
CERIAS Tech Report 2001-78
SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks

 by Christopher Clifton
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

SEMINT: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks q

Wen-Syan Li a,*,1, Chris Clifton b,2

a C&C Research Laboratories, NEC USA, Inc., 110 Rio Robles, MS SJ100 San, Jose, CA 95134, USA
b The MITRE Corporation, M/S K308, 202 Burlington Road, Bedford, MA 01730-1420, USA

Received 23 February 1999; received in revised form 23 September 1999; accepted 11 November 1999

Abstract

One step in interoperating among heterogeneous databases is semantic integration: Identifying relationships between

attributes or classes in di�erent database schemas. SEMantic INTegrator (SEMINT) is a tool based on neural networks

to assist in identifying attribute correspondences in heterogeneous databases. SEMINT supports access to a variety of

database systems and utilizes both schema information and data contents to produce rules for matching corresponding

attributes automatically. This paper provides theoretical background and implementation details of SEMINT. Ex-

perimental results from large and complex real databases are presented. We discuss the e�ectiveness of SEMINT and

our experiences with attribute correspondence identi®cation in various environments. Ó 2000 Elsevier Science B.V. All

rights reserved.

Keywords: Heterogeneous databases; Database integration; Attribute correspondence identi®cation; Neural networks

1. Introduction

Advances in information technology have lead to an explosion in the number of databases
accessible to a user. Although these databases are generally designed to be self-contained, serving
a limited application domain, the ability to integrate data from multiple databases enables many
new applications. For example, corporate decision-makers have realized that the huge amount of
information stored in information systems is not only operational data; but an asset that can,
when integrated, be used to support decision-making. However, many of these databases are
heterogeneous in a variety of aspects because they were initially developed individually for
departmental purposes without consideration for information sharing and collaboration.

Data & Knowledge Engineering 33 (2000) 49±84
www.elsevier.com/locate/datak

q This material is based upon work supported by the National Science Foundation under Grant No. CCR-9210704.
* Corresponding author. Tel.: +1-408-943-3008; fax: +1-408-943-3099.

E-mail addresses: wen@ccrl.sj.nec.com (W.-S. Li), clifton@mitre.org (C. Clifton).
1 The work described in this paper was performed when the ®rst author was obtaining his Ph.D. at Northwestern University,

Department of EECS.
2 The views and opinions in this paper are those of the author and do not re¯ect MITREs work position.

0169-023X/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 9 - 0 2 3 X (9 9) 0 0 0 4 4 - 0

Enterprises may also have various kinds of databases due to company mergers or the introduction
of new database technology. By integrating these databases, the di�erences of DBMS, language
and data models can be suppressed; users can use a single high-level query language (or interface)
to access multiple database systems [20]; and integrated views of enterprise-wise information can
be provided.

Early work in heterogeneous database integration focused on procedures to merge individual
schemas into a single global conceptual schema, such as described in [20,37]. The amount of
knowledge required about local schemas, how to identify and resolve heterogeneity among the
local schemas, and how changes to local schemas can be re¯ected by corresponding changes in the
global schema are major problems with this approach because of the complexity of a global
schema.

The federated database approach [18,23] resolves some of the problems associated with a global
schema addressed above. Federated databases only require partial integration. A federated dat-
abase integrates a collection of local database systems by supporting interoperability between
pairs or collections of the local databases rather than through a complete global schema.

Multidatabase language approach, such as MSQL [8,17], is another attempt to resolve some of
the problems associated with a global schema. With these systems, no global schema (not even a
partial one) is maintained. This approach puts the integration responsibility on users by providing
functionality beyond standard SQL to allow users to specify integration information as part of the
query. This is a heavy burden to place on users. We instead view the multidatabase language as an
intermediate language, to be used for query processing after schema integration issues have been
resolved. This approach is also used in [45], that uses an attribute correspondence table to convert
queries into a multidatabase-like intermediate form.

1.1. Problem statement

In either approach to database integration, the steps of database integration include extracting
semantics, transforming formats, identifying attribute correspondence, resolving and modeling
heterogeneity, multidatabase query processing, and data integration. In order to answer queries in
multidatabase systems three distinct processes need to be performed by the user, database ad-
ministrator, and/or system as shown in Fig. 1. The Schema Integration process includes a possible
schema transformation step, followed by correspondence identi®cation, and an object integration
and mapping construction step [23]. In Query Processing step, global queries are reformulated
into sub-queries, the sub-queries are executed at the local sites, and their results are assembled at a
®nal site. The Data Integration process is complimentary to Query Processing step, i.e., it de-
termines how the results from di�erent local databases should be merged, or presented, at the ®nal
site.

Sheth and Kashyap [33] argued that identifying semantically related objects and then resolving
the schematic di�erences is the fundamental question in any approach to database system in-
teroperability. In all three major approaches of database integration, identifying attribute cor-
respondences is the essential step before any query can be answered. The dominant computer
paradigm will involve a large number of information sources that are heterogeneous in semantics
and format. Some large organizations have huge databases in terms of the number of attributes
and the number of rows. One example is the tooling database at Boeing Computer Services (BCS),
that contains hundreds of attributes and millions of rows. Many of these databases were designed

50 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

by di�erent people for various purposes; as a result, the formats of data and its semantics pre-
sentation are not expected to be standardized.

US West reports having ®ve terabytes of data managed by 1000 systems, with customer in-
formation on 200 databases [5]. Manually comparing all possible pairs of attributes is an un-
reasonably large task. One group at GTE began the integration process with 27,000 data elements,
from 40 of its applications. It required an average of 4 h per data element to extract and document
matching elements when the task was performed by someone other than the data owner [39]. In
such complicated computing environments and with such large numbers of databases and attri-
butes, understanding the semantics of each individual database and integrating these heteroge-
neous databases are extremely di�cult tasks.

We focus on the problem of identifying corresponding attributes in di�erent DBMSs that re-
¯ect the same real-world class of information. Currently, there is little technology available to
`automate' this process. Integrating semantically heterogeneous databases can be costly since it is
an intellectual process. Drew et al. [5] pointed out many important aspects of semantic hetero-
geneity: Semantics may be embodied within a database model, a conceptual schema, application
programs, and the minds of users. Semantic di�erences among components may be considered
inconsistencies or heterogeneity depending on the application, so it is di�cult to identify and
resolve all the semantic heterogeneity among components. Techniques are required to support the
reuse of knowledge gained in the semantic heterogeneity resolution process.

The goal of our research is to develop a semi-automated 3 semantic integration procedure that
utilizes the metadata available in the database systems to identify attribute correspondences. We
see information easily available to an automated tool as including attribute names, schema design,
constraints and data contents. Parsing application programs is not practical, and `picking the
brains of users' would be too interactive for our goal of a semi-automated system. We want the

3 We feel that a fully automated procedure is not realistic with current technologies.

Fig. 1. Multidatabase query processing.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 51

ability to automatically determine the likelihood of attributes referring to the same real-world
class of information from the metadata. There are many existing systems where how to determine
the attribute correspondences is `pre-programmed'. We feel this type of procedure is ad hoc. Since
these databases are heterogeneous, the `formula' works for one database integration problem may
not work for others. We also desire to have the ability to reuse or adapt the knowledge gained in
the semantic heterogeneity resolution process to work on similar problems. Another essential
feature is automation. Automatic process of extracting and transforming data semantics becomes
important as the volume and variation of accessible data increases.

1.2. Semantic integration in SEMINT

We present a method that utilizes metadata available in databases for attribute correspondence
identi®cation. Attributes in di�erent databases that represent the same real-world concept will
likely have similarities in schema designs, constraints, and data value patterns; these similarities
allow us to identify correspondences. For example, employee salaries in two databases will
probably be similar in both schema design and values; on the other hand, employee salaries are
di�erent from addresses. We see three levels of metadata that can be automatically extracted from
databases and used to determine attribute correspondences: attribute names (the dictionary level),
schema information (the ®eld speci®cation level), and data contents and statistics (the data
content level).

Most existing work focuses on using attribute names to determine attribute correspondences.
However, synonyms occur when objects with di�erent names represent the same concepts, and
homonyms occur when the names are the same but di�erent concepts are represented. From GMs
e�orts in integration [24], attribute names were not su�cient for semantic integration; only a few
obvious matches were found. However, similarities in schema information were found to be
useful. For example, it was discovered in one case that attributes of type char(14) were equivalent
to those of char(15) (with an appended blank).

Our semantic integration procedure utilizes schema design information (schema and con-
straints) and data contents (data patterns and statistics) as clues to the semantics of the data. We
use neural networks to learn how this metadata characterizes the semantics of the attributes in a
particular domain. This gives us a procedure that automatically incorporates domain knowledge
from metadata extracted directly from the database. This approach can cooperate with other
approaches based on naming techniques and ontological engineering to take advantage of
whatever information is available. In our method, the knowledge of how to determine matching
data elements is discovered from the metadata directly, not pre-programmed.

In the example shown in Fig. 2, we want to integrate Faculty and Student databases. SEMantic
INTegrator (SEMINT) ®rst uses DBMS speci®c parsers to extract metadata (schema design,
constraints and data content statistics) from these two databases. The metadata forms `signatures'
(patterns) describing the attributes in the Faculty and Student databases. These attribute signa-
tures are used as training data for neural networks to recognize these signatures (thus, attributes
as well). The trained neural network can then identify corresponding attributes, based on the
metadata (signatures) of attributes in, Faculty and Student databases and point out their simi-
larity. In our approach (see Fig. 2) the metadata extraction is automated; and how to match
corresponding attributes and determine their similarity is `learned' during the training process
directly from the metadata.

52 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

1.3. Paper organization

The rest of this paper is organized as follows. In Section 2, we review existing work in this area.
Section 3 presents details of our attribute correspondence identi®cation method and the design of
SEMINT, including a detailed discussion of the metadata that can be automatically extracted
from databases, and how we use it to identify attribute correspondences. Section 4 describes some
experimental results on very large and complex real databases and discusses the e�ectiveness of
SEMINT based on these experiences in various environments. We also highlight some applica-
tions where SEMINT is used as a component. Finally, we conclude this paper with a discussion of
areas for future work.

2. Related work

In [11] Larson et al. discussed metadata characteristics and theory of attribute equivalence to
schema integration. We see three approaches to determining attribute correspondences based on
types of metadata used: Comparing attribute names (at the dictionary level), comparing ®eld
speci®cations (at the schema level), and comparing attribute values and patterns (at the data
content level).

2.1. Comparing attribute names

This approach assumes that the same attribute may be represented by synonyms in di�erent
databases. Systems have been developed to automate database integration. One that has
addressed the problem of attribute correspondences is Multi-User View Integration System
(MUVIS) [9]. MUVIS is a knowledge-based system for view integration in an object-oriented
development environment. It assists database designers in representing user views and integrating
these views into a global conceptual view. The similarity and dissimilarity in MUVIS is primarily
based on attribute names.

Clement Yu et al. [44] argued that semantics of majority of attributes can be captured by
consulting pre-established concepts that are analogous to standardized keyword index hierarchies.
Then, the aggregation among attributes can be determined.

Fig. 2. Overview of semantic integration in SEMINT.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 53

A. Sheth and V. Kashyap [33] introduced the concept of semantic proximity to specify degrees
of semantic similarity among objects based on their real world semantics. Heuristics to identify
possible semantic similarity between objects that have various types of schematic di�erence and
data inconsistency were also proposed.

Existing systems using this approach work by consulting a synonym lexicon, such as WordNet
[19]. However, consulting a synonym lexicon has limitations since database designers tend to use
abbreviations for attribute names (e.g., Emp for Employee, SSN or SS# for Social Security
Number, etc). Additionally, in some cases, attribute names are actually abbreviations of phrases
(e.g., DOB for date of birth and W_Phone for work phone number). These types of relationships
cannot be easily identi®ed by consulting a synonym lexicon. Another problem with this method is
homonyms, where the names are the same but di�erent concepts are represented.

The DELTA project at MITRE [1] has developed a tool based on string matching to assist in
integration. This goes beyond simple attribute names, and looks at the entire data dictionary
(including comments and ®eld descriptions). However, this still faces many of the problems dis-
cussed above.

2.2. Comparing ®eld speci®cations at the schema level

Approach of comparison of attribute speci®cation using design information has also been
proposed. In [21], the characteristics of attributes discussed are uniqueness, cardinality, domain,
static semantic integrity constraints, dynamic semantic integrity constraints, security constraints,
allowable operations and scale. However, [21] focused on the theory of attribute equiva-
lence to schema integration rather than utilizing these characteristics to determine attribute
correspondences.

Li and Clifton [13] presented a technique that utilizes ®eld speci®cations to determine the
similarity and dissimilarity of a pair of attributes. This technique (over simply comparing ®eld
names or using attribute domain relationships) include:
1. the e�ect of synonyms and homonyms [21] will be di�erent (the problem is with structural syn-

onyms and homonyms, rather than dictionary synonyms and homonyms); and
2. it provides a solution for the time-consuming problem of determining the attribute (domain)

relations in [11,31,32,34,35] by eliminating most of the non-equivalent attribute pairs; simply
using schema information.
The technique described in [13] does not intend to completely replace searching through a

synonym lexicon, but helps to determine attribute correspondences when no conclusion can be
made simply by searching a synonym dictionary. It can also be used with other approaches, as a
`®rst step' to eliminate most of clearly incompatible attributes. This allows the process of com-
paring attribute domains, that is more computationally expensive, to work on a smaller problem.
However, the accuracy of results depends on the ®eld speci®cation information availability. One
weakness of the technique presented in [13] is the rules to match attributes are `pre-programmed'
by DBAs, as in MUVIS [9].

2.3. Comparing attribute values and patterns in the data content level

The third approach of determining attribute correspondences is comparing attribute values.
Larson et al. [11,21] and Sheth et al. [35] discussed how relationships and entity sets can be in-

54 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

tegrated primarily based on their domain relationships: EQUAL, CONTAINS, OVERLAP,
CONTAINED-IN and DISJOINT. Determining such relationships can be time consuming and
tedious [34]. Another problem is the ability to handle faults; small amounts of incorrect data may
lead the system to draw a wrong conclusion on domain relationships.

In the tool developed to perform schema integration described in [35], a heuristic algorithm is
given to identify pairs of entity types and relationship types that are related by EQUAL,
CONTAINS, OVERLAP and CONTAINED_IN domain relationships that can be integrated.
Sheth and Gala [32] argued that this task cannot be automated, and hence we may need to depend
on heuristics to identify a small number of attribute pairs that may be potentially related by a
relationship other than DISJOINT.

Li and Clifton [14] proposed a method that utilizes data patterns and distributions rather than
data values and domains. This approach has better fault tolerant ability and less time-consuming
since only a small portion of data values are needed by employing data sampling techniques.

Other work that uses data patterns to determine attribute correspondences includes [36,38] that
uses historical update information for instance identi®cation in federated databases.

3. Attribute correspondence identi®cation procedure

In this section, we give technical detail of SEMINT. We start with the choice of using neural
network techniques, rather than ®xed rules, for matching corresponding attributes.

3.1. Neural networks versus traditional programmed computing

Programmed computing is best used in situations where the processing to be accomplished can
be de®ned in terms of a known procedure or a known set of rules. Clearly, there is no perfect
procedure or known set of rules that solves the problems of identifying attribute correspondences.
This is because that attribute relationships are usually fuzzy and the availability of database in-
formation may vary.

Neural networks have emerged as a powerful pattern recognition technique due to the devel-
opment of more powerful hardware and e�cient algorithms [29] and have been used in a wide
range of application [40]. Neural networks can learn the similarities among data directly from its
instances and empirically infer solutions from data without prior knowledge of regularities.
Unlike traditional programs, neural networks are trained, not programmed. Neural networks act
on data by detecting underlying organizations or clusters. For example, the input patterns can be
grouped by detecting how they resemble one another. The networks learn the similarities among
patterns directly from the instances of them. That means neural networks can infer classi®cation
without prior knowledge of regularities. We use them as a bridge over the gap between individual
examples and general relationships to identify corresponding attributes in heterogeneous data-
bases.

We feel that neural networks are more suitable than traditional programs for determining
attribute correspondences in heterogeneous databases since:
1. the availability of metadata and the semantics of terms may vary;
2. the relationship between two attributes is usually fuzzy;
3. it is hard to de®ne and assign probability to rules for comparing aspects of two attributes and

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 55

4. pre-de®ned rules and probabilities that work for one pair of databases may not work for other
pairs of databases, but need to be adjusted dynamically. Wiederhold [43] also pointed out a
similar problem in digital libraries ± when dealing with multiple domains no consistency of ter-
minology can be expected or even advocated.

3.2. Overview of SEMINT

SEMINT [15] is a system for identifying attribute correspondences using neural network
techniques. We have developed a graphical interactive mode (allowing users to provide known
information about the semantic integration problem at hand), or it can be ran as a suite of batch
programs. It has been implemented using C and Motif, and runs on IBM RS6000s under AIX and
Sun workstations under Sun OS. Databases to be integrated are accessed directly using automatic
`catalog parsers' to extract metadata from target databases. Fig. 3 shows the procedure in SE-
MINT. First, the metadata (schema information and data content statistics) is extracted from an
individual database using DBMS speci®c parsers. This metadata is normalized and used as input
data for a self-organizing map algorithm as a classi®er to categorize attributes. We then use the
classi®er that learns how to discriminate among attributes within a single database. The classi®er
output, cluster centers, is used to train a neural network to recognize categories; this network can
then determine similar attributes between databases.

We will ®rst give details of the metadata available from databases, how we use DBMS-speci®c
parsers to extract the metadata, and how we normalize and present these `metadata' as input
vectors for neural networks, followed by design and usage of neural networks for a classi®er and a
category learning and recognition tool to determine attribute correspondences.

3.3. Metadata extraction using DBMS-speci®c parsers

3.3.1. Metadata used in semantic integration
Drew et al. [5] pointed out the meaning of information may be embodied within a database

model, a conceptual schema, application programs, and the minds of users. We see three levels of
metadata that can be automatically extracted from databases: attribute names (the dictionary
level), schema information (the ®eld speci®cation level), and data contents and statistics (the data
content level). This is shown in Fig. 4. Much work in the past has focused on the metadata
available in the dictionary level. However, in many cases, the approach of using attribute names
does not work such as the example of GMs e�orts in database integration [24] (discussed in
Section 1.2).

SEMINT focuses on utilizing the metadata at the ®eld speci®cation level and data content level.
It can cooperate with other approaches based on naming, such as techniques used in the DELTA

Fig. 3. Overview of attribute correspondence identi®cation procedure using neural networks.

56 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

project at MITRE [1]. Domain speci®c knowledge provides SEMINT the inference ability to
organize the metadata at di�erent levels to identify possible heterogeneity. We will further discuss
how domain knowledge can assist in determining attribute correspondences in Section 6.

The ®eld speci®cations and data contents provide some clue to the semantics of an attribute. In
particular, attributes that represent the same real-world information are likely to have similarities
in ®eld speci®cations and data content patterns (e.g., if Student_ID and employee_ID are both
based on a US Social Security Number, they will both contain nine digits). However, we do not
know just what these similarities are. Worse yet, the similarities may vary between domains as
pointed out in [43]. The metadata used in SEMINT includes:

Schema information: The schema information used by SEMINT includes data types, length,
scale, precision, and the existence of constraints, such as primary keys, foreign keys, candidate
keys, value and range constraints, disallowing null values, and access restrictions. Sample SQL
queries to extract schema information and constraints from Oracle7 databases are shown in Fig. 5.
In some cases, such as ¯at-®le data, we may not have an accessible schema de®nition. Many of the
above characteristics can be determined by inspecting the data. This need not be a manual pro-
cess, commercial tools are available to extract schema information from ¯at ®les.

Fig. 5. SQL queries to extract schema and constraints.

Fig. 4. Multi-level database semantics.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 57

Data content statistics: The data contents of di�erent attributes tend to be di�erent even though
their schema designs may be the same. This shows up in their data patterns, value distributions,
grouping or other characteristics. These can serve to characterize attributes. For example, `SSN'
and `Account balance' can all be designed as nine-digit numerical ®elds; they may not be distin-
guishable based solely on their schema characteristics. However, their data patterns, such as value
distributions, and averages, are di�erent. Thus, examining data contents can correct or enhance the
accuracy of the outcomes from the dictionary level and the schema level. The statistics on data
contents used in SEMINT include maximum, minimum, average (mean), variance, coe�cient of
variance, existence of null values, existence of decimals, scale, precision, grouping and number of
segments. For numerical ®elds, we use their values to compute statistics. For character ®elds,
whose values are not computable as ASCII code numbers, we compute statistics on number of
bytes actually used to store data, rather than `actual ASCII numbers'. SQL queries extracting data
content statistics from Oracle7 databases for numeric and character ®elds are shown in Fig. 6. Only
a small portion of sample data is needed (e.g., pick 1 row out of 10, not ®rst 10statistics on the data
contents. The size of a table can be found in the catalog, then we decide the percentage of rows we
want to sample. Note that estimation techniques [22,26] can be used to speed up this process.

Other semantics: Security constraints such as read/write/grant authority speci®cations and
`behavior semantics' such as the use of cross-references, views, clusters, sequences, synonyms, and
dependencies can also be extracted from the system data dictionary. We have incorporated some
of these behavior semantics into our Oracle7 parser.

The complete list of metadata used in SEMINT is given in Table 1.
Although di�erent DBMSs use di�erent data dictionaries to contain schema information and

integrity constraints, these DBMS speci®c parsers are similar. SEMINT automatically extracts
schema information and constraints from the database catalogs and statistics on the data contents
using queries over the data. The information extracted from di�erent databases is then trans-
formed into a single format and normalized. The advantages of having various DBMS speci®c
parsers provided by SEMINT are:
· The data dictionaries of various DBMSs are di�erent; however, they are ®xed for each DBMS

and pre-de®ned in DBA manuals. Therefore, the queries to access these systems, usually in
SQL, can be pre-programmed using C with embedded SQL.

Fig. 6. SQL queries to extract data content statistics.

58 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

· As DBMS speci®c parsers are pre-programmed, the metadata extraction process is fully auto-
mated. No user intervention is needed.

· SEMINT users are not required to be aware of the di�erences of various DBMSs. The hetero-
geneity of data dictionaries, SQL language command interfaces, functionalities, and facilities of
di�erent DBMSs are resolved by SEMINT's DBMS speci®c parsers.
In SEMINT, users only need to specify the DBMS types, such as Oracle, Ingres, IBM AS/400,

or DB2, and supply DBMS-speci®c connection information for the desired database. For

Fig. 7. (a) Parser window in SEMINT and (b) Parser output result.

Table 1

Metadata (items 1±15) and data content based discriminators (items 16±20) used in SEMINT

No. Discriminator Descriptions

1 Data length

2 Character type

3 Number Type

4 Date Type Valid dates

5 Row ID Data type: Row pointer

6 Raw data Raw binary of variable length

7 Check Constraint exists on column values

8 Primary key

9 Unique value Value is unique but is not part of the key

10 Foreign key constraint Column refers to key in another table

11 Check on View

12 Nullable Null values allowed

13 Data Precision

14 Data Scale

15 Default Has Default value

16 Minimum Minimum non-blanks for character attributes

17 Maximum Maximum non-blanks for character attributes

18 Average Average non-blanks for character attributes

19 Coe�cient of variance CV of non-blanks for character attributes

20 Standard deviation SD of non-blanks for character attributes

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 59

example, in Oracle7 the user id, user password, and table owner id are needed. SEMINT uses the
user's login information as default unless the user speci®es otherwise. The Oracle7 parser window
in SEMINT and its output are shown in Figs. 7(a). DBMS speci®c parsers are implemented using
C with embedded SQL (e.g., Pro*C in Oracle7).

3.3.2. Data type conversion for comparisons of metadata from heterogeneous databases
The data types used in Oracle7 are Char, Long, Varchar, Number, Date, Raw, Long raw,

MLSlabel (binary format of an operating system label) and Rowid. Di�erent DBMSs may use
di�erent sets of data types or even have their own data types that cannot be found in other
DBMSs. An attribute age may be speci®ed as Integer data type in one database and as a Number
data type in other database since there is no Integer data type available, such as in Oracle7.

We handle this problem by de®ning ®ve distinct types (character, number, date, rowid, and
raw). For each DBMS, we map that DBMSs data types to these ®ve types (e.g., Oracle's char,
long, and varchar all map to `character'.) Note that the `length' discriminator will allow us to
distinguish between di�erent uses of these data types. We present data type metadata of all
DBMSs as Number, Date, Char, Raw, RowID, Precision, Scale and Length as shown in Fig. 8.
As this form can capture all the data types used in various DBMSs, we are able to compare at-
tributes of various DBMSs that may use di�erent sets of data types. How to determine the
similarity between these data types is `learned' directly from the metadata presented to neural
networks as training data.

3.3.3. Normalization of metadata
As the input values for our neural networks need to be in the range of 0±1 (whether a neuron is

triggered or not), the metadata of attributes, which can be any values (e.g., an attribute of
character data type with length of 20), need to be normalized into values of range [0,1]. The
problems such as ``how can we present a data type as a value of range [0,1]?'' and ``how can we
convert length into a value of [0,1]?'' need to be solved. Three types of normalization methods are
used to convert the metadata into a vector of values between 0 and 1.

Binary values: We map true/false information to binary values (e.g., 1 for key ®eld and 0 for not
a key ®eld). If a null value is allowed in this ®eld, a null value is presented as 0.5, that is, it could be
either 0 or 1.

Fig. 8. Data type presentation in SEMINT.

60 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

Category values: Category information such as data types require special treatment. For ex-
ample, if we convert data types to a range [0,1] and assign the values 1, 0.5 and 0 to data types
date, numeric and character, then we are saying a date is closer to a numeric ®eld than a character.
We do not `pre-judge' such information, but let the neural network determine if this is true. In-
stead we convert this category input to a vector of binary values (e.g., 1,0,0 for character data
type, 0,1,0 for numeric data type, and 0,0,1 for date data type).

Range values: We map others to a range [0,1] using a SIGMOID-like function as shown in
Fig. 9. We use the function f �x� � 1=�1� kÿx� for normalizing numeric ranges, with k � 1:01.
Varying k changes the steepness of the function curve. For example, choice of using k � 1:1
provides reasonable discrimination for the range �ÿ50; 50�. For some metadata, such as ®eld
length, that have only positive values, we use the function f �length� � 2 � �1=�1� kÿlength� ÿ 0:5�
with k � 1:01. This normalization gives us discrimination for the range [0,100].

The reasons for not using a linear normalization function, such as value/maximum value, are as
follows:
· Avoid false match: an attribute with ®eld length of 10 in a database where the maximum ®eld

length is 100 and an attribute with ®eld length of 100 in a database where the maximum ®eld
length is 1000 become the same after the linear normalization (10=100 � 100=1000); however,
they are di�erent: this is a false match.

· Avoid false drop: an attribute with ®eld length of 10 in a database where the maximum ®eld
length is 100 and an attribute with ®eld length of 10 in a database where the maximum ®eld
length is 1000 become the di�erent after the linear normalization (10=100 6� 10=1000); however,
as they should be the same this is a false drop.
The information extracted from di�erent databases is then transformed into a single format

and normalized. The parser output is a set of vectors as shown in Fig. 7b; each vector presents the
signatures of an attribute, in term of its schema design and data content patterns. Fig. 10 shows an
example of the metadata representation of an attribute book_title. Note this captures that the data
type is character and it is not a key. If a database contains 10 attributes and we extract 20 dis-
criminators to describe the signatures of these attributes, the parser output has 10 vectors and
each vector has 20 values in the range of �0::1�.

Fig. 9. SIGMOID function versus linear function.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 61

3.4. Classi®er

Before the metadata described in Section 3.3.3 is used for neural network training, we use a
classi®er to cluster attributes into categories in a single database. The are several reasons for using
the classi®er as the ®rst step of this semantic integration system:
1. If we have information in one database that refers to the same real-world information, we do

not want to separate them into two di�erent categories.
2. Ease of training. Classi®cation lowers the number of nodes in the back propagation network

output layer. It reduces the problem size and therefore the training time.
3. After the attributes of database A are classi®ed into M categories, the attributes of database B

are compared with these cluster centers instead of each attribute of database A; this is less com-
putationally expensive.

4. Networks cannot be trained with a training set where there are two identical answers to a ques-
tion and one is correct while another is not. The classi®er detects cases where this is true, and
groups them to one cluster. Otherwise, the network cannot be trained to point out they are
di�erent.
SEMINT uses the Self-Organizing Map algorithm [10], an unsupervised learning algorithm, as a

classi®er to categorize the attributes within a single database. The original SOM algorithm allows
users to specify the number of clusters to be created. However, we do not know in advance how
many clusters to expect. Therefore, we have adapted this algorithm so that the users or the DBA
(database administrator) can determine how ®ne the categories are by setting the radius of clusters
rather than the number of categories.

Assume that we use N discriminators to characterize an attribute. Each attribute's character-
istic vector represents a point in the N-dimensional space. The self-organizing map algorithm
clusters (classi®es) these points in the N-dimensional space according to the Euclidean distance

Fig. 10. Discriminator vector of an attribute.

62 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

between them and the maximum allowed radius of a cluster, given by the user. Given our nor-
malization procedure, the maximum distance between any two points in the N-dimensional space
is

����
N
p

. In our experiments with SEMINT we have found that a maximum radius value of
����
N
p

=10
is a good default value that can be adjusted by the user if so desired. The output of the classi®er is
the weights of these cluster centers (locations in this N-dimensional space).

We now use an example to illustrate this. Assume there are six attributes in a database. Table 2
shows there are two tables in the database and there are four and two attributes in those two
tables, respectively. Fig. 11 shows how these six attributes are located in a three-dimensional space
corresponding to the discriminators: key ®eld, length and data type. Note that this represents a
simpli®cation of the actual representation in SEMINT so that we can draw points in a three-
dimensional space. We may specify a maximum radius value of

���
3
p

=10 for clustering these six
attributes. Hence, the data type speci®cation is lumped into one characteristic value (instead of
two): 1 represents a numeric data type and 0 represents a character data type. The classi®er
clusters these attributes into four clusters as shown in Fig. 11. The output of the classi®er are the
vectors of cluster center weights that are computed by taking the average over the attribute

Table 2

Example of attribute schema

Attribute name Key ®eld? Length Data type Representation

Personnel table:

SSN Yes 9 Numeric (1, 0.47, 0)

Name No 11 Character (0, 0.6, 1)

Address No 25 Character (0, 0.7, 1)

Tel# No 10 Numeric (0, 0.51, 0)

Employee table:

Emp_ID Yes 9 Numeric (1, 0.47, 0)

Emp_name No 12 Character (0, 0.62, 1)

Fig. 11. Illustration of a 3-D self-organizing map.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 63

vectors in the corresponding clusters. In this example, the cluster centers for clusters 1, 2, 3 and 4
are (0,0.7,1), (0,0.61,1), (1,0.47,0), (0,0.51,0), respectively.

Fig. 12 shows a self-organizing map neural network architecture that contains two layers and
whose nodes are fully connected. The number of input nodes, N, is the number of discriminators
used to characterize an attribute and M is the number of clusters generated. We observe again that
M is determined by the neural network rather than being speci®ed by the user as in the original
SOM algorithm [10]. The detail of the adapted self-organizing map neural network algorithm is
given in Appendix A.

The output of the classi®er is the vectors of cluster center weights and each vector still has the
same number of discriminators, N. The classi®er window in SEMINT and its output are shown in
Fig. 13.

Fig. 12. Classi®er architecture in SEMINT.

Fig. 13. (a) Classi®er window in SEMINT and (b) Classi®er output result.

64 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

3.5. Category learning and recognition neural networks

The output of the classi®er (M vectors) is then used as training data for a back-propagation
network. The back-propagation learning algorithm [27,28] is a supervised learning algorithm,
where target results are provided. It has been used for various tasks such as pattern recognition,
control, and classi®cation. Here we use it as the training algorithm to train a network to recognize
database attributes' signatures. The training data here is the cluster centers output from the
classi®er, that represent the signatures and patterns of attributes in a particular database. When
we provide the trained neural network signatures of attributes (from another database) it tells us if
there are matches ± corresponding attributes in the other database. Although the need for training
data normally implies human e�ort, our training data is generated automatically by the classi®er.
The process is fully automated and no human-generated training data is needed.

The output of the classi®cation process for our running example from Fig. 11 (where N � 3 and
M � 4) are the clusters center weights, as discussed before. These weight vectors are tagged with
target results (cluster numbers) and they constitute the training data for the back-propagation
neural network. The training data are as follows:

Fig. 14 shows a three-layer neural network for recognizing M categories of patterns. There are
N nodes in the input layer on the left side, each of which represents a discriminator. The hidden

0 0.70 1 ! Cluster center 1 (Address)
1 0 0 0 ! Target result
0 0.61 1 ! Cluster center 2 (Name, Emp_name)
0 1 0 0 ! Target result
1 0.47 0 ! Cluster center 3 (SSN, Emp_ID)
0 0 1 0 ! Target result
0 0.51 0 ! Cluster center 4 (Tel#)
0 0 0 1 ! Target result

Fig. 14. Back-propagation neural network architecture in SEMINT.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 65

layer consists of �N �M�=2 nodes in the middle that are connected to all input and output nodes.
The output layer (on the right side) is composed of M nodes (M categories). Thus the number of
connections (edges) in the network is �N �M�2=2.

Initially, the connections in the network are assigned arbitrary values in the range �ÿ0:5; 0:5�.
During training the network changes the weights of the connections between the nodes so that
each node in the output layer generates its target result (corresponding category number). The
forward propagation (generating the output), error calculation (computing the di�erence between
the actual output and target output), and backward propagation (changing weights based on the
errors calculated) continue until the errors in the output layer are less than the error threshold
given by the user.

For example, for the training data just shown, when presented with the input `0 0.70 1' (weights
of cluster center of category 1), the network should output the target result `1 0 0 0', the target
result that indicates category 1. Assume that for the current iteration of the back-propagation
algorithm the output generated for this input is `0.95 0.05 0 0.1'. If the error threshold is 0.005, i.e.,
the maximum di�erence between any two corresponding components of the target result and the
generated result cannot exceed 0.005, the iteration continues until the required convergence in
results. After training, the network can be used in order to encode the metadata of another
database by matching each input attribute pattern to the closest output node and giving the
similarity between them.

As an example, take the result of the classi®er in Fig. 12 that clustered `Emp_ID' and `SSN'
into one cluster. The weights of these cluster centers are then tagged to train the network in
Fig. 14. After the back-propagation network is trained, we present it with a new pattern of N
discriminators standing for attribute health_Plan.Insured#. This network determines the similarity
between the given input pattern and each of the M categories. In Fig. 14, the network shows that
the input pattern `Insured#' is closest to the category 3 (SSN and Emp_ID) with similarity 0.92. It
also shows health_Plan.Insured# is not likely related to other attributes since the similarity is low.

We have implemented two versions of back-propagation algorithms, standard [27,28] and
quick-propagation [6]. For details of the training algorithms, see Appendix B.

3.6. Using neural networks

To determine attribute correspondences between two databases, users take the network trained
for one database, and use information extracted from the other database as input to this network

Fig. 15. (a) Similarity determination window in SEMINT and (b) Output results.

66 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

as shown in Fig. 15a. The network then gives the similarity between each pair of attributes in the
two databases. Users can also specify ®ltering functions so that SEMINT only presents those
pairs with very high similarity (e.g., only recommend the top 10 pairs of similar attributes or those
similarity of at least 0.80). System users check and con®rm the output results of the trained
network. The output results, shown in Fig. 15b, include lists of corresponding attributes and their
similarity.

3.7. Automated attribute correspondence identi®cation procedure (summary)

Fig. 16 shows a diagram of our semantic integration procedure. Note the only human input is
to give the threshold for the classi®ers (once per database) and to examine and con®rm the output
results (similar pairs of attributes and the similarity between them).

Step 1: Use DBMS speci®c parsers to get information from the databases to be integrated. The
system transforms this information into a common format. The output of these parsers include
schema information, statistics of data values, and types of characteristics available. This is done
once per database.

Step 2: The system creates a self-organizing map network with N nodes at the input layer. Use
information of database A as input for the self-organizing network just created. This network
classi®es the attributes in database A to M categories. M is not pre-determined; the number of
categories (clusters) created depends on the threshold set by the system trainer (e.g., the DBA of
that database). Note that M (with su�cient distinguishing data) should be the number of distinct
attributes in the databases, that is the attributes that do not have a foreign key relationship to
other attributes in the database.

The output for this step is the number of categories (M) and the weights of cluster centers (M
vectors of N weights). The weights of the cluster centers are then tagged as training data to train
the network created in the Step 3.

Step 3: The system creates a three-layer back-propagation learning network with N nodes at the
input layer, M nodes at the output layer and �N �M�=2 nodes at the hidden layer. During the
training, the network changes its weights so that each node in the output layer represents a cluster.
The threshold and the learning rate can be set by the system users. After training, the network
encodes data by matching each input pattern to the closest output node and giving the probability
values of similarity between input pattern and each category. Note that the Steps 1±3 must be
performed only once per database.

Fig. 16. Attribute correspondence identi®cation procedure.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 67

Step 4: The input for the network trained in Step 3 is the attribute information of another
database (database B). 4 The network then gives the similarity between the input attribute of
database B and each category of database A.

Step 5: System users check and con®rm the output results of the trained network. The output
results include lists of similar attributes and the similarity between them. This is the only human
input required on subsequent integrations with other databases.

In Fig. 17, the attributes in database 1 are clustered into four categories using the classi®er and
the cluster center weights are then used to train neural network. After the neural network is
trained (it knows the signatures of these four categories), it matches the attributes in database 2
with these categories classi®ed from database 1. The output result of this process is shown in
Fig. 18.

4 Clustering attributes of database B is optional. This may add work to a single integration, but the clustering information can be

reused to save both computation time and human e�ort in future integrations.

Fig. 17. Example of attribute correspondence determination process.

Fig. 18. SEMINT output for example in Fig. 17.

68 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

4. Experiments on real databases

Given the `fuzzy' nature of both this problem and the solution presented, it is important to
verify this work experimentally. In this section, we present experimental results using SEMINT to
solve real database integration problem in identifying attribute correspondences. Two measures of
success/failure are examined. They are de®ned as follows:

Recall :
Corresponding attributes correctly recommended

Total actual corresponding attributes in the databases
;

Precision :
Corresponding attributes correctly recommended

Total corresponding attributes recommended
:

For example, assume there are 50 pairs of corresponding attributes in two databases, and
SEMINT recommends 60 pairs of corresponding attributes. After examining the results, the user
discovers that 45 of the 60 pairs of recommended attribute correspondences are correct. The
Recall is then 90% (45/50) and the Precision is 75% (45/60). Recall tells us the e�ectiveness of
SEMINT; that is, if we can count on SEMINT to ®nd corresponding attributes and save us from
searching on our own (at a cost of an average 4 h to ®nd one pair of corresponding attributes in
US West's experience). Precision gives a measure of e�ciency of SEMINT; that is, how reliable
the recommendations are.

It is not easy to ®nd appropriate databases for experiments. The criteria of databases suitable
for our experiments is that databases need to be realistic enough to manifest the qualities that
make this problem challenging and well-understood (the corresponding attributes are known), so
as to allow us to compute the preceding measures.

Small or `toy' data sets do not meet the requirement that they be realistic. Finding large da-
tabases that are available for research use is di�cult as well, ®nding pairs of databases that are
well-understood and thus can serve as a baseline for comparison is exceedingly di�cult. Therefore
some of our experiments using tables containing related data from a single database. (This gives
well-understood and realistic data, but is dubious with respect to the problem being realistic.)

Our experimental results include using SEMINT on real databases of various DBMSs in-
cluding IBM AS/400, Sybase and Oracle. These databases range from small to huge database
systems in large organizations; and databases from di�erent countries using di�erent languages.
The sizes of these databases range from a few megabytes to terabytes. We categorized the ex-
perimental environments as follows:
· Similar databases from a single organization. This is done both through simulation with tables

from a single database, and by comparing `old' and `new' versions of a database (this tends to
yield solid recall and precision numbers; and shows the applicability of SEMINT in legacy da-
tabases). The databases for our experiments are from Reuters Information Systems and others.

· A sample of a very large database in a single large organization, by separating the database into
two parts, and searching for similarities between those parts (this tests the ability of SEMINT
to scale to large problems). The databases for our experiments are from Boeing Computer
Services.

· Databases containing similar information from di�erent organizations, where a manual detec-
tion of attribute equivalences has been performed (a realistic test, however we have been unable

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 69

to ®nd enough databases to perform a substantial number of these tests). The databases for our
experiments are from NSF in USA and NSERC in Canada.
We ®rst present some preliminary results using limited metadata manually extracted from small

databases. In many collaborations, we were not permitted to run our parser programs on the
computers of participating organizations. Rather, we were only provided hard copies of database
schema. We then present results from larger databases, based on the complete SEMINT imple-
mentation and automated collection of metadata.

4.1. Preliminary experimental results

Our initial experiments with SEMINT were on similar databases from the same organization
containing a good deal of common information. 5 We extracted metadata information from these
databases manually; not all of the information described in Table 1 was available. One pair was
transaction data for British pound call options and put options from 2 March 1983 to 27 June 27
1985. The only information available for these databases was a sample of the data. However, we
derived the schema based on this sample. The second pair was IBM AS/400 databases provided by
Marketing Information systems in Evanston, Illinois; we used the ®eld reference ®les to obtain
schema information (the data contents were not available.) The third pair was Sybase databases
provided by Reuters Information Systems in Oak Brook, Illinois, for which we also had only
schema information.

The result of these experiments is shown in Fig. 19. These indicated that our method had
promise: The metadata values clearly corresponded to the semantics of the attributes, and the
neural network training process was able to determine what this correspondence was for each pair
of databases. We can see that there is a substantial gap between high and low similarity as de-
termined by SEMINT, and with one exception pairs with high similarity re¯ected corresponding
attributes, and low similarity re¯ected non-corresponding attributes.

The one false match in these experiments was with the British Pound Option Transaction
Databases (upper portion of Fig. 19). SEMINT was unable to distinguish between spot ask and
spot bid price. These attributes were identical in our generated schema information, and as market
forces cause spot ask and spot bid prices to move in `lock step', the data content statistics are quite
similar as well. However, the recall in these experiments is excellent (100%), and the precision is
very high (90%, 100% and 100%). For more details of these experiments, please see [14]. 6

These preliminary results convinced us that this technique had promise, so we developed a full-
scale implementation allowing us to automatically extract metadata from databases. This allowed
us to perform larger experiments. We now present two large-scale tests: One in collaboration with
Boeing Computer Services (to test how SEMINT works on very large databases), and another on
funding award databases provided by the US National Science Foundation (NSF) and the Ca-
nadian National Science and Engineering Research Council (NSERC) (a test of inter-organiza-

5 These databases were also used for our experiments in [13].
6 We also performed some tests of cross-DBMS integration, however given the data we had available these were not very interesting.

For example, we tried integrating one of the IBM AS/400 databases with one of the Sybase database. These contain no common

information. The average similarity was 0.006 and the maximal similarity was 0.021. The result shows that attributes of these two

databases are totally di�erent (as expected).

70 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

tion database integration). We will ®rst discuss the collaboration with Boeing, then the results on
the funding award databases.

4.2. The Boeing company tooling database

Boeing Computer Services is interested in general problems of knowledge discovery in data-
bases, and sees SEMINT as a possible component of this. A ®rst step is to verify the e�ectiveness
of SEMINT. Their environment is ideal for this, as they have a large number of well designed and
well understood production databases. This enables us to test if SEMINT can `discover' already
known relationships in the data.

4.2.1. Experiment description
We tested SEMINT on the tooling database at Boeing Computer Services in Bellevue,

Washington. The tooling database at Boeing runs under the Oracle7 DBMS. The database

Fig. 19. Preliminary experimental results on various DBMSs.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 71

contains 12 tables and 412 attributes; some attributes have millions of rows. The biggest table has
147 attributes and the smallest table has 5 attributes. Its complexity and size (in terms of the
numbers of rows and attributes) provide a good test bed for SEMINT.

We ®rst used our Oracle7 parser (Section 3.3) to extract metadata from the database (schema
speci®cation information and statistics on data contents). All of the 20 discriminators shown in
Table 1, are used in this experiment.

We split this information into two parts, to represent two databases containing related infor-
mation. The ®rst part (denoted AM) had 4 tables with 260 attributes; the second (OZ) had eight
tables with 152 attributes. As the database as a whole was well understood, we were able to
categorize the relationship between two attributes into three categories: Equivalent (e.g., SSN and
ID), similar (e.g., student name and employee name), and di�erent (including completely unre-
lated and slightly related attributes). We then checked to see how well SEMINT could ®nd
corresponding attributes (either similar or equivalent): Those that are `candidates' for integration,
applying integrity constraints, or further study on their behaviors (data mining, etc.). To do this,
we trained a neural network to recognize the attributes of AM, and then determined the similarity
between this and OZ.

4.2.2. Experimental results
We ran the experiment without assistance from DBAs, database owners, or anyone else with

knowledge of the database, as with some knowledge of the database, we could interact with
SEMINT and change various parameters to improve the results.

The precision in this test was approximately 80%. And the recall was close to 90%. Please note
that we cannot give speci®c recall ®gures since we were only provided with the tooling database
for the experiment. We can only judge based on the tooling database. However, we cannot de-
termine how many attributes in the database other than the tooling database that are actually
associated with. As given the size and complexity of the tooling database and the whole infor-
mation system supported in BCS, it is extremely di�cult to say exactly how many `corresponding'
attributes exist since this is based on applications and the level of integration e�orts.

Determining Precision is much easier, as only the recommendations need to be checked (and
not all possible pairs). We can use foreign key relationships to ®nd completely equivalent attri-
butes, but this would give an unfairly high recall number as there are many corresponding at-
tributes that we want SEMINT to ®nd, but that are not re¯ected in foreign key relationships. We
were able to ®nd most of these completely equivalent attributes.

One interesting question is how much bene®t was gained from using a neural network to de-
termine the similarity (as opposed to a preprogrammed `similarity function'). To test this, we
computed the Euclidean distance between attributes; carefully tuning the distance where we
considered attributes to be similar gave us a precision close to 90%. This would appear better than
the networks at 80%, however classi®cation based on Euclidean distance only gave 59 `groups' of
corresponding attributes, the network gave us 134. This is shown in Fig. 20. Increasing the
Euclidean distance where we consider attributes to be similar caused a huge drop in precision. The
neural network was much less sensitive to such changes; the results using 0.8 and 0.9 as a
threshold for considering attributes similar were nearly identical (only six additional groups, some
of which did contain similar information).

72 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

Without assistance of a tool like SEMINT, to ®nd equivalent and similar attributes (without
knowledge of the databases) is tedious. For example, in order to integrate AM and OZ, we need to
go over 39,520 pairs of attributes (260 � 152). This is perhaps more easily visualized as 659 pages
of printout (at 60 lines per page). With SEMINT, users can get many of the relationships with
comparatively little e�ort (two pages of recommendations).

Another interesting question is the computational requirements of SEMINT. Table 3 shows the
training time in our experiments. The time required to parse metadata from Boeing databases is
less than 10 min wall clock time with applying sampling techniques. However, the time needed to
parse metadata from a database varies. It is a function of the number of attributes, the number of

Fig. 20. Experimental results on boeing tooling database.

Table 3

System performance and human e�ort needed for BCS database experiments

Process CPU time Human e�ort

Extract information from databases Varies Little (once per DBMS)

None (handled by parser)

Classify attributes into categories < 1 second Little (give threshold, once per database)

Train networks for AM 1983 seconds Little (give threshold, once per database)

Train networks for OZ 369 seconds Little (give threshold, once per database)

Determine similarity < 0.1 second Some (check results)

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 73

rows in a table (assuming no data sampling technique is applied), the machine and DBMS used,
and the location of the database (e.g., remote or local database), and the load on the database.

The rest of the experiment was run on an IBM RS/6000 model 320H, running AIX 3.2.5. The
CPU time needed for the classi®cation or recognition processes was under 1 s. The training time in
our experiments was reasonable when we set the threshold to 0.1. It took less than 10,900 epochs
(cycles of forward-propagation, backward-propagation, and weight-update) to train the net-
works; this is very e�cient for a network of this complexity. The training time can be reduced
using larger thresholds, and better training algorithms are also an area for further research.

4.3. US NSF and Canada NSERC funding award databases

The proceeding experiments show that this method can be useful. However, we are primarily
interested in integrating much more diverse collections of information than we have discussed so
far. Gaining access to databases in diverse organizations is di�cult (although with improved
ability to make use of such access from I3 research, we expect more databases will become
available). We were able to obtain one pair of databases that re¯ect a likely real-world case where
intelligent integration of information would be of interest.

The NSF and NSERC award databases are both stored in relational databases. They contain
information on research grants, including the project investigators, title, award amount, institu-
tion, program manager, division granting the award, etc. The NSF database contains 47 separate
attributes (in one table), the NSERC database contains 32 (in six tables). The NSERC data
represents 21 distinct types of information (there are ®ve keys duplicated in award and each of the
other tables, and six titles given in both English and French). They contain a wide variety of
information, with a few attributes re¯ecting the same information.

An additional challenge posed by these databases is the lack of common entities. There are no
common grants, institutions, program managers, or investigators between the two databases.
Such `common information' could be expected to ease the integration problem.

Although unable to access these databases directly, we were able to obtain the data and most of
the schema information and transfer these to an Oracle7 database. We copied the Schema in-
formation as directly as possible, although some information (such as constraints on the data) was
unavailable. We did not add any information; we feel the results would only be better if we ac-
tually had access to the databases.

To give a baseline for the research, we performed a manual comparison of the databases. This
required considerable `domain expertise', such as knowledge of individual grants, program
managers, and the structure of the granting organizations. Table 4 shows the common attributes
between the databases. Although certain relationships were obvious, it took several days to as-
certain all the information in the table (particularly the meaning of some of the code values).

Table 5 summarizes the results of SEMINT trained on the NSERC database and used to ®nd
corresponding attributes in the NSF database. The NSERC database was classi®ed at 0.01 (this
separates French and English titles). The threshold for similarity was 0.99. At this similarity
threshold, we achieve a recall of 38% (6/16). The precision is 20% (6/30).

Note that we do well with project title, recipient name, and award amount. We fail on insti-
tution name ± NSERC abbreviates these di�erently from NSF, and the NSERC database has
many other character ®elds that appear closer to the institution name than org_name. The dates

74 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

are di�cult, as the NSF database stores them as a DATETIME, and the NSERC database stores
them as an integer year. This would be di�cult to handle without some domain knowledge. One
option would be to normalize so that statistics on a date and an integer year correspond (this
helps), but this makes all dates appear very similar, and cuts our ability to distinguish between, for
example, expiration and start dates.

The codes are di�cult ± they re¯ect similar information, but any meaningful mapping would
require substantial domain knowledge (beyond ANY information available in the database). For
example, the NSF database stores all codes as alphanumeric strings, and the NSERC database
stores them as integers (with the exception of type of grant).

Table 6 shows the time required for the various stages of SEMINT (the database was on an
IBM RS/6000 model 220, the remaining tasks were on an RS/6000 model 320H). Note that the
`slow' steps (extracting information and training the network) only need to be done once per

Table 5

SEMINT results comparing NSF and NSERC databases (correct matches in boldface)

NSF NSERC Similarity

awd_titl_txt project 1.0000

pi_last_name recp_name 0.9999

copi_last_name_1 recp_name 0.9949

copi_last_name_2 recp_name 0.9970

est_tot_awd_dol amount 0.9983

to_date_dol amount 0.9944

equp_dol amount 0.9955

awd_istr_abbr province 0.9942

org_code grant_code 1.0000

pgm_ele_code grant_code 0.9998

inst_id grant_code 0.9976

and 8 other matches to grant_code

sen_acad_mnth_cnt ctee_code 0.9990

and 6 other matches to ctee_code

proj_role_abbr pmt 0.9990

and 3 other matches to pmt

Table 4

Actual attribute correspondences between NSF and NSERC databases

NSF NSERC Description

awd_titl_txt project Project Title

pi_last_name, copi(1-4) recp_name Recipient

inst_shrt_name org_name School/organization name

est_tot_awd_dol,to_date_dol amount Dollar amount

awd_e�_date comp_yr Starting year

inst_id org_code School/organization code

org_code ctee_code,area_code Program giving grant

pgm_ele_code area_code,disc_code Program discipline

awd_istr_abbr grant_code Type of grant

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 75

database. The similarity determination is fast enough to be done interactively (for each new
database we want to integrate with) and this allows dynamic integration.

5. Experiences with SEMINT

In this section, we discuss our experiences using SEMINT to the problem of database inte-
gration. Then we highlight some other applications where we have applied SEMINT.

5.1. Implementation of neural networks

One common major concern of using neural networks is training time. The foundation of the
neural networks paradigm was laid in the 1950s. Recently, with development of more powerful
hardware and neural network algorithms, neural networks have emerged as a powerful pattern
recognition technique. Selecting proper algorithms and implementing and tuning them for the
tasks are essential to their e�ectiveness and e�ciency.

We selected the back-propagation algorithm for its fast convergence speed and more noise-
resistant, over other machine learning techniques such as symbolic learning and genetic algo-
rithms. For advantages of back-propagation algorithm and comparison with other algorithms, see
[2].

We have implemented two back-propagation algorithms: the standard back-propagation al-
gorithm [27,28] and the quick back-propagation algorithm [6], that employs a more `aggressive'
and `adaptable' learning rate method to speed up the training process. The quick back-propa-
gation algorithm does perform substantially better than the standard algorithm in most cases;
further improvement in training algorithms is possible. Our learning process also implements
batch learning to speed up the learning process as the empirical study described in [7].

We also employ a classi®er to cluster attributes before presenting them as a training set for the
pattern recognition algorithms. This step further reduces the training time substantially. Classi-
fying at a higher threshold gives a shorter training time, as it is easier to train a net where the
distance between the input data items is larger. When we did not use the classi®er at all (except to
eliminate items with identical descriptions), training took much longer.

5.2. Experiences with neural networks

We ®nd that the training time is reasonable as long as we provide less than 50 categories of
attributes as training data. We also found that neural networks generally work well in solving this
`fuzzy' problem. Our experiments on the tooling database at Boeing Computer Service shows that

Table 6

System performance (wall-clock time in seconds): Award databases

Process NSERC NSF

Extract information from databases 83 184

Classify attributes into categories < 0.1 s

Train networks (classi®ed at .05) 156 247

Train networks (classi®ed .01) 724 5290

Determine similarity < 0.1 s

76 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

classi®er (based on Euclidean distances) is very e�ective in identifying identical or almost identical
attributes as it treats each metadata equally. On the other hand, pattern recognition neural net-
works are more e�ective in detecting similar attributes in additional to identical or almost identical
attributes.

As we are working on heterogeneous database integration, ability to identify identical and
almost identical attributes is not su�cient because we are dealing with fuzzy attribute relation-
ships. Many corresponding attributes are really `similar' in schema design or data patterns, such
as char(14) versus char(15). Recall is as important as precision, and some time it is even more
important since manual search is almost impossible. Training process gives the neural networks
the ability to identify identical, almost identical as well as similar attributes by exploring their
signatures in schema and data contents at some cost to precision. This is understandable because
we are trying to identify corresponding attributes in di�erent databases, DBMSs, organization,
even di�erent countries and languages (NSF and NSERC databases) and usually designed by
di�erent DBAs at di�erent times.

5.3. Experiences with database integration

We have testing SEMINT in di�erent environments from databases within a single small or-
ganization to databases contributed from two di�erent countries. We argue that the focus and
di�culties are di�erent in each environment:

Enterprise-wide database integration: SEMINT has been very e�ective in providing attribute
correspondence identi®cation functionality. We see from our experiments on transaction data of
British pound option, and databases provided by M.I.S. Systems and Reuters Information Sys-
tems that schema designs and data patterns are quite similar. The metadata we used is e�ective
signature of attributes.

Very large database integration: The databases in larger organizations are more complicated
than those in smaller organizations. The di�culties include databases designed for di�erent
purposes at di�erent times. Databases may migrate from some older database systems. Data may
be accumulated over a very long period so that we need to deal with inconsistency and missing
data. Therefore, the focus is to collect metadata and transform it into a single format. Data
sampling is also very important as we need a huge amount of data and attributes. Moreover, these
data and attributes may be inconsistent. Our approach is more fault tolerant and less time con-
suming compared to other approaches.

How to present the results (recommended corresponding attributes) is also an issue since a poor
presentation of results cannot visualize e�ectively and e�ciently such as presenting users hundreds
of pages of printout. From our discussion with Boeing Computer Service, providing an interactive
working environment for attributed correspondence identi®cation is helpful. Although SEMINT
is automated, the results (a ranking of likely correspondences) can be adjusted to allow the user to
specify the number and minimum similarity of potential correspondences to examine.

Inter-enterprise integration (NSF and NSERC Databases): This is the most di�cult information
integration situation we face. Here the attribute correspondence identi®cation problem is com-
pounded by other types of heterogeneity [42]. These include representation, scale, and level of
abstraction as well as language problem (English versus French) and lack of complete metadata.
In our experiment, we use only metadata that can be extracted from DBMSs. However, further

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 77

work, such as integrating with domain knowledge bases, is needed to determine speci®cally what
post-processing works in general.

5.4. Scalability of SEMINT

The only human input necessary to run SEMINT is to specify the DBMS types and database
connection information and to examine and con®rm the output results. The other processes can
be fully automated. Users are shown corresponding attributes with similarity greater than a de-
sired threshold. The users can further specify the maximum number of similar attributes to be
retrieved (e.g., top 10 pairs with similarity >0.8). Note that the training of a neural network needs
to be done only once; the actual use of the network to determine attribute correspondences is very
e�cient and can be done almost instantly. In addition, users can provide additional domain
knowledge to eliminate some unnecessary comparisons.

We can further reduce the neural network training time by building several smaller networks
rather than a large network. For example, assume that we want to train neural networks to
recognize 1000 distinct attributes with 20 discriminators. Instead of one three layer back-prop-
agation network we could build 20 small neural networks, each of them capable of recognizing 50
distinct attributes. The advantage of this technique is that the total number of connections in the
neural network can be substantially reduced from 20 � �20� 1000�=2 � 1000 (10.2 million) to
20 � �20� 50�=2 � 50 � 20 (0.7 million).

5.5. Other applications of SEMINT

SEMINT aims at assisting DBAs in ®nding corresponding attributes among heterogeneous
databases in large organizations. It has been tested using various databases to solve real world
problems. SEMINT has been applied to identify attribute correspondences in large organizations,
such as Boeing Computer Services (BCS) as described in Section 4 in their e�orts in database
integration.

Although SEMINT primarily serves as a tool for identifying attribute correspondences in
heterogeneous databases, we have also applied it to software reuse problems.

There are three steps in constructing software from reusable components: Conceptualization
(modeling process), retrieval and selection (retrieval process), and reuse (reuse engineering pro-
cess). Conceptualization determines what components are needed according to the user require-
ments. Retrieval and selection allocate candidate components and evaluate them for reuse. The
reuse engineering process involves validating useful components and making necessary changes to
incorporate them into the system.

Reuse is a hunter/gatherer intellectual activity. We see that the retrieval phase in software reuse
and matching phase in heterogeneous database integration are two sides of the same problem:
Determine the similarity between two existing schemas. The two schemas can be either two
component databases, a conceptual schema and a candidate component schema, or a component
schema and a global schema. In the software reuse process, designers of software systems have a
conceptual schema in mind, then search for reusable component schemas (CS) that match the
speci®cation of the conceptual schema. This is a `top-down' process as shown on the right in
Fig. 21.

78 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

SEMINT has also been extended and applied to the problem of component clustering retrieval
in software reuse. We have developed a technique for constructing information systems, such as a
data warehouse, based on component schema reuse, as described in [16]. Based on the concept of
metadata extraction and clustering techniques, we also apply SEMINT to identify C program
subroutines with similar structures, fan-in, and fan-out. In this application, a CASE tool is used to
extract structural features and other signatures of C program sub-routines. The output of the
CASE tool is then used as input for SEMINT. For more detail, see [3].

6. Conclusions and future research

We have presented a method that provides substantial assistance in identifying corresponding
attributes in heterogeneous databases. SEMINT uses only information that can be automatically
extracted from a database. One novel feature is that how this metadata characterizes attribute
semantics is learned, not pre-programmed. This allows SEMINT to automatically develop dif-
ferent `solutions' for di�erent databases. The means of performing semantic integration is cus-
tomized to the domain of the databases being integrated. This is done without human (or other
outside) intervention; the `domain knowledge' is learned directly from the database. This enables
us to ®nd attribute correspondences between databases without providing any advance domain
knowledge; rather than substantial a priori e�ort to codify domain knowledge, users need only use
their domain knowledge to verify the recommendations of SEMINT.

We discuss our experiences of database integration with SEMINT in di�erent environments.
SEMINT does a good job in identifying attribute correspondences as we can see how much
metadata information that SEMINT is provided (in fact, SEMINT automatically extracts this
metadata rather than being provided). We argue that in order to automate semantic integration
process in di�erent domains, explicitly expressing semantics as metadata and developing domain
knowledge to incorporate all kinds of available information are essential to the success. This is
also pointed out in [5,25].

Integrating heterogeneous databases is not an easy problem, particularly when dealing with
multiple domains where no consistent terminology can be expected. The meaning of a term or
attribute in a database can be ambiguous. Synonyms and homonyms are common. Even using the

Fig. 21. Semantic integration process vs. component retrieval process.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 79

same terms to describe concepts still does not assure consistency of factual information in da-
tabases [41]. Once the attribute correspondences are identi®ed, more complex hierarchically
structured correspondences can be constructed maybe through ontological engineering, such as
described in [4,12].

There is still room for improvement in SEMINT, particularly in the neural network training
process. We are working on combining SEMINT with the naming-based approach and applying
domain speci®c ontology to improve SEMINTs performance. For example, when we examine a
data item `departure', its ®eld name only tells us this data item is related to departure. We then
®nd some city names in this ®eld, say, `Chicago' or `ORD', we may conclude departure records
departure city or airport, not departure date or time. On the other hand, if we ®nd the contents in
this ®eld are dates, we may come up a di�erent conclusion ± `departure' records departure date,
not departure city. Also, if we ®nd some ®rst names such as `John' exist in two ®elds, we may
conclude these two ®elds are `®rst name' even if their ®eld names are not assigned with meaningful
names and their schema are di�erent, say, Char(10) and Varchar(20).

Another area for research is how we can use the ideas in SEMINT to assist in the problem of
identifying heterogeneity. [42] pointed out di�erent types of heterogeneity such as representation,
scale, and level of abstraction. [30] shows how semantic values can either be stored explicitly or be
de®ned by environments using conversion functions (e.g., 4(LengthUnit� `feet') and
48(LengthUnit� `inches')). This allows heterogeneity to be `resolved' because of the explicit
conversion. However, this does not tell us if both items refer to the same real-world class of in-
formation, e.g., one may be a width and the other a height, nor how to develop these conversions.

We may be able to develop an automatic means to `suggest' that such a conversion is needed,
however. For example, an extended SEMINT could determine that two attributes, say annu-
al_sale and monthly_sale, are similar in schema design, except for the range of values. By ex-
amining their Coe�cient of Variance (based on percentage rather than scale), SEMINT can
suggest that annual_sale and monthly_sale are corresponding attributes with possible scale het-
erogeneity. We are incorporating scaling functions (possibly from a domain speci®c library of
scaling functions) that would improve SEMINT's performance in presentation of heterogeneity.

Acknowledgements

We would like to express our appreciation to Larry Henschen and Peter Scheuermann at
Northwestern University for their invaluable comments and suggestions on this work. We would
like to thank Chuck Johnson at Boeing Computer Services for his assistance in running the
Oracle7 parser and some experiments in this paper. We also thank Jim Presti, James Fulton, Pat
Riddle, and Scott Smith at Boeing Computer Services for their helpful comments on the prototype
of SEMINT. We would also like to thank Al Charity and Michael Morse at the National Science
Foundation for making the NSF data available, and Yongjian Fu at Simon Fraser University for
providing the NSERC data.

Appendix A. Self-organizing classi®er algorithm

The detail of the self-organizing classi®er algorithm used in this paper is:

80 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

Step 1: Present a new pattern X � Xi; i � 1; 2; . . . ;N , where N is the number of characteristics
compared. The values of Xi after normalization are between 0 and 1. Without normalization,
the e�ect of one node with analog input (e.g., value range) may be much more signi®cant than
the e�ect of other nodes with binary input (e.g., key ®eld or not). We call these values weights of
the input pattern.
Step 2: Calculate the Euclidean distances from a pattern to existing cluster centers. If no cluster
exists, go to Step 5.
Step 3: Choose the cluster nearest the pattern if the input pattern is within the threshold radius.
If it is not within the threshold radius, go to Step 5.
Step 4: Include a new member in the cluster by recalculating the weights of this cluster center.
Go to Step 6 if there is no input pattern left. Otherwise go back to Step 1
Step 5: Create a new cluster node. The weights of the new cluster center are the weights of the
input pattern. Repeat with Step 1 until no input patterns remain.
Step 6: Each cluster is a category. The weights of cluster i are C � Ci; i � 1; 2; . . . ;M , where M
is the number of clusters (categories).
The key features of the self-organizing classi®er algorithm are:

· Learning within a resonant state either re®nes the code of a previously established recognition
code, based on any new information, or establishes a new code. For example, a new input is
added. The system will search the established categories. If a match is found, the category rep-
resentation is re®ned (by recalculating the new cluster center), if necessary, to incorporate the
new pattern. If no match is found, a new category is formed; and

· The criterion for an adequate match between an input pattern and a particular category tem-
plate is adjustable. The value of threshold determines how ®ne the categories will be. If the value
of the threshold is set small, then con®rmation requirements are high, and a body of patterns is
likely to be split up into a large number of separate clusters. On the other hand, if the value of
the threshold is set large, the same set of patterns might be organized into coarser recognition
categories giving a small set of clusters. This allows us to adjust the `sensitivity' of the system
according to the availability of the database information.

Appendix B. Pattern learning and recognition algorithm

The algorithm for back-propagation training is:
Step 1: Start with an input data vector y0 and initial values of the weight matrices W1 and W2.

Small arbitrary random weights are chosen to initialize W1 and W2 (in �ÿ:5; :5�). W1 are the weights
of the connections between the input layer and the hidden layer and W2 are the weights of the
connections between the hidden layer and the output layer.

Step 2: Perform forward propagation by calculating the following vectors:

net1 � W1Y0;

Y1 � f1�net1�;
net2 � W2Y1;

Y2 � f2�net2�;

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 81

where net1 and net2 are the input for the hidden layer and the output layer respectively and y1 and
y2 are the output of the hidden layer and the output layer respectively. The net function f1() and
f2() are de®ned as sigmoid functions.

Step 3: Perform back-propagation, by calculating:

d̂2 � d ÿ Y2;

d2 � d̂2 � f 02�net2�;
d̂1 � W T

2 d2;

d1 � d̂1 � f 01�net1�;

where d is the desired output vector, d̂2 and d̂1 are the errors in the output and the hidden layers, d2

is the error propagating from the output layer back to the hidden layer and d1 is the error
propagating from the hidden layer back to the input layer.

Step 4: Obtain the error gradient matrices:

oE
oW1

� ÿ d1Y T
0 ;

oE
oW2

� ÿ d2Y T
1 :

Step 5: Adjust the weight matrices W1 and W2 by calculating:

DWi�t � 1� � ÿ Gi
oE
oWi
� aiDWi�t�i � 1; 2;

where Gi are learning rates, and ai are constants that determine the e�ect of past weights changes
on the current direction of movement in weight space.

There are two variations used to adjust the weights during the training phase: batch replace-
ment and real time replacement. Batch replacement is used in the paper.

Step 6: Go back to Step 2 until the output error is reduced below a pre-set threshold level. Sum-
of-squares error is used as the measure of accuracy in this paper.

References

[1] S.S. Benkley, J.F. Fandozzi, E.M. Housman, G.M. Woodhouse. Data element tool-based analysis (DELTA). Technical Report

MTR 95B0000147, The MITRE Corporation, Bedford, MA, December 1995.

[2] H. Chen, Machine learning for information retrieval:Neural networks symbolic learning and genetic algorithms, J. Am. Society

for Info. Sci. 46 (3) (1995) 194±216.

[3] C. Clifton, W.-S. Li, Classifying software components using design characteristics, in: IEEE 10th Knowledge-Based Software

Engineering Conference (KBSE-95), Boston, MA, USA, November 1995.

[4] C. Collet, M.N. Huhns, W.-M. Shen, Resource integration using a large knowledge base in carnot, Computer, December 1991,

pp. 55±62.

[5] P. Drew, R. King, D. McLeod, M. Rusinkiewicz, A. Silberschatz, Report of the workshop on semantic heterogeneity and

interoperation in multidatabase systems, SIGMOD Record, September 1993, pp. 47±56.

[6] S. Fahlman, Fast-learning variations on back-propagation: An empirical study, in: Proceedings of the 1988 Connectionist Models

Summer School, 1988, pp. 38±51.

82 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

[7] D.H. Fisher, K.B. McKusick, An empirical comparison of id3 and backpropagation, in: Proceedings of the 11th Joint Conference

of Arti®cial Intelligence, 1989, pp. 788±793.

[8] J. Grant, W. Litwin, N. Roussopoulos, T. Sellis, Query languages for relational multidatabases, VLDB J. 2 (1993) 153±171.

[9] S. Hayne, S. Ram, Multi-user view integration system (MUVIS): An expert system for view integration, in: Proceedings of the

Sixth International Conference on Data Engineering, IEEE Press, New York, February 1990, pp. 402±409.

[10] T. Kohonen, Adaptive associative and self-organizing functions in neural computing, Appl. Optics 26 (1987) 4910±4918.

[11] J.A. Larson, S.B. Navathe, R. Elmasri, A theory of attribute equivalence in database with application to schema integration,

IEEE Trans. Softw. Engrg. 15 (4) (1989) 449±463.

[12] D.B. Lenat, Cyc: A large-scale investment in knowledge infrastructure, Commun. ACM, New York, November 1995, pp. 33±38.

[13] W.-S. Li, C. Clifton, Using ®eld speci®cation to determine attribute equivalence in heterogeneous databases, in: Proceedings of

RIDE-IMS '93, Third International Workshop on Research Issues in Data Engineering: Interoperability in Multidatabase

Systems, Vienna, Austria, 19±20 April 1993, IEEE Press, New York, pp. 174±177.

[14] W.-S. Li, C. Clifton, Semantic integration in heterogeneous databases using neural networks, in: Proceedings of the 20th

International Conference on Very Large Data Bases, Santiago, Chile, 12±15 September 1994, VLDB, pp. 1±12.

[15] W.-S. Li, C. Clifton, Semint: A system prototype for semantic integration in heterogeneous databases (demonstration description).

in: Proceedings of the 1995 ACM SIGMOD Conference, San Jose, California, 23±25 May 1995.

[16] W.-S. Li, R.D. Holowczak, Constructing information systems based on schema reuse, in: Proceedings of the Fifth International

Conference on Information and Knowledge Management (CIKM'96), November 1996, pp. 197±204.

[17] W. Litwin, A. Abdellatif, A. Zeroual, B. Nicolas, P. Vigier, MSQL: A multidatabase language, Info. Sci. 49 (1989) 59±101.

[18] D. McLeod, D. Heimbigner, A federated architecture for database systems, in: Proceedings of the National Computer Conference,

Anaheim, CA, AFIPS Press, Reston, May 1980, pp. 283±289.

[19] G.A. Miller, WordNet: A Lexical Databases for English, Commun., ACM, New York, November 1995, pp. 39±41.

[20] A. Motro, P. Buneman, Constructing superviews, in: Proceeding of the SIGMOD International Conference on Management of

Data, Ann Arbor, Michigan, April 1981, ACM, New York, pp. 56±64.

[21] S. Navathe, P. Buneman, Integrating user views in database design, Computer 19 (1) (1986) 50±62.

[22] G. �Ozsoyoglu, K. Du, A. Tjahjana, W.-C. Hou, D. Rowland, On estimating COUNT, SUM, and AVERAGE relational algebra

queries, in: Proceedings of the Second International Conference on Database and Expert Systems Applications, IEEE Press,

New York, 1991.

[23] C. Parent, S. Spaccapietra, Database integration: An overview of issues and approaches, Commun., 41(5es), ACM, New York,

1998.

[24] W.J. Premerlani, M.R. Blaha, An approach for reverse engineering of relational databases Commun. ACM 37 (5) (1994) 42±49.

[25] A. Rosenthal, L.J. Seligman, Data integration in the large: The challenge of reuse, in: Proceedings of the 20th International

Conference on Very Large Data Bases, Santiago, Chile, 12±15 September 1994, VLDB, pp. 669±675.

[26] N. Rowe, An expert system for statistical estimates on databases, in: Proceedings of AAAI, 1983.

[27] D.E. Rumehart, G.E. Hinton, J.L. McClelland, Parallel Distributed Processing, Chapter A General Framework for Parallel

Distributed Processing, MIT Press, Cambridge, MA, 1986, pp. 45±76.

[28] D.E. Rumehart, G.E. Hinton, R.J. Williams, Parallel Distributed Processing, Chapter Learning Internal Representations by Error

Propagation, MIT Press, Cambridge, MA, 1986, pp. 318±362.

[29] D.E. Rumehart, B. Widrow, M.A. Lehr, The basic ideas in neural networks, Commun. ACM 37 (1994) 87±92.

[30] E. Sciore, M.D. Siegel, A. Rosenthal, Using semantic values to facilitate interoperability among heterogeneous information

systems, ACM Trans. Database Syst. 19 (2) (1994) 254±290.

[31] A. Sheth, Managing and integrating unstructured data problem of representation, features, and abstraction, in: Proceedings of the

Fourth International Conference on Data Engineering, Los Angeles, CA, IEEE Press, New York, February 1988, pp. 598±599.

[32] A. Sheth, S.K. Gala, Attribute relationships: An impediment in automating schema integration, in: Proceedings of the NSF

Workshop on Heterogeneous Database Systems, Evanston, IL, December 1989.

[33] A. Sheth, V. Kashyap, So far (schematically) yet so near (semantically), in: Proceedings of the IFIP TC2/WG2.6 Conference on

Semantics of Interoperable Database Systems, Victoria, Australia, November 1992.

[34] A. Sheth, J. Larson, Federated database systems for managing distributed heterogeneous and autonomous databases, ACM

Comput. Surv. 22 (3) (1990) 183±236.

[35] A. Sheth, J. Larson, A. Cornelio, S.B. Navathe, A tool for integrating conceptual schemas and user views, in: Proceedings of the

Fourth International Conference on Data Engineering, Los Angeles, CA, IEEE Press, New York, February 1988.

[36] A. Si, C.C. Ying, D. McLeod, On using historical update information for instance identi®cation in federated databases, In First

IFCIS International Conference on Cooperative Information Systems CoopIS'96 (1996) 68±77.

[37] J.M. Smith, P.A. Bernstein, U. Dayal, N. Goodman, T. Landers, T. Lin, E. Wang, Multibase ± integrating heterogeneous

distributed database systems, in: Proceeding of the National Computer Conference, AFIPS, 1981, pp. 487±499.

[38] U. Srinivasan, A.H.H. Ngu, T. Gedeon, Concept clustering for cooperation in heterogeneous information systems, in: Proceedings

of the IFIP Workshop on Data Semantics, Stone Mountain, GA, 1995, Chapman & Hall, London, pp. 481±499.

W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84 83

[39] V. Ventrone, S. Heiler, Some advice for dealing with semantic heterogeneity in federated database systems, in: Proceedings of the

Database Colloquium, San Diego, August 1994, Armed Forces Communications and Electronics Assc. (AFCEA).

[40] B. Widrow, D.E. Rumehart, M.A. Lehr, Neural networks: Applications in industry business and science, Commun. ACM 37

(1994) 93±105.

[41] G. Wiederhold, The roles of arti®cial intelligence in information systems, J. Intelligent Info. Sys. 1 (1) (1992) 35±55.

[42] G. Wiederhold, Intelligent integration of information, SIGMOD Record (1993) 434±437.

[43] G. Wiederhold, Digital libraries value and productivity, Commun. ACM (1995) 85±96.

[44] C. Yu, W. Sun, S. Dao, D. Keirsey, Determine relationships among attributes for interoperability of multi-database systems, in:

Proceedings of RIDE-IMS, IEEE, New York, March 1991.

[45] J.L. Zhao, A. Segev, A. Chatterjee, A universal relation approach to federated database management, in: Proceedings of the 11th

International Conference on Data Engineering, Taipei, Taiwan, March 1995, IEEE Press, New York, pp. 261±270.

Wen-Syan Li is currently a research
sta� member at Computers & Com-
munications Research Laboratories
(CCRL), NEC USA Inc. He received
his Ph.D. in Computer Science from
Northwestern University in December
1995. He also holds an MBA degree.
His main research interests include
multimedia/hypermedia/document da-
tabases, WWW, E-Commerce, and
Internet/intranet search engines.

Chris Clifton is a Principal Scientist in
the Information Technology Center at
the MITRE Corporation. He has a
Ph.D. from Princeton University, and
Bachelor's and Master's degrees from
the Massachusetts Institute of Tech-
nology. Prior to joining MITRE in
1995, he was an Assistant Professor of
Computer Science at Northwestern
University. His research interests in-
clude data mining, database support
for text, and heterogeneous databases.

84 W.-S. Li, C. Clifton / Data & Knowledge Engineering 33 (2000) 49±84

