this purpose well. Since many of these pro- 
grams perform similar functions, there are many similar rou- 
tines. However, the programs were written independently 
(and in fact contain complete programs with similar 
“specifications” that were developed completely indepen- 
dently). We expect that results for modules from programs 
designed in  a common environment, as would be typical of 
software developed in a single corporation, would be better 
than this set; as similarities in design methods should lead to 
similar designs for modules with similar purposes. 

We reverse-engineered each of 57 programs’ into a 
structured design. This gave us 5056 routines to use as a 
sample reuse library. We then extracted the discriminators 
in Table 1 from each design for all the modules in that 
design. 

We first checked to see if a sufficient number of the 
discriminator vectors were unique. Of the 5056 modules, 
3490 had unique vectors. Of the non-unique ones, 254 were 
derived from identical routines found in exterm and kterm. 
Quick inspection of the remaining 401 duplicates showed 
many were quite similar in purpose (and thus would be good 
reuse candidates if we were independently developing one 
of the modules). 

The next step is to determine if we can use this informa- 
tion to determine if routines are similar (in the sense that one 
could replace the other, or could be modified to replace the 
other with less effort than writing the routine from scratch.) 
To do this, we compare the discriminator vectors for one 
program with the vectors for all other programs. We look at 
two measures of success/failure: 

Reusable modules retrieved 
Reusable routines in the library 

Recall: 

How complete are the results. 

Reusable modules retrieved 
Total modules retrieved 

Precision: 

How correct are the results. 

We will now discuss the specific tests we performed. 

* The programs were chosen from the X 11 contributed clients installed at in 
the Northwestern department of EECS, with the exception of some 
extremely large programs (as they exceeded the space we had available to 
reverse engineer them), and xakcl (a set of routines to map the AKCL lisp 
system to X - this consists o f  a large number of trivial, nearly identical 
routines). 
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4. Test results Table 2: Modules in mail notification programs 
To compute recall, it is necessary to know the expected 

answer, that is all of the similar routines (good reuse candi- 
dates) in the 5000 routines in the library. Due to the time 
required to compare over 5000 routines manually, we have 
not performed a complete test on all routines in the testbed. 
Instead, we performed a complete test on a subset of the rou- 
tines, and determined precision figures for a larger set. 

Section 4.1 describes the routines used in the complete 
test. In Section 4.2 we use a simple Euclidean distance 
metric to compare discriminators. Section 4.3 gives results 
using neural networks to find matches. 

4.1. Complete test set 
We studied three mail notification programs (xlbiff, 

xmailwatcher, and xpbiff) in detail. These are relatively 
compact (a total of 33 routines), written independently (so as 
not to skew the results because of actual copied routines), 
but likely to have similar imodules due to having a similar 
purpose. We inspected these by hand; a quick overview is 
shown in Table 2. Note that we do not consider routines that 
can be replaced by a combilnation of other routines. 

If we look at the number of “reusable modules”, we find 
20 (8 from xmailwatcher and xpbiff that could be used in 
writing xlbiff, 6 that could be used in xmailwatcher, and 6 
for xpbiff). The size of the sample space (the total number of 
module pairs to be compared) is 688 (16 routines in xlbiff 
choose from the 9 in xmailwatcher and the 8 in xpbiff, 
9.( 16+8) for xmailwatcher, and 8.(16+9) for xpbiff). 

4.2. Simple distance measurements 
Our first test was to simply find the Euclidean distance 

between the vectors; the results (cut off at a distance of 0.4 
out of a theoretical maximum of 6.) are shown in Table 3. 
Note that we found 4 of the possible 20 “matches” (pairs of 
similar routines), in 18 of the 688 possible pairs of routines. 
This gives a recall of 20% and a precision of 22%. This 
may appear low; however we must consider that this is 
achieved with very little human effort. Note that a simple 
routine name check would not find these pairs; this supports 
our conjecture that this would be a useful addition to key- 
word based methods. 

An interesting comparison is how likely it would be to 
achieve this using random selection. The probability of hav- 
ing at least 4 good matches in 18 randomly selected pairs 
would be 1 . 2 ~ 1 0 - ~ .  Another way of looking at this is the 
precision we would expect if we randomly selected pairs of 
routines. To get 4 good routines, we would expect to look at 
131, giving a precision of 3% for random selection, as 
opposed to 20% using Euclidean distance of the discrimina- 
tor vectors. Clearly, the discriminators are somehow 
descriptive of the semantics of the routines. 

Another consideration is that a human looking through 
the five matches returned for x1biff:handler and 

kmuilwatcher kpbiff I description 
heckEvent ,kventHandler I bundle MapNotify, 

Note: Similar routines (those that could feasibly be used to 
replace each other with less work than writing from scrutch) 
are shown on the same line and boldfaced. 

xmai1watcher:timedRescan would only need to look at the 
lowest distance match for each - after finding a good match, 
the remaining routines need not be inspected. This would 
improve to finding 4 in 15 trials, giving a precision of 27%. 

We then tried the other “mail” programs in the test set 
(xmail and xmailtool). These are larger; a total of 236 rou- 
tines. This gave us 175 matches (cutting off at 0.4). Of 
these, 7 are good candidates for reuse. Decreasing the cut- 
off to 0.3 retains 5 of the good matches, and cuts the total to 
31. In practice, we could use the similarity rankings to 
determine the order to look at modules, this would improve 
the results. Table 4 shows the results if we stop after finding 
a good match - we need to look at 53 routines to find the 7 
matches, or 15 to find 5 (using a cutoff of 0.3). Note that 
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Table 3: Euclidean distance between routines in mail 
notification programs. 

Source module 

xlbiff:Exit 

Modules with distance < 0.4 
0.31 8: xmai1watcher:eventHandler 
0.363: xmai1watcher:timedRescan 

xI biff :Popup 
xlbiff :Usage 
x1hiff:doScan 

1 0.: xmai1watcher:timedRescan I 
~ 

x1biff:Popdown 

xlbiff :Popup 

1 0.359: xmailwatcher:beer, 1 xlbifkhandler 

- 
0.31 9: xmailtoo1:delete-msg 
4 others, no matches 
0.293: xmailtool:update_mbox-icon 
0.295: xmailtoo1:undelete-msg 
0.31 5: xmailtool:delete_msg 
5 others, no matches 

I 

xlbiff:lbiffUnrealize 1 0.318: xmai1watcher:beep 
I 0.298: x1biff:Usaae 

xmai1watcher:beep 
0.31 8: x1biff:lbifffinrealize 
0.359: x1biff:handler 
0.385: xlbiff:Popup 

xmai1watcher:eventHandler 1 0.31 8: xlbiff:Exit 

xlbiff Usage 

Note: Routines that are actually semantically similar (reuse 
candidates) boldfaced. 

our precision is still in the range of the smaller test (13-33% 
depending on the choice of cutoff). We are not able to state 
the recall with the same degree of confidence, however 
based on the known available matches, plus an additional 5 
found in an inspection of xmail and xmailtool, we can esti- 
mate the recall as in the neighborhood of 20%. Note that 
there were seven routines for which no good match was 
found (e.g., x1biff:Popdown); a total of 36 potential candi- 
dates were returned for these. 

However, the real question is does this scale well. We 
expanded to look at all 5056 routines in the test set, with a 
cutoff of 0.2. In addition to the 3 good matches already 
shown with distance less than 0.2, we found multiple 
matches for xlbiff:Usage (we also found a second match for 
x1biff:Quit). Using the metric above (looking through all 
returned routines until we have either exhausted the set, or 
found a good match), we must look through 21 routines in 
order to find our good ones, a 29% precision. Of these, 12 
are due to xmai1watcher:beep; if we had also used a 
name-based screen we would have found a match for this 
quickly (and probably for x1biff:Exit and xlbiff:Usage as 
well). However, we still have matches that would not be 
obvious from the routine name. 

0.230: xmailtoo1:free-aliases 
0.247: xmailtoo1:park-mail 
0.268: xmailtoo1:Svntax 

4.3. Using neural networks for matching 
Using Euclidean distance as a metric fails to account for 

differences in the relative importance of different discrimi- 
nators. To determine this importance manually would be 
difficult, however we can use the technique from[7] to come 
up with a reasonable solution automatically. We train a 
neural network to recognize the individual routines based on 
their discriminators. The training phase will determine how 
the given discriminators best distinguish between the rou- 
tines in the training set. We can then use this network to 

x1biff:checksize 
xlbiffhandler 

xlbiff :Ibiff Unrealize 

Table 4: Euclidean distance between mail notification 
routines and other mail program routines. 

0.358: xmail:file-handler 
0.226: xmailtool:mail_timeout 
0.290: xmailtool:pr-msg-list 
0.301 : xmailtoo1:free-headers 
0.328: xmailtoo1:update-mbox-icon 
6 others. no mutches 

Source module I First match or distance < 0.4 
1 0.292: xmailtoo1:lnParams 

- 1 0.398: xmailtool:pr-msg-list 
I 0.1 89: xmailtool:free_headers 

xlbitt:toggle-key-led 

7 

xlbiffi CheckEvent 

xmailwatcher: timedRescan 

xpbiff:BreakPopup 

.- 
wlhiff:F.xit I 0.179: xmai1:Onit 

.- 
0.226: xmai1tool:mail-timeout 
0.346: xmai1:lconify 
8 others, no mutches 

0.380: xmaikinfo-handler 
0.390: xmai1:ShowHelo x1biff:Shrink 

1 0.389: xmaikfiaurewidth .. . .  . .  

mai1watcher:heeD I 0.231 : xmailtoo1:free aliases - ~ . ~ . ~ ~ ~ ~  ~ 

0.276: xmailtookbeep 
0.244: xmail:Quit 
0.266: xmail:info_handler 
0.354: xmailtoo1:XMTWMProtocols 
0.368: xmailtoo1:maD handler 

xmai1watcher:eventHandler 

Note: Routines that are actually semantically similar (reuse 
candidates) boldfaced. 

find how a different set of discriminators (a “query”) relates 
with those in the training set. Using a library of components 
as our training set should give us a good way to search for 
the close matches among those specijic components. 

Each of the three programs is compared with a net 
trained using the routines of the other two programs. (If we 
were to train a net with all 36 routines, it would invariably 
note that each routine matches only itself.) A higher number 
represents a closer match (we have eliminated all matches 
below 0.5). The results are shown in Table 5. 

This gives us 6 good matches in 27 returned pairs This is 
a recall of 30% and a precision of 22%. On the one hand, 
this is not substantially better than simple Euclidean dis- 
tance. However, achieving this with random selection 
would only happen with probability 5 . 5 ~ 1 0 - ~ .  In addition, 
the “fixed threshold” that we have used isn’t appropriate for 
the networks - the value that will be returned for a good 
match varies for different networks. If we instead choose an 
individual threshold for each network (0.8 for the first two, 
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Table 5: Similarity of routines in mail notification 
programs. 

Source module 

xlbiff:Exit 

xI biff:S hrink 

xlbiff :Usage 

xlbiff checksize 

xlhiff doScan 
x1biff:getDimensions 
xl biff: handler 

~~ ~~ 

Modules with similarity > 0.5 
0.875: xmai1watcher:timedRescan 
0.764: xmai1watcher:eventHandler 
0.750: xpbiff:popup-again 
0.684: xmai1watcher:eventHandler 
0.543: xmai1watcher:timedRescan 
0.697: xmai1watcher:beep 
0.846: xpbiffPolling 
0.779: xpbiff:GetMailHeader 
0.957: xpbiffGetMailHeader 
0.873: xmai1watcher:mungeSender 
0.916: xmai1watcher:timedRescan 

xlbiff:main 1 0.912: xmailwatchermain 
I 0.744: xlbiff:Usaae 

xmai1watcher:beep 

xmailwatchermain 
xmai1watcher:timedRescan 

xpbiff :AnimateBiff 

xpbiff GetMailHeader 

xphiff Polling 

0.658: xlbiff:lbiff6nrealize 
0.547: x1biff:handler 
0.509: xlbiffmain 
0.947: xlbiffhandler 
0.819: xmai1watcher:main 
0.571 : x1biff:toggle-key-led 
0.966: xlbiffdoScan 
0.929: x1biff:Popdown 
0.598: xlbiffchecksize 

xpbiff:PopupMailHeader 

xpbiff:popup-again 

xpbiff:redraw_calIback 

Note: Routines that are acfually semantically similar (reuse 
candidates) boldfaced. 

and 0.5 for the last) we find 6 in 17, an increase to 35% pre- 
cision. Another advantage to this method is that the good 
matches are clustered near the top of the range. If we sim- 
ply take all matches with a similarity measure 2 0.8, we find 
5 matches in 13 (probability 1 . 4 ~ 1 0 - ~ ) .  If we use a thres- 
hold of 0.9, we find 4 matches in 8 (a 50% precision, even 
though recall has dropped to 20% - achieving this through 
random selection would only happen with probability 
3 . 4 ~  lo-’). Euclidean distance does not share this property 
- to get 4 matches, we have to inspect at least 10 pairs (and 
this requires choosing a cutoff between 0.337 and 0.358 - an 
unlikely choice without a-priori knowledge of the results). 

Table 6: Similarity between each mail notification 
routine and ail other mail program’s routines. 

0.984: xmai1watcher:main 
0.507: xmai1watcher:setTitle 
0.803: xlbiff :Shrink 
0.955: xmai1watcher:main 
0.521 : xmai1watcher:setTitle 

Source module 
x1biff:Exit ll.000: xmaikouit 

(Modules with similarity > 0.8 

x1biff:getDimensions 
xlbiffihandler 
x1biff:initStaticData 
xmai1watcher:eventHandIer 

- 
0.943: xmailtoo1:save-proc 
0.989: xmai1watcher:timedRescan 
0.997: xmailtoo1:Syntax 
0.966: xmaikinfo handler - 

1xmailwatcher:main 10.972: xmailtoo1:confirm send - 
Ixl l lal l \ , ’ i i tr l irr: , i ,ncd~~~~n ‘0. 983 - x1bift:handler 
Ixoblff;edrawcallback-- 0 954. xmailtool center wia on Dointer! 

Note: Routines that are actually semantically similar (reuse 
candidates) boldfaced. 

We have also looked for matches between these 33 rou- 
tines and the larger set including xmail and xmailtool. This 
was done by training a network with all of the routines 
except those from one program, then finding similarities to 
the routines in that program. This results in three somewhat 
separate tests, summarized in Table 6. The precision here is 
38%. Again, we are not able to say the actual recall, but 
based on likely matches we have been able to find (25), we 
estimate the recall to be around 12%. 

One difficulty with the small test set is that it is “too 
easy” for the neural network to come up with a function dis- 
tinguishing the 33 routines based on the 36 available 
discriminators. This is why the precision is comparable for 
the larger test. As an example, if we use the network based 
on the 33 routines to compare with the full set 5056 XI1  
client routines, we have a large number of matches (1 160) 
with a threshold of 0.8 (raising the threshold to 0.9 only 
drops this to 822). However, if we train a network to recog- 
nize all 269 mail routines, then use this to search for similar 
routines in the 5056 routine set (with the same threshold), 
we find (with a threshold of 0.8), we find 89 for xpbiff, 196 
for xlbiff, and 65 for xmailwatcher. This shows that this idea 
scales well; searches over larger libraries are automatically 
more selective. 

5. Conclusions and Further Work 
We have shown that we can often match similar routines 

without using either human effort to classify the routines, 
semantic information contained in names, or any sophisti- 
cated semantic analysis of the code. Due to the use of infor- 
mation that is either likely to be present in the design, or can 
be estimated (such as complexity), it is likely that the 
discriminators we have used could be obtained with substan- 
tially less effort than writing the code. This matches our cri- 
teria for a good method for classifying a “legacy component 
library”: 

0 No effort is required to insert a routine into the reuse 
library. 

e Finding reuse candidates is a low-effort part of the exist- 
ing software development process. 

The results should be orthogonal to name based methods. 
Straightforward module name lookup (combined with a 
keywordlsynonym dictionary) meets the above criteria, and 
more advanced methods (requiring greater human effort) 
have been explored. Combining these methods should be 
easy and effective. This would lead to two things: “serendi- 
pitous” finds (where nameslkeywords would not be helpful), 
and additional help in ranking potential modules. 

One disadvantage of this technique is that it only works 
if modules and designs with similar semantics have similar 
discriminators. This requires consistency in design. How- 
ever, the same problem appears in keyword based tech- 
niques or a human-classified library. These work because 
the choice of words or human description of a routine 
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happens to match the actual semantics. We are simply look- 
ing at design decisions as opposed to word choices as a 
“human description” that reflects the semantics of a module. 
The interesting result is that i t  does work (provide added 
value), and does so without any extra human cost. In  addi- 
tion, how it works can vary depending on the modules in the 
“reuse base”; the neural network is trained to recognize how 
the discriminators characterize the given set of modules. 

Further work 
We are pursuing experiments to learn more about how 

and w h y  this works. In particular, we want to determine 
what discriminators are most useful: If, for example, 
cyclomatic complexity is not helpful in finding modules, we 
don’t want to ask the user of a legacy software library to 
provide a complexity estimate. We are looking at ways of 
determining this; one method is simply to try dropping 
discriminators, re-run the experiments, and compare the 
results with the full set. 

Once we have determined an appropriate set of discrimi- 
nators, we can begin to define a “query language” for 
finding modules. In the best case, this will be integrated into 
the design process, so that the “query” can be automatically 
determined from design information. We can then combine 
this with other methods for finding reusable components. 

A second difficulty is training large networks. We are 
able to train networks for hundreds of modules (the time 
being on the order of hours or days on a workstation), how- 
ever training networks for thousands of modules in a reason- 
able time will require substantially improved training algo- 
rithms or special-purpose hardware. One solution is to 
gather code into groups of a few hundred modules, and train 
separate networks for each. This will give poorer precision 
than a single net, but can improve recall. 

The most important question, however, is can this be 
useful in practice? One of the main strong points of this 
method is the low human effort required - a practical test 
can be made by incorporating this within a comprehensive 
designh-euse environment. This requires choosing discrimi- 
nators that can be derived from both new designs and legacy 
code. Users can then try this method with no change in the 
designlcoding process, and decide for themselves if the tech- 
nique has value. 
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