
Classifying Software Components Using Design Characteristics*

Chris Cliftont Wen-Syan Li*
Northwestern University/EECS

Evanston, Illinois, USA

Abstract
Classlfying sofhvare modules in a component library is a

major problem in software reuse. Indexing criteria must
adequately re$ect the semantics of the components. This
must be done without undue effort in either classifying the
software, or developing ‘“queries ’’ to find candidates for
reuse. We present an architecture for automatically classi-
fying and querying software based on design information.
We present a method for d(etermining if indexing criteria are
effective, and show results using a set of criteria automati-
cally extracted from an existing collection of programs.

1. Introduction
Software reuse was first introduced at the 1968 NATO

Software Engineering Conference. However, software reuse
has failed to become a standard practice in software
engineering. Most software is custom-built, rather than
being assembled from existing components, even though
standard components’ mainufacture and reuse is common
practice in other engineering disciplines (e.g., computer
hardware uses few custom chips). In order to reuse avail-
able software components, these building blocks must be
cataloged for easy reference, standardized for easy integra-
tion, and validated to reduce development burdens. Software
component reuse would allow large software projects to be
accomplished with lower development costs.

There are two very different software reuse scenarios:

a Software development as a process of combining
modules from a component library built specifically for
reuse.

a Software salvaging[141, the reuse of modules written for
some specific initial use.
Work based on the first approach has concentrated on

building domain-specific software development environ-
ments; the component libraries are built with a particular
application area in mind. This is more likely to achieve the
goal of software development as a process of assembling
components than the second approach, however we believe

* This material is based upon work supported by the National Science
Foundation under Grant No. CCR-9210704.

‘ Author’s current address is Tlhe MITRE Corporation, Bedford, MA
01730- 1420, clifton~eecs.nwu.edu.

Ave, Newark, NJ 07102, wsli@anclromeda.rutgers.edu.
* Author’s current address is CIMIC, Rutgers University, 160 University

there will still be a need for software outside of the domains
of the available component libraries. These applications will
require writing custom software (as with traditional software
development methods), however such applications can use
legacy software modules in the new design. Even if such
legacy components cannot be used directly, re-engineering
them for the new application may be easier than writing new
modules from scratch. Thus our “component library” is
created from legacy software.

For software salvaging to succeed, the cost to reuse
legacy software must be less than that required to build from
scratch. One possible problem is that a development
environment supporting salvaging could increase the cost
for custom development. Our solution is to view software
salvaging as a low-cost option to an existing development
process. Increased costs associated with a salvaging
environment can be divided into two areas: The cost of
making modules available for reuse, and that of finding and
using existing code in a new design. We will first discuss
the problem of making existing code available for reuse.

Since most programmers are charged with making sure
that the modules they create are suitable for their initial use,
they have little incentive to expend effort in making their
modules available for reuse. This is not to say that they will
not write reusable code. Many other considerations, such as
maintainability and portability of the initial application, will
likely lead to modules that are appropriate for reuse. How-
ever, we cannot expect the author of a module to expend
effort in “advertising” it. Therefore, we impose the con-
straint that adding software to a reuse library be automatic.

Simply making source code widely available satisfies
this constraint, however requiring a programmer to manually
hunt for reuse candidates is unreasonable (particularly if no
such candidates exist for a given design). This gives us a
second constraint: Searching for reuse candidates must be a
no (or low) cost addition to the custom development process.

This paper focuses on development of software module
indexes using information that meet the following criteria:

0 Indexing information can be automatically extracted
from software.

0 Keys for searching the index can be automatically deter-
mined from the design process. This can be used in con-
junction with other design-level retrieval methods[6].

This enables software developers to treat reuse of legacy
modules as a “value-added’ feature applied to their existing
software development process, rather than an expensive
effort of dubious value.

139
1068-3062195 $4.00 0 1995 IEEE

mailto:wsli@anclromeda.rutgers.edu

Our idea is to automatically extract certain discrimina-
tors from software modules. These discriminators are infor-
mation (such as type signatures) that are somehow depen-
dent on the semantics of the module. We can then query the
modules available for reuse by providing a set of discrimina-
tors, and searching for modules with a similar set. These
discriminators must be available from both the legacy
modules and from a new design. Automatic extraction of
the discriminators from legacy modules allows us to meet
the first constraint; that adding modules to the software
library be extremely low effort. Our approach to meeting
the second goal (allowing users to easily develop a query) is
to use as discriminators information we can automatically
extract from from a structured design developed using a
CASE tool. This allows module reuse at the design level;
simply complete a structured design, then request modules
that “best fit” that design. Extracting discriminators from
existing modules can be done using reverse engineering
tools. The remaining question is if the discriminators ade-
quately characterize the semantics of modules. This paper
describes a test of the ability of a given set of discriminators
to perform this characterization of semantics.

We originally developed this idea in the area of hetero-
geneous databases. We extract discriminators describing an
attribute in a database, and look for similar patterns i n
discriminators in other databases[7]. We have been success-
ful in finding attributes that contain the same information
based on similarities in these discriminators.

This paper presents a first step in applying this technique
to software reuse. We evaiuate the hypothesis that discrimi-
nators that can be obtained from a CASE-tool based design
can be used to identify modules appropriate to that design.
Specifically, we test if these discriminators can identify
independently developed legacy modules that serve a com-
mon purpose. If so, we should be able to map the appropri-
ate modules of one program into the design of the other.

The first step in this process is to extract factors describ-
ing attributes from the legacy modules (a vector of discrimi-
nators for each module). These vectors are used to train a
back-propagation neural network[121. The trained network
can then be used to determine similarity with vectors
extracted from a design. Figure 1 outlines this process.

One question is why do we use Neural Networks in this
process? The discriminators provide a good deal of infor-
mation to characterize modules. However, it is difficult to
determine which discriminators will be helpful, and which
m e little more than “noise”. Programmed computing is best
used in those situations where the processing can be defined
in terms of a known procedure or set of rules. We are deal-
ing with a situation where the information used (the discrim-
inators) are related to the semantics of the modules, but how
they characterize those modules is not clearly known.

Neural networks have emerged as a powerful pattern
recognition technique. They can perform tasks such as
classification and generalization without being given rules
since they are trained, not programmed. Neural networks

module

Module training
process vectors)

trained
network

module
Similarity

determination meaSuleS

vectors)

Figure 1: Automatic software module “query”.

can also respond correctly to data not used in training. This
is important, as we do not expect that reusable components
to exactly match the design. We only hope to find candidate
components that are close to our specifications, and we want
to rank them based on their “closeness”. We train the neural
network to recognize how the discriminators capture the
semantics (precisely, how they differentiate modules) for
one collection of modules. This has two advantages:

We avoid having to manually determine “rules” for how
the discriminators capture semantics.

0 We can develop a different set of “rules” for each library
of modules.

We will first discuss related work in software indexing
and reuse. In Section 3 we give specifics on the discrimina-
tors we use, and outline a test of their ability to characterize
module semantics. Section 4 gives results of this test.

2. Related Work
The survey paper by Krueger[S] discussed different

approaches for software reuse. Eight categories, such as
high-level languages, source code components, application
generators, etc., are discussed. In[3] the point was made that
reuse will most likely succeed in narrow, well-understood
application with slowly changing technologies, such as MIS
or business systems (e.g., The Information Processing Sys-
tem Organization at Raytheon’s missile Systems Division
examined over 5000 COBOL source programs and identified
only three major module classes: edit, update, and report.)

The effectiveness of a reuse technique can be measured
in terms of cognitive distance - the effort required to use the
technique. In[5], it was noted that cognitive distance can be
reduced in two ways;

e Higher level abstractions in a reuse technique reduce the
effort to go from the initial concept of a software com-
ponent to representations in the reuse technique.
Automation reduces the effort to map abstractions in a
reuse technique to an executable implementation.
We are concerned with reuse of existing code, so we

concentrate on improving automation at current levels of
abstraction. There has been research in automatically

140

indexing and finding reuse candidates for code developed
using existing programming methods. These can be divided
into type-signature methods[13, 151 and keyword
methods[4,8,9]. Type signatures are good for finding exact
matches, but we also want to find cases where the reuse can-
didates are “close”, and with some modification would serve
the desired purpose. Keyword methods are effective for this
purpose; however, they require consistency in word use so
that keywords accurately reflect module semantics. This
requires human effort and consistency, either on the part of
the programmer (in choosing proper words), or an external
librarian (who can build a dictionary of synonyms or more
complex relationships between words). An example of an
external librarian based method is faceted classification[1 11.
This was shown to be effective in small, domain-specific
environments, but did not prove descriptive enough for a
heterogeneous environment.

A third approach is given in[lO]. Here the inputloutput
behavior of the routines is used to determine semantic
equivalence. This is like type signatures, in that it is good
for finding exact matches. The disadvantage is the necessity
of specifying the complete I/O behavior of the routine in
advance; an extra burden on the designer.

One way to state the problem is that we need to find a set
of factors that adequately characterize the semantics of a
module. Our only constraints on these factors are that they:

1. Can be automatically extracted from the program.

2. Can be determined without actually writing the code
(so as to make querying feasible).

Keywords are one such factor, type signatures are
another. In this paper we discuss an approach using non-
keyword information, as with type signatures, that gives a
“closeness” measure (ranking), as with keyword methods.
In addition, we do not predetermine exactly how the infor-
mation we use describes the semantics; this is determined
based on the programs in the “reuse database”. We feel this
will integrate well with keyword methods.

An example of a system that uses such collections of
information is MCC’s Domain Model/TAO, part of the
DESIRE design recovery system[1,2]. It assumes that
Domain Model (problem, program, and application)
knowledge can be used as patterns of informal and semi-
formal information, or “Conceptual Abstractions”. We fol-
low this idea, in that we use a collection of information and
a fuzzy matching process to recognize programs. However,
we concentrate on automatically extractable knowledge and
formalize the development of the fuzzy matching process.
This gives an automated procedure, requiring very little
human effort.

we use the discriminators to find modules from different
programs that serve the same purpose? If so, we could
instead use the design of one of the programs to generate
discriminators and find appropriate modules from the other
program. This allows us to test this method without any bias
such as attempting to design to make use of known modules.

We now describe the specific details of this test. We will
first discuss the discriminators used, and how they are
obtained. We will then describe the programs used to gen-
erate the test “reuse library”.

3.1. Discriminator choice
The first step is to extract discriminators (features we

hope will capture the semantics of routines) from the pro-
grams. Keyword or natural language based methods do not
map well into our process; besides, these methods have been
studied elsewhere. Therefore we concentrate on non-
keyword information that we could expect to be available at
the design stage of a program. In particular, we looked at
information that could be automatically extracted from a
structured design represented in a CASE tool.

This meets our constraint that generating discriminators
for a new module (to create a “query”) be easier than writing
the code (assuming the design is completed before the code).
It also solves the problem of extracting discriminators from
existing modules to place them in the library. Tools already
exist to retrieve design information from existing code - this
is reverse engineering. We use Cadre’s Ensemble to reverse
engineer programs into a structured design, and have written
a program to extract discriminators from a structured design
in Cadre’s Teamwork. Thus we can automatically reverse
engineer programs and extract discriminators from the
design, giving the “indexing criteria” for existing code with
no human effort. In addition, given that this information is
present in the design while forward engineering we can just
request code that fits our design - the “query” is automati-
cally generated from the design itself.

The choice of discriminators is somewhat ad-hoc. We
simply took all information we could extract from a
reverse-engineered module that could be converted into
numeric form that we felt might reasonably distinguish
semantically related modules (such as type signatures).
Such information has been used as part of a program under-
standing system[2]; thus we felt that it had potential to deter-
mine semantically related modules as well. The process
given in Figure 1 automatically determines what information
is and is not useful in discriminating between modules, SO

we simply provide all available information. The discrimi-
nators are shown in Table 1 .’

3. Test methodology
We must first test the hypothesis that we can create a set

of discriminators that adequately characterize the semantics
of the module. To do this, we asked a similar question: Can

’ Note that some of this information would not be present in forward
engineering, making query generation more difficult. To verify the
potentid of this method, we took all available information. In the last
section we discuss how to eliminate some of these discriminators.

141

Table 1: Discriminators used in this test.

Discriminators 1-6: Number of parameters fitting into each
of the following (exclusive) categories:

0 Primitive
0 Integer
0 Real
0 Character
0 String
0 Other (including user-defined)

Discriminators 7- 10: Number of parameters fitting into each
of the following (non-exclusive) categories:

0 data in
0 data out
o control in
0 control out

Discriminators 11-20: Number of local variables used by
the routine fitting into each of the above 10 categories.

Discriminators 21-30: Number of global variables used by
the routine fitting into each of the above 10 categories.
Discriminators 3 1-34: The following information describing
relationship to other routines (either in the design, or in the
program from which the routine came):
o Total calls to the module
0 Total number of routines making calls to the module
0 Fan-out (calls to other routines by the module in

o Calls to library routines by the module
question)

Discriminators 35-36: The following information describing
the complexity of the routine:

0 data complexity
0 cyclomatic complexity

The pattern matching process requires a vector of values
in the range [0..1]. Discriminators in Table 1 are all non-
negative values; to map them to the desired range we com-
pute a normalized discriminator for each value as follows:

1
normalized discriminator = 1 - Cdiscriminaror

C is chosen to provide a reasonable range of normalized
values near the estimated median for value (for example,
C ~ l . 1 2 for normalizing the first 30 discriminators in Table
1. Thus routines with 0 vs. 6 integer parameters (mapping to
0 and %) are considered roughly as “close” as those with 6
vs. a huge number of integer parameters (% and l).) This
discounts extremely high values for the input value (for
example character output routines may be called thousands
of times in a large program and hundreds in a small pro-
grain; they are still more likely to be similar than a routine
called once and a routine called ten times).

3.2. Sample programs for reuse
In order to test this idea, we need “test data”. We want a

collection of programs that are likely to have semantically
similar modules (routines that serve a similar purpose and
thus would be good candidates for reuse), without having
such similar routines be identical (if semantically similar
routines are identical, the problem is too easy - not a good
simulation of actual reuse scenarios). The X11 contributed
clients serve this purpose well. Since many of these pro-
grams perform similar functions, there are many similar rou-
tines. However, the programs were written independently
(and in fact contain complete programs with similar
“specifications” that were developed completely indepen-
dently). We expect that results for modules from programs
designed in a common environment, as would be typical of
software developed in a single corporation, would be better
than this set; as similarities in design methods should lead to
similar designs for modules with similar purposes.

We reverse-engineered each of 57 programs’ into a
structured design. This gave us 5056 routines to use as a
sample reuse library. We then extracted the discriminators
in Table 1 from each design for all the modules in that
design.

We first checked to see if a sufficient number of the
discriminator vectors were unique. Of the 5056 modules,
3490 had unique vectors. Of the non-unique ones, 254 were
derived from identical routines found in exterm and kterm.
Quick inspection of the remaining 401 duplicates showed
many were quite similar in purpose (and thus would be good
reuse candidates if we were independently developing one
of the modules).

The next step is to determine if we can use this informa-
tion to determine if routines are similar (in the sense that one
could replace the other, or could be modified to replace the
other with less effort than writing the routine from scratch.)
To do this, we compare the discriminator vectors for one
program with the vectors for all other programs. We look at
two measures of success/failure:

Reusable modules retrieved
Reusable routines in the library

Recall:

How complete are the results.

Reusable modules retrieved
Total modules retrieved

Precision:

How correct are the results.

We will now discuss the specific tests we performed.

* The programs were chosen from the X 11 contributed clients installed at in
the Northwestern department of EECS, with the exception of some
extremely large programs (as they exceeded the space we had available to
reverse engineer them), and xakcl (a set of routines to map the AKCL lisp
system to X - this consists o f a large number of trivial, nearly identical
routines).

142

4. Test results Table 2: Modules in mail notification programs
To compute recall, it is necessary to know the expected

answer, that is all of the similar routines (good reuse candi-
dates) in the 5000 routines in the library. Due to the time
required to compare over 5000 routines manually, we have
not performed a complete test on all routines in the testbed.
Instead, we performed a complete test on a subset of the rou-
tines, and determined precision figures for a larger set.

Section 4.1 describes the routines used in the complete
test. In Section 4.2 we use a simple Euclidean distance
metric to compare discriminators. Section 4.3 gives results
using neural networks to find matches.

4.1. Complete test set
We studied three mail notification programs (xlbiff,

xmailwatcher, and xpbiff) in detail. These are relatively
compact (a total of 33 routines), written independently (so as
not to skew the results because of actual copied routines),
but likely to have similar imodules due to having a similar
purpose. We inspected these by hand; a quick overview is
shown in Table 2. Note that we do not consider routines that
can be replaced by a combilnation of other routines.

If we look at the number of “reusable modules”, we find
20 (8 from xmailwatcher and xpbiff that could be used in
writing xlbiff, 6 that could be used in xmailwatcher, and 6
for xpbiff). The size of the sample space (the total number of
module pairs to be compared) is 688 (16 routines in xlbiff
choose from the 9 in xmailwatcher and the 8 in xpbiff,
9.(16+8) for xmailwatcher, and 8.(16+9) for xpbiff).

4.2. Simple distance measurements
Our first test was to simply find the Euclidean distance

between the vectors; the results (cut off at a distance of 0.4
out of a theoretical maximum of 6.) are shown in Table 3.
Note that we found 4 of the possible 20 “matches” (pairs of
similar routines), in 18 of the 688 possible pairs of routines.
This gives a recall of 20% and a precision of 22%. This
may appear low; however we must consider that this is
achieved with very little human effort. Note that a simple
routine name check would not find these pairs; this supports
our conjecture that this would be a useful addition to key-
word based methods.

An interesting comparison is how likely it would be to
achieve this using random selection. The probability of hav-
ing at least 4 good matches in 18 randomly selected pairs
would be 1 . 2 ~ 1 0 - ~ . Another way of looking at this is the
precision we would expect if we randomly selected pairs of
routines. To get 4 good routines, we would expect to look at
131, giving a precision of 3% for random selection, as
opposed to 20% using Euclidean distance of the discrimina-
tor vectors. Clearly, the discriminators are somehow
descriptive of the semantics of the routines.

Another consideration is that a human looking through
the five matches returned for x1biff:handler and

kmuilwatcher kpbiff I description
heckEvent ,kventHandler I bundle MapNotify,

Note: Similar routines (those that could feasibly be used to
replace each other with less work than writing from scrutch)
are shown on the same line and boldfaced.

xmai1watcher:timedRescan would only need to look at the
lowest distance match for each - after finding a good match,
the remaining routines need not be inspected. This would
improve to finding 4 in 15 trials, giving a precision of 27%.

We then tried the other “mail” programs in the test set
(xmail and xmailtool). These are larger; a total of 236 rou-
tines. This gave us 175 matches (cutting off at 0.4). Of
these, 7 are good candidates for reuse. Decreasing the cut-
off to 0.3 retains 5 of the good matches, and cuts the total to
31. In practice, we could use the similarity rankings to
determine the order to look at modules, this would improve
the results. Table 4 shows the results if we stop after finding
a good match - we need to look at 53 routines to find the 7
matches, or 15 to find 5 (using a cutoff of 0.3). Note that

143

Table 3: Euclidean distance between routines in mail
notification programs.

Source module

xlbiff:Exit

Modules with distance < 0.4
0.31 8: xmai1watcher:eventHandler
0.363: xmai1watcher:timedRescan

xI biff :Popup
xlbiff :Usage
x1hiff:doScan

1 0.: xmai1watcher:timedRescan I
~

x1biff:Popdown

xlbiff :Popup

1 0.359: xmailwatcher:beer, 1 xlbifkhandler

-
0.31 9: xmailtoo1:delete-msg
4 others, no matches
0.293: xmailtool:update_mbox-icon
0.295: xmailtoo1:undelete-msg
0.31 5: xmailtool:delete_msg
5 others, no matches

I

xlbiff:lbiffUnrealize 1 0.318: xmai1watcher:beep
I 0.298: x1biff:Usaae

xmai1watcher:beep
0.31 8: x1biff:lbifffinrealize
0.359: x1biff:handler
0.385: xlbiff:Popup

xmai1watcher:eventHandler 1 0.31 8: xlbiff:Exit

xlbiff Usage

Note: Routines that are actually semantically similar (reuse
candidates) boldfaced.

our precision is still in the range of the smaller test (13-33%
depending on the choice of cutoff). We are not able to state
the recall with the same degree of confidence, however
based on the known available matches, plus an additional 5
found in an inspection of xmail and xmailtool, we can esti-
mate the recall as in the neighborhood of 20%. Note that
there were seven routines for which no good match was
found (e.g., x1biff:Popdown); a total of 36 potential candi-
dates were returned for these.

However, the real question is does this scale well. We
expanded to look at all 5056 routines in the test set, with a
cutoff of 0.2. In addition to the 3 good matches already
shown with distance less than 0.2, we found multiple
matches for xlbiff:Usage (we also found a second match for
x1biff:Quit). Using the metric above (looking through all
returned routines until we have either exhausted the set, or
found a good match), we must look through 21 routines in
order to find our good ones, a 29% precision. Of these, 12
are due to xmai1watcher:beep; if we had also used a
name-based screen we would have found a match for this
quickly (and probably for x1biff:Exit and xlbiff:Usage as
well). However, we still have matches that would not be
obvious from the routine name.

0.230: xmailtoo1:free-aliases
0.247: xmailtoo1:park-mail
0.268: xmailtoo1:Svntax

4.3. Using neural networks for matching
Using Euclidean distance as a metric fails to account for

differences in the relative importance of different discrimi-
nators. To determine this importance manually would be
difficult, however we can use the technique from[7] to come
up with a reasonable solution automatically. We train a
neural network to recognize the individual routines based on
their discriminators. The training phase will determine how
the given discriminators best distinguish between the rou-
tines in the training set. We can then use this network to

x1biff:checksize
xlbiffhandler

xlbiff :Ibiff Unrealize

Table 4: Euclidean distance between mail notification
routines and other mail program routines.

0.358: xmail:file-handler
0.226: xmailtool:mail_timeout
0.290: xmailtool:pr-msg-list
0.301 : xmailtoo1:free-headers
0.328: xmailtoo1:update-mbox-icon
6 others. no mutches

Source module I First match or distance < 0.4
1 0.292: xmailtoo1:lnParams

- 1 0.398: xmailtool:pr-msg-list
I 0.1 89: xmailtool:free_headers

xlbitt:toggle-key-led

7

xlbiffi CheckEvent

xmailwatcher: timedRescan

xpbiff:BreakPopup

.-
wlhiff:F.xit I 0.179: xmai1:Onit

.-
0.226: xmai1tool:mail-timeout
0.346: xmai1:lconify
8 others, no mutches

0.380: xmaikinfo-handler
0.390: xmai1:ShowHelo x1biff:Shrink

1 0.389: xmaikfiaurewidth

mai1watcher:heeD I 0.231 : xmailtoo1:free aliases - ~ . ~ . ~ ~ ~ ~ ~

0.276: xmailtookbeep
0.244: xmail:Quit
0.266: xmail:info_handler
0.354: xmailtoo1:XMTWMProtocols
0.368: xmailtoo1:maD handler

xmai1watcher:eventHandler

Note: Routines that are actually semantically similar (reuse
candidates) boldfaced.

find how a different set of discriminators (a “query”) relates
with those in the training set. Using a library of components
as our training set should give us a good way to search for
the close matches among those specijic components.

Each of the three programs is compared with a net
trained using the routines of the other two programs. (If we
were to train a net with all 36 routines, it would invariably
note that each routine matches only itself.) A higher number
represents a closer match (we have eliminated all matches
below 0.5). The results are shown in Table 5.

This gives us 6 good matches in 27 returned pairs This is
a recall of 30% and a precision of 22%. On the one hand,
this is not substantially better than simple Euclidean dis-
tance. However, achieving this with random selection
would only happen with probability 5 . 5 ~ 1 0 - ~ . In addition,
the “fixed threshold” that we have used isn’t appropriate for
the networks - the value that will be returned for a good
match varies for different networks. If we instead choose an
individual threshold for each network (0.8 for the first two,

144

Table 5: Similarity of routines in mail notification
programs.

Source module

xlbiff:Exit

xI biff:S hrink

xlbiff :Usage

xlbiff checksize

xlhiff doScan
x1biff:getDimensions
xl biff: handler

~~ ~~

Modules with similarity > 0.5
0.875: xmai1watcher:timedRescan
0.764: xmai1watcher:eventHandler
0.750: xpbiff:popup-again
0.684: xmai1watcher:eventHandler
0.543: xmai1watcher:timedRescan
0.697: xmai1watcher:beep
0.846: xpbiffPolling
0.779: xpbiff:GetMailHeader
0.957: xpbiffGetMailHeader
0.873: xmai1watcher:mungeSender
0.916: xmai1watcher:timedRescan

xlbiff:main 1 0.912: xmailwatchermain
I 0.744: xlbiff:Usaae

xmai1watcher:beep

xmailwatchermain
xmai1watcher:timedRescan

xpbiff :AnimateBiff

xpbiff GetMailHeader

xphiff Polling

0.658: xlbiff:lbiff6nrealize
0.547: x1biff:handler
0.509: xlbiffmain
0.947: xlbiffhandler
0.819: xmai1watcher:main
0.571 : x1biff:toggle-key-led
0.966: xlbiffdoScan
0.929: x1biff:Popdown
0.598: xlbiffchecksize

xpbiff:PopupMailHeader

xpbiff:popup-again

xpbiff:redraw_calIback

Note: Routines that are acfually semantically similar (reuse
candidates) boldfaced.

and 0.5 for the last) we find 6 in 17, an increase to 35% pre-
cision. Another advantage to this method is that the good
matches are clustered near the top of the range. If we sim-
ply take all matches with a similarity measure 2 0.8, we find
5 matches in 13 (probability 1 . 4 ~ 1 0 - ~) . If we use a thres-
hold of 0.9, we find 4 matches in 8 (a 50% precision, even
though recall has dropped to 20% - achieving this through
random selection would only happen with probability
3 . 4 ~ lo-’). Euclidean distance does not share this property
- to get 4 matches, we have to inspect at least 10 pairs (and
this requires choosing a cutoff between 0.337 and 0.358 - an
unlikely choice without a-priori knowledge of the results).

Table 6: Similarity between each mail notification
routine and ail other mail program’s routines.

0.984: xmai1watcher:main
0.507: xmai1watcher:setTitle
0.803: xlbiff :Shrink
0.955: xmai1watcher:main
0.521 : xmai1watcher:setTitle

Source module
x1biff:Exit ll.000: xmaikouit

(Modules with similarity > 0.8

x1biff:getDimensions
xlbiffihandler
x1biff:initStaticData
xmai1watcher:eventHandIer

-
0.943: xmailtoo1:save-proc
0.989: xmai1watcher:timedRescan
0.997: xmailtoo1:Syntax
0.966: xmaikinfo handler -

1xmailwatcher:main 10.972: xmailtoo1:confirm send -
Ixl l lal l \ , ’ i i tr l irr: , i ,ncd~~~~n ‘0. 983 - x1bift:handler
Ixoblff;edrawcallback-- 0 954. xmailtool center wia on Dointer!

Note: Routines that are actually semantically similar (reuse
candidates) boldfaced.

We have also looked for matches between these 33 rou-
tines and the larger set including xmail and xmailtool. This
was done by training a network with all of the routines
except those from one program, then finding similarities to
the routines in that program. This results in three somewhat
separate tests, summarized in Table 6. The precision here is
38%. Again, we are not able to say the actual recall, but
based on likely matches we have been able to find (25), we
estimate the recall to be around 12%.

One difficulty with the small test set is that it is “too
easy” for the neural network to come up with a function dis-
tinguishing the 33 routines based on the 36 available
discriminators. This is why the precision is comparable for
the larger test. As an example, if we use the network based
on the 33 routines to compare with the full set 5056 XI1
client routines, we have a large number of matches (1 160)
with a threshold of 0.8 (raising the threshold to 0.9 only
drops this to 822). However, if we train a network to recog-
nize all 269 mail routines, then use this to search for similar
routines in the 5056 routine set (with the same threshold),
we find (with a threshold of 0.8), we find 89 for xpbiff, 196
for xlbiff, and 65 for xmailwatcher. This shows that this idea
scales well; searches over larger libraries are automatically
more selective.

5. Conclusions and Further Work
We have shown that we can often match similar routines

without using either human effort to classify the routines,
semantic information contained in names, or any sophisti-
cated semantic analysis of the code. Due to the use of infor-
mation that is either likely to be present in the design, or can
be estimated (such as complexity), it is likely that the
discriminators we have used could be obtained with substan-
tially less effort than writing the code. This matches our cri-
teria for a good method for classifying a “legacy component
library”:

0 No effort is required to insert a routine into the reuse
library.

e Finding reuse candidates is a low-effort part of the exist-
ing software development process.

The results should be orthogonal to name based methods.
Straightforward module name lookup (combined with a
keywordlsynonym dictionary) meets the above criteria, and
more advanced methods (requiring greater human effort)
have been explored. Combining these methods should be
easy and effective. This would lead to two things: “serendi-
pitous” finds (where nameslkeywords would not be helpful),
and additional help in ranking potential modules.

One disadvantage of this technique is that it only works
if modules and designs with similar semantics have similar
discriminators. This requires consistency in design. How-
ever, the same problem appears in keyword based tech-
niques or a human-classified library. These work because
the choice of words or human description of a routine

145

happens to match the actual semantics. We are simply look-
ing at design decisions as opposed to word choices as a
“human description” that reflects the semantics of a module.
The interesting result is that i t does work (provide added
value), and does so without any extra human cost. In addi-
tion, how it works can vary depending on the modules in the
“reuse base”; the neural network is trained to recognize how
the discriminators characterize the given set of modules.

Further work
We are pursuing experiments to learn more about how

and w h y this works. In particular, we want to determine
what discriminators are most useful: If, for example,
cyclomatic complexity is not helpful in finding modules, we
don’t want to ask the user of a legacy software library to
provide a complexity estimate. We are looking at ways of
determining this; one method is simply to try dropping
discriminators, re-run the experiments, and compare the
results with the full set.

Once we have determined an appropriate set of discrimi-
nators, we can begin to define a “query language” for
finding modules. In the best case, this will be integrated into
the design process, so that the “query” can be automatically
determined from design information. We can then combine
this with other methods for finding reusable components.

A second difficulty is training large networks. We are
able to train networks for hundreds of modules (the time
being on the order of hours or days on a workstation), how-
ever training networks for thousands of modules in a reason-
able time will require substantially improved training algo-
rithms or special-purpose hardware. One solution is to
gather code into groups of a few hundred modules, and train
separate networks for each. This will give poorer precision
than a single net, but can improve recall.

The most important question, however, is can this be
useful in practice? One of the main strong points of this
method is the low human effort required - a practical test
can be made by incorporating this within a comprehensive
designh-euse environment. This requires choosing discrimi-
nators that can be derived from both new designs and legacy
code. Users can then try this method with no change in the
designlcoding process, and decide for themselves if the tech-
nique has value.

References
1. Ted J. Biggerstaff, “Human-Oriented Conceptual

Abstractions in the Re-engineering of Software,” pp.
120 in Proceedings in the 12th International Confer-
ence on Software Engineering, IEEE, (1990).
Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E.
Webster, “Program Understanding and the Concept
Assignment Problem,” Communications of the ACM
37(5) pp. 72-83 ACM, (May 1994).

3. William B. Franks, Ted J. Biggerstaff, Kazuo
Matsumura, Ruben Prieto-Diaz, and Wilhelm

2.

Schaefer, “Software Reuse: Is it Delivering?,” pp.
52-59 in Proceedings in the 13th International
Conference on Sofhvare Engineering, IEEE, (1991).

M. R. Girardi and B. Ibrahim, “A Similarity Measure
for Retrieving Software Artifacts,” in Proceedings of
the 3rd International Conference on Sofhvare Reuse
(ZCSR ’94), Rio de Janeiro, Brazil (November 1-4,
1994).

4.

5 .

6.

7.

8.

9.

10.

11

12.

13.

14.

15.

Charles W. Krueger, “Software Reuse,” Computer
Surveys 24(2) pp. 131-184 ACM, (June 1992).

David Lauzon and Thomas Rose, “Task Oriented and
Similarity-Based Retrieval,” in Proceedings of the 9th
conference on Knowledge-Based Software Engineer-
ing, IEEE, (September 21-23, 1994).

Wen-Syan Li and Chris Clifton, “Semantic Integration
in Heterogeneous Databases Using Neural Networks,”
pp. 1-12 in Proceedings of the 20th International
Conference on Very Large Data Bases, Santiago,
Chile (September 12-15, 1994).

Y. Maarek, D. Berry, and G. Kaiser, “An Information
Retrieval Approach for Automatically Constructing
Software Libraries,” Transactions on Software
Engineering SE-17(8) pp. 800-813 IEEE, (August
1991).

Dieter Merkl and A Min Tjoa, “Retrieval of Reusable
Software Based on Self-organizing Feature Maps,” in
Proceedings of the 6th Int’l Conference on Art$cial
Intelligence and Expert Systems Applications
(EXPERSYS-94), Houston, TX (Dec. 1-2. 1994).

Andy Podgurski and Lynn Pierce, “Retrieving Reus-
able Software by Sampling Behavior,” Transactions
on Software Engineering and Methodology 2(3) pp.

RubCn Prieto-Diaz, “Implementing Faceted
Classification for Software Reuse,” Communications
ofthe ACM 34(5) pp. 88-97 (May 1991).
David E. Rumelhart, Bernard Widrow, and Michael
A. Lehr, “The Basic Ideas in Neural Networks,” Com-
munications of the ACM 37(3) pp. 87-92 ACM,
(March 1994).

Colin Runciman and Ian Toyn, “Retrieving re-usable
software components by polymorphic type,” pp.
166-173 in Proceedings of the Fourth International
Conference on Functional Programming Languages
and Computer Architecture, Imperial College, London
(September 11-13, 1989).

Will Tracz, “Where Does Reuse Start?,” Software
Engineering Notes 15(2) pp. 42-46 (April 1990).

A. M. Zaremski and J. M. Wing, “Signature Match-
ing: A Key to Reuse,” in Proceedings of SIGSOFT,
ACM,Los Angeles, California (December 7-10 1993).

286-303 ACM, (July 1993).

146

