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Abstract

The growth of the Internet has triggered tremendous op-
portunities for cooperative computation, in which multiple
parties need to jointly conduct computation tasks based on
the private inputs they each supply. These computations
could occur between mutually untrusted parties, or even be-
tween competitors. For example, two competing financial
organizations might jointly invest in a project that must sat-
isfy both organizations’ private and valuable constraints.
Today, to conduct such a computation, one must usually
know the inputs from all the participants; however if no-
body can be trusted enough to know all the inputs, privacy
will become a primary concern.

Linear systems of equations problem and linear least-
square problem problems are two important scientific com-
putations that involve linear equations. Solutions to these
problems are widely used in many areas such as banking,
manufacturing, and telecommunications. However, the ex-
isting solutions do not extend to the privacy-preserving co-
operative computation situation, in which the linear equa-
tions are shared by multiple parties, who do not want to
disclose their data to the other parties.

In this paper, we formally define these specific privacy-
preserving cooperative computation problems, and present
protocols to solve them.

1 Introduction

The growth of the Internet has triggered tremendous op-
portunities for cooperative computation, in which multiple
parties need to jointly conduct computation tasks based on
the private inputs they each supply. These computations

�Portions of this work were supported by Grant EIA-9903545 from the
National Science Foundation, and by sponsors of the Center for Education
and Research in Information Assurance and Security.

could occur between mutually untrusted parties, or even
between competitors. For example, two competing finan-
cial organizations might jointly invest in a project that must
satisfy both organizations’ private and valuable constraints.
Today, to conduct such a computation, one must usually
know inputs from all the participants; however if nobody
can be trusted enough to know all the inputs, privacy will
become a primary concern. For example, consider the fol-
lowing applications:

Two financial organizations plan to cooperatively work
on a project for mutual benefit. Each of the organizations
would like its own requirements being satisfied (usually,
these requirements are modeled as linear equations). How-
ever, the requirements includes their projects of the likely
future evolution of certain commodity prices, interest and
inflation rates, economic statistics, and customers’ portfolio
holdings. These are valuable proprietary data that nobody
is willing to disclose to other parties, or even to a “trusted”
third party. How could these two financial organizations co-
operate on this project?

Two companiesA andB are investigating an opportunity
for a partnership. Company A’s goal is to optimize the cost
of a manufacturing process. As part of the partnership, com-
pany B will conduct part of the process. Because of this, A
does not know B’s constraints on that part of the process,
unless B tells A, nor doesB knowA’s constraints. Usually,
the constraints reflect the information about the company’s
resource, strategic plans, cost information, and business de-
cisions. They are so critical that both companies try every
measure to protect them. Considering that the partnership
is not formed yet, B is afraid that, if the partnership eventu-
ally falls through, the information it provides to A might be
used byA forB’s disadvantage. With such a concern,B re-
ally does not feel comfortable to give its information to any
other company, neither does A. How could these two com-
panies find out the benefit of a potential partnership without
risking their private information?

The above examples, without the privacy concerns,



could usually be modeled as linear systems of equations
problems or linear least squares problems [15]. These scien-
tific computation problems have proved valuable for mod-
eling many and diverse types of problems in planning, rout-
ing, scheduling, assignment, and design. Industries that
make use of these problems and their extensions include
banking, transportation, energy, telecommunications, and
manufacturing of many kinds. Although these problems
have been well studied in the literature, their current solu-
tions rarely extend to the situation in which multiple parties
want to jointly conduct the computations based on the pri-
vate inputs. For instance, Alice has k linear equations in n
unknown variables xi; Bob has n�k linear equations in the
samen unknownxi. Alice and Bob want to find the solution
(x1; : : : ; xn) that satisfies the combined n linear equations.
We know how to solve the problem if Alice can give her
equations to Bob or vice versa, because it is just a normal
linear system of equations problem. However, if the equa-
tions owned by each party are so valuable proprietary data
that neither party is willing to disclose to the other, the prob-
lem can no longer be solved using the traditional methods,
such as Gaussian elimination andLU factorization, because
these methods assume that one who conducts the computa-
tion knows all the inputs, an assumption that is not true any
more in the privacy-preserving cooperative computation sit-
uation. We need to find solutions that allow Alice and Bob
to jointly solve their combined n linear equations while not
disclosing each person’s private equations to the other.

Currently, to solve the above problems, a commonly
adopted strategy is to assume the trustworthiness of the par-
ticipants, or to assume the existence of a trusted third party.
Such assumptions are quite strong and maybe infeasible,
and clearly it is desirable to have solutions that do not rely
on the complete trustworthiness of participants or third par-
ties. Moreover, in certain situation, even though we could
trust that the other parties will not use our private informa-
tion against our wish, we cannot guarantee that their sys-
tems being secure enough to prevent our information from
being stolen. On the other hand, from the trusted parties’
point of view, in order to conduct such a cooperative com-
putation, they have to carry the extra burden of securing
other party’s data. If a disgruntled employee or a security
breach causes the compromise of the data, these trusted par-
ties might face expensive lawsuits. Therefore, it is to the
favor of every participants that nobody knows the other par-
ties’ secret information. Protocols that can support this type
of joint scientific computations while protecting the partici-
pants’ privacy are of growing importance.

In this paper, we introduce the privacy-preserving co-
operative scientific computations (PPCSC) problem. The
general definition of the PPCSC problem is that two or
more parties want to conduct a scientific computation based
on their private inputs, but neither party is willing to dis-

close its own input to anybody else (including a so-called
trusted third party). We have further defined several spe-
cific PPCSC problems, including privacy-preserving coop-
erative linear system of equations (PPC-LSE) problem, and
privacy-preserving cooperative linear least-square (PPC-
LLE) problem, all of which involve a matrix.

There are several ways to share a matrix. Depending
on how such a matrix is shared by Alice and Bob, or in
another word how Alice and Bob cooperate with each other,
the problems could appear in a variety of forms. Figure 1
describes three different types of cooperation.

Figure 1(b) depicts the homogeneous cooperation, in
which each party provides its own equations; Figure 1(c)
depicts the heterogeneous cooperation, in which both par-
ties have to jointly specify each single equation; Figure 1(d)
depicts the hybrid cooperation, in which both parties coop-
erate in an arbitrary way. (b) and (c) are more meaningful
cooperations than (d) in real life, and they are two special
cases of problem (d). We have developed a protocol to solve
the problem (d): (M1+M2)x = b1+ b2, where matrix M1

and vector b1 belong to one party, matrix M2 and vector
b2 belong to the other party. At the end of the protocol,
both parties know the solution x while nobody knows the
other party’s private inputs. Based on this protocol and the
similar techniques, we have solved PPC-LSE problems and
PPC-LLE problems.

The generalization of the PPCSC problem is referred to
as Secure Multi-party Computation problem (SMC) in the
literature [22]. Generally speaking, a secure multi-party
computation problem deals with computing any probabilis-
tic function on any input, in a distributed network where
each participant holds one of the inputs, ensuring that no
more information is revealed to a participant in the compu-
tation than can be computed from that participant’s input
and output [8].

Goldreich states in [6] that the general secure multi-
party computation problem is solvable in theory, but he also
points out that using the solutions derived by these general
results for special cases of multi-party computation can be
impractical; special solutions should be developed for spe-
cial cases for efficiency reasons. Motivated by this asser-
tion, we are interested in seeking special solutions to the
specific PPCSC problem, solutions that are more efficient
than the general theoretic solutions.

In the rest of this paper, the next subsection presents the
related work. Section 2 presents formal definition of the pri-
vacy. Section 3 describes the PPC-LSE, PPC-LLE protocols
and their applications. Section 4 discusses the efficiency of
these protocols. Section 5 summarizes the paper and lays
out some future work.
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Figure 1. Various ways of cooperation

1.1 Related Work

The history of the multi-party computation problem is
extensive since it was introduced by Yao [22] and extended
by Goldreich, Micali, and Wigderson [18], and by many
others. In the past, secure multi-party computation research
has mostly been focusing on the theoretical studies, very
few applied problems have been studied. Those few ap-
plied problems include Private Information Retrieval prob-
lem (PIR) [12, 3, 11, 10, 13, 17, 14, 9], Joint digital signa-
ture [21, 5] and joint decryption, elections over the Internet,
electronic bidding [2], and privacy-preserving data mining
[16, 1].

1-out-of-N Oblivious Transfer

An 1-out-of-N Oblivious Transfer protocol [7, 4] refers to
a protocol where at the beginning of the protocol one party,
Bob has N inputs X1; : : : ; XN and at the end of the pro-
tocol the other party, Alice, learns one of the inputs X I for
some 1 � I � N of her choice, without learning any-
thing about the other inputs and without allowing Bob to
learn anything about I . An efficient 1-out-of-N Oblivious
Transfer protocol was proposed in [19] by Naor and Pinkas.
Their solution can achieve O(m) communication complex-
ity, where m is the security parameter (i.e. the length of a
number that is hard to factor). This protocol serves as an
important building block for our protocols, and the ideas of
using the 1-out-of-N Oblivious Transfer protocol as build-
ing block are pioneered by Naor and Pinkas in [19].

2 Security Definition

The model for this work is that of general multi-party
computation, more specifically between two semi-honest
parties. Our formal definitions are according to Goldreich
in [6]. We now present in brief the definition for general
two-party computation of a functionality with semi-honest
parties only. They are taken from [6].

Definition 2.1. (privacy w.r.t. semi-honest behavior): Let
f : f0; 1g� � f0; 1g� 7! f0; 1g� � f0; 1g� be a func-
tionality, where f1(x; y)(resp., f2(x; y) denotes the first
(resp., second) element of f(x; y), and � be a two-
party protocol for computing f . The view of the
first (resp., second) party during an execution of � on
(x; y), denoted V IEW�

1 (x; y) (resp., V IEW�
2 (x; y)), is

(x; r1;m1
1
; : : : ;m1

t ) (resp., (y; r2;m2
1
; : : : ;m2

t )), where r1

(resp., r2) represents the outcome of the first (resp., second)
party’s internal coin tosses, and m1

i (resp., m2
i ) represents

the ith message it has received. The output of the first
(resp., second) party during an execution of � on (x; y),
denoted OUTPUT�

1 (x; y) (resp., OUTPUT�
2 (x; y)), is

implicit in the party’s view of the execution.

� We say that � privately computes f if there
exist polynomial time algorithms, denoted S1 and S2
such that

f(S1(x; f1(x; y)); f2(x; y))gx;y2f0;1g�
� f(V IEW�

1 (x; y); OUTPUT�
2 (x; y))gx;y2f0;1g�

f(f1(x; y); S2(y; f2(x; y)))gx;y2f0;1g�
� f(OUTPUT�

1
(x; y); V IEW�

2
(x; y))gx;y2f0;1g�



where � denotes computational indistinguishability.

V IEW�
1 (x; y) and V IEW�

2 (x; y), OUTPUT�
1 (x; y)

and OUTPUT�
2
(x; y) are related random variables, de-

fined as a function of the same random execution.

3 Some Privacy-Preserving Cooperative Sci-
entific Computations

In this section, we describe two related protocols for
privacy-preserving cooperative scientific computation, in-
cluding the protocols for the privacy-preserving coopera-
tive linear system of equations (PPC-LSE) and privacy-
preserving cooperative linear least-square problem (PPC-
LLS). We assume a finite field F , and all computations are
over this finite field, meaning that entries of matrices (or
vectors) are elements of a finite field and addition and mul-
tiplication are defined with respect to that field. As a re-
sult, this assumption makes the scope of the computations
somewhat different than the original computations. Such
an assumption is made to achieve the privacy requirements
according to Goldreich’s definitions [6]. We believe that
dropping this finite field assumption is possible if different
privacy requirements (defined in an infinite domain) can be
used.

3.1 Two Models of Cooperation

A common property of the above PPC-LSE and PPC-
LLE problems is the combining knowledge of a matrix M
and of a vector b. We have described in Figure 1 three dif-
ferent ways of combining knowledge, with (b) and (c) being
the special cases of (d). However, in real life, cases (b) and
(c) are more meaningful than (d) because they tend to model
the ways of actual cooperations.

In the PPC-LSE and PPC-LLE problems, M and b usu-
ally represent a set of linear constraints. Sometimes the co-
operating parties each has its own set of constraints, but
sometimes they have to jointly specify each single con-
straint. Therefore we classify the cooperation to two ba-
sic models, the heterogeneous model and the homogeneous
model.

Model 1. (Homogeneous Model) Alice has a matrix M1

and a vector b1; Bob has a matrix M2 and a vector b2. The
size of M1 is m1�n, the size of M2 is m2�n; the lengths
of the vectors b1 and b2 are m1 and m2, respectively. Alice
and Bob want to solve�

M1

M2

�
x =

�
b1
b2

�

The model could be transformed to the the following
form:

��
M1

0

�
+

�
0
M2

��
x =

�
b1
0

�
+

�
0
b2

�

Model 2. (Heterogeneous Model) Alice has a matrix M1;
Bob has a matrix M2. The size of M1 is m � n1, the size
of M2 is m� n2, where n1 + n2 = n. Alice and Bob both
know a vector b of length m. They want to solve

�
M1 M2

�
x = b

The above linear equations could be transformed to the
the following form:

��
M1 0

�
+
�
0 M2

��
x = b+ 0

Because both models are the special cases of the hybrid
model (Figure 1 d), our solutions are developed for the hy-
brid model.

3.2 Linear System of Equations Problem

Problem 1. (PPC-LSE) Alice has a matrixM1 and a vector
b1, and Bob has a matrixM2 and a vector b2, whereM1 and
M2 are n � n matrices, and b1 and b2 are n-dimensional
vectors. Without disclosing their private inputs to the other
party, Alice and Bob want to solve the linear equation

(M1 +M2)x = b1 + b2

The Protocol Without concerning about the privacy, a
straightforward solution would be to ask one party (say
Bob) to send his M2 and b2 to the other party, Alice. This
however does not work if Bob is concerned about the pri-
vacy of his data. Bob cannot simply send M1 and b1 to
Alice; he has to disguise the data in a way such that Alice
cannot derive the original data from the disguised data.

Our solution is based on the fact that the solution to the
linear equations (M1 + M2)x = b1 + b2 is equivalent to
the solution to the linear equations P (M1+M2)QQ

�1x =
P (b1 + b2). If Alice knows M 0 = P (M1 + M2)Q and
b0 = P (b1+ b2), she can solve the linear equation problem:
M 0x̂ = b0, and thus getting the final solution x, where x =
Qx̂. But how can Alice know M 0 and b0 without being able
to derive the value of M2 and b2? To solve this problem,
Bob generates two invertible random n� n matrices P and
Q. Then Alice and Bob use secure protocols (will describe
them later) to get Alice (and only Alice) to learn the value
of P (M1+M2)Q and P (b1+ b2). However, Alice will not
learn the value of PM1Q, PM2Q, Pb1, Pb2, much less P ,
Q, M2, or b2.

After Alice gets M 0 = P (M1+M2)Q and b0 = P (b1+
b2), she can solve the linear equationsM 0x̂ = b0 by herself,
and then send the solution x̂ to Bob, who can compute the



final solution x = Qx̂. Finally Bob sends the solution to
Alice. Although we do not prevent disruption of the entire
computation if Alice or Bob misbehaves, we do allow Alice
to detect the case where Bob learns the correct answer but
does not allow Alice to learn the correct answer. For ex-
ample, after getting the actual solution, with an evil mind,
Bob may decide not to tell Alice the actual solution x. He
can do this without being caught because he can send an ar-
bitrary vector to Alice, who has no way to verify whether
the received vector is the actual solution or not. This is
not fair to Alice. To achieve the fairness, Alice should re-
quest Bob to send back a vector v = M2x � b2 along with
the solution x. This vector does not give Alice any more
power to derive Bob’s data because if Bob is honest, Al-
ice will know the value of M2x � b2 anyway because of
(M1 +M2)x = b1 + b2. But if Bob still wants to cheat, he
has to find two vectors x0 and v0, such that M1x

0� b1 = v0.
Without knowing M1 and b1, Bob cannot find these two
vectors. The protocol is described in the following:

Protocol 1. (PPC-LSE) Alice has a matrixM1 and a vector
b1, and Bob has a matrix M2 and a vector b2. M1 and M2

are n� n matrices; b1 and b2 are n-dimensional vector.

1. Bob generates two invertible random n�n matrices P
and Q.

2. Alice and Bob use a secure protocol (will describe it
later) to evaluate M 0 = P (M1 +M2)Q. Only Alice
knows the result M 0.

3. Alice and Bob use a secure protocol (will describe it
later) to evaluate b0 = P (b1 + b2). Only Alice knows
the result b0.

4. Alice solves the linear equations M 0x̂ = b0. If the
solution does not exist, Alice tells Bob so, then termi-
nates the protocol. If the solution exists, Alice sends
the solution x̂ to Bob.

5. Bob computes x = Qx̂ and v =M2x� b2, then sends
both vectors x and v to Alice.

6. Alice checks whether x is the actual solution by ver-
ifying whether jj(M1x � b1) + vjj equals to zero (or
close to zero within the acceptable range if computa-
tion errors are inevitable).

Private Evaluation of M 0 = P (M1 +M2)Q

To privately evaluate M 0, Alice could send p matrices to
Bob, with one of the matrices being M1 and the rest of the
matrices being random; however, Bob does not know which
one is M1. Then Bob computes the P (Hi+M2)Q for each
matrices Hi he receives. At the end Alice uses the 1-out-of-
N oblivious transfer protocol to get back from Bob one and

only one of the result, the result of M 0 = P (M1 +M2)Q.
Because of the way the 1-out-of-N oblivious transfer pro-
tocol works, Alice can decide which result to get, but Bob
cannot learn which one Alice has chosen. However there
is one drawback in this approach: if the value of M1 has
certain public-known properties, Bob might be able to dif-
ferentiate M1 from the other seemly random vectors. More
seriously, after Bob finally gets the solution x, it only takes
him p2 tries to find both M1 and b1.

The above drawback can be fixed by dividing the ma-
trix M1 into m random matrices X1; : : : ; Xm, with M1 =Pm

i=1Xi. Alice and Bob can use the same method as de-
scribed above to compute P (Xi+M2)Q. As a result of the
protocol, Alice gets P (Xi + M2)Q and Bob only knows
one of the p vectors is Xi, but because of the randomness of
Xi, Bob cannot find out which one is Xi. Certainly, there is
1 out p possibility that Bob could guess the correct X i, but
since M1 is the sum ofm such random matrices, the chance
that Bob guess the correct M1 is 1 out pm, which could be
very small if we chose pm large enough.

However, knowing the values of P (Xi + M2)Q for
i = 1; : : : ;m might make it easier for Alice to figure out
the value of M2, therefore, Bob also needs to disguise the
results of P (Xi+M2)Q. One way to do this is to divideM2

to m random matrices (Y1; : : : ; Ym) as well, each time Bob
returns the values of P (Xi + Yi)Q+ Ri for i = 1; : : : ;m,
where Ri’s are also random matrices.

After Alice gets P (Xi+Yi)Q+Ri for i = 1; : : : ;m, she
can sum them up and get P (M1 +M2)Q+

Pm

i=1Ri. Bob
can send the result of

Pm

i=1 Ri to Alice who can then get
P (M1 +M2)Q. Figure 2 explains how the protocol works.
The detail of the protocol is described in the following:

Protocol 2. Alice has a Matrix M1, and Bob has a Matrix
M2 and two random matrices P and Q.

1. Alice and Bob agree on two numbers p and m, such
that pm is so big that conducting pm additions is com-
putationally infeasible. For example, Alice and Bob
could choose p = 2 and m = 1024.

2. Alice generatesm random matricesX1; : : : ; Xm, such
that M1 = X1 + : : :+Xm.

3. Bob generates m random matrices Y1; : : : ; Ym, such
that M2 = Y1 + : : :+ Ym.

4. For each j = 1; : : : ;m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:

(H1; : : : ; Hp)

where for a secret 1 � k � p, Hk = Xj ; the
rest of the sequence are random matrices. k is



Alice Bob

Alice gets: 

X1 X3X2 X4

X1

X2

X3
P(X1+Y1)Q+R1, ...,

Oblivious Transfer
1−out−of−N

among random matrices

hiding X1,...,X4
X4

P(X4+Y4)Q+R4

private input: M1 private input M2=Y1+...+Y4

M1=X1+X2+X3+X4

P(M1+M2)Q =P(X1+Y1)Q+R1 + ...+P(X4+Y4)Q+R4− (R1+...+R4)

Figure 2. Private Evaluation of P (M1 +M2)Q

a secret random number known only by Alice,
namely Bob does not know the position ofX j in
the whole sequence.

(b) Bob computesP (Hi + Yj)Q + Rj for eachi =
1; : : : ; p, whereRj is a random matrix.

(c) Using the1-out-of-N Oblivious Transfer proto-
col, Alice gets back the result of

P (Hk + Yj)Q+Rj = P (Xj + Yj)Q+Rj

5. Bob sends
Pm

j=1 Rj to Alice.

6. Alice computesM 0 =
Pm

j=1(P (Xj + Yj)Q+Rj)�Pm

j=1 Rj = P (M1 +M2)Q.

Intuitively, Alice preserves her privacy by both dividing
her matrixM1 to p random matrices which are further hid-
den among many other random matrices, and by getting the
results back using the1-out-of-N oblivious transfer proto-
col. Bob’s privacy is preserved by the 1-out-of-N oblivious
transfer protocol, random matricesY i’s andRi’s.

Theorem 1. The protocol � for computingM 0 = P (M1+
M2)Q is private.

Proof. We show a simulator S1 for simulating
view�

1
(M1;M2) such thatfS1(M1;M

0);�g is indistin-
guishable fromf(view�

1
(M1;M2); output

�
2
(M1;M2))g.

S1 receives as input(M1;M
0) (input/output) of Alice. Re-

call that the view of a party is defined by(x; r;m1;m2; : : :)
wherex is the input,r is the private coin tosses andmi the
ith message received.

� S1, upon input(M1;M
0) first chooses two invertible

random matricesP 0 andQ0 (these matrices simulate
P andQ respectively).

� S1 then findsM 0
2

(to simulateM2) by solvingP 0(M1+
M 0

2)Q
0 =M 0.

� S1 then generatesm random matricesY 0
i for i =

1; : : : ;m, such that
Pm

i=1 Y
0
i =M 0

2
.

� S1 generates matricesXi for i = 1; : : : ;m using the
same coin tossesr that Alice uses in generating these
matrices.

� S1 generates matricesRi for i = 1; : : : ;m.

Let S1(M1;M
0) = fM1; r; P

0(X1 + Y 0
1
)Q0 + R0

1
; : : : ;

P 0(Xm+Y 0
m)Q

0+R0
m;
Pn

i=1R
0
ig. Sinceview�

1 (M1;M2)
= fM1; r; P (X1 + Y1)Q + R1; : : : ; P (Xm + Ym)Q +
Rm;

Pn

i=1Rig. And fS1(M1;M
0);�g is computationally

indistinguishable fromfview�
1 (M1;M2);�g

We now show a simulatorS2 for simulating
view�

2
(M1;M2) such thatfM 0; S2(M2;�)g is indistin-

guishable fromf(output�
1
(M1;M2)), view�

2
(M1;M2)g,

Bob generatesm � p random n � n matrices
f(H 0

1;1; : : : ; H
0
1;p), : : : ; (H 0

m;1; : : : ; H
0
m;p)g. Each ele-

ment is uniformly distributed. Therefore,S2(M2;�) =
fM2; r; (H

0
1;1; : : : ; H

0
1;p); : : : ; (H

0
m;1; : : : ; H

0
m;p)g. We

also haveview�
2
(M1;M2)g = fM2; r; (H1;1; : : : ; H1;p);

: : : ; (Hm;1; : : : ; Hm;p)g. Because of the definition of
Hi;j , fM 0; S2(M2;�)g is computationally indistinguish-
able fromf(output�1 (M1;M2)), view�

2 (M1;M2)g.

Private Evaluation of b0 = P (b1 + b2)

This protocol is similar to the protocol of evaluatingM 0.
and the security property can be proved similarly.



Protocol 3. Alice has a vectorb1, Bob has a vectorb2 and
a random matrixP .

1. Alice and Bob agree on two numbersp andm, such
thatpm is so big that conductingpm additions is com-
putationally infeasible.

2. Alice generatesm random vectorsx1; : : : ; xm, such
thatb1 = x1 + : : :+ xm.

3. Bob generatesm random vectorsy1; : : : ; ym, such that
b2 = y1 + : : :+ ym.

4. For eachj = 1; : : : ;m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:

(h1; : : : ; hp)

where for a secret1 � k � p, hk = xj ; the
rest of the sequence are random vectors.k is
a secret random number known only by Alice,
namely Bob does not know the position ofx j in
the whole sequence.

(b) Bob computesP (hi + yj) + rj for eachi =
1; : : : ; p, whererj is a random vector.

(c) Using the1-out-of-N Oblivious Transfer proto-
col, Alice gets back the result of

P (hi + yj) + rj = P (xj + yj) + rj

5. Bob sends
Pm

j=1 rj to Alice.

6. Alice computesb0 =
Pm

j=1(P (xj + yj) + rj) �Pm

j=1 rj = P (b1 + b2).

Theorem 2. The protocol for computing b0 = P (b1 + b2)
is private.

Theorem 3. PPC-LSE protocol is a protocol for privately
computing the solution to the Linear System of Equations
problem.

Proof. We need to show a simulatorS1 for simulating
view�

1 ((M1; b1); (M2; b2)) such thatfS1((M1; b1); x); xg
is indistinguishable fromf(view�

1
((M1; b1); (M2; b1));

output�
2
((M1; b1); (M2; b2)))g.

� Alice generates random matrixM 0, and then setsb0 =
M 0x. M 0 is to simulateP (M1 +M2)Q, andb0 is to
simulateP (b1 + b2).

� From the proof of the protocols for evaluatingM 0 and
b0, we can similarly simulate Alice’s view upon the in-
put of (M1;M

0) (resp.,(b1; b0)).

Based on the proof of the protocols for evaluat-
ing M 0 and b0, we know that fS1((M1; b1); x); xg
is indistinguishable fromf(view�

1
((M1; b1); (M2; b2));

output�
2
((M1; b1); (M2; b2)))g.

The design of the simulatorS2 is similarly based on the
simulators used in the proof of the protocols for evaluating
M 0 andb0.

3.3 Privacy-Preserving Cooperative Linear
Least-Squares Problem

The linear system of equations problem consists ofn

equations ofn unknown variables. There are situations
where we have more equations to satisfy than the number
of unknown variables. Most often, we cannot satisfy all of
these equations, but we may find a solution that can sat-
isfy them as best as we can. This problem is called the lin-
ear least-squares problem. We solve the privacy-preserving
cooperative linear least-squares problem (PPC-LLS) in this
subsection.

Problem 2. (PPC-LLS) Alice has a matrixM1 and a vector
b1, and Bob has a matrixM2 and a vectorb2, whereM1

andM2 arem� n matrices (m > n), andb1 andb2 arem-
dimensional vectors. Without disclosing their private inputs
to the other party, Alice and Bob want to solve the linear
equations

(M1 +M2)x = b1 + b2

Since there are more conditions (equations) to be satisfied
than degrees of freedom (variables), it is unlikely that they
can all be satisfied. Therefore, they want to attempt to sat-
isfy the equations as best as they can–that is, make the size
of the residual vectorr with components

rj = cj �

nX
i=1

ajixi

as small as possible (aji are the entries in the new matrix
M =M1+M2, cj are the entries in the new vectorb = b1+
b2). The least-squares criterion is the use of the Euclidean
(or least-squares) norm for the size ofr; that is, minimizevuut mX

j=1

r2j = jjrjj2

Solution: Linear least squares problemMx = b can be
expressed in linear system:

MTMx =MT b

which containsn linear equations in then unknownsx i,
hence can be solved using the usual methods for the lin-
ear equations problem, such as the the Gaussian elimina-
tion method and the Cholesky method, Such an approach to



solve the least-squares problem is called the normal equa-
tions approach becauseM TMx = MT b are normal equa-
tions.

In the privacy-preserving cooperative linear least-
squares problem,M = M1 +M2, b = b1 + b2, therefore
we haveMTM =MT

1
M1+MT

1
M2+MT

2
M1+MT

2
M2,

andMT b =MT
1
b1 +MT

1
b2 +MT

2
b1 +MT

2
b2.

Therefore, the linear equationsM TMx = MT b be-
comes the following:

(MT
1
M1 +MT

1
M2 +MT

2
M1 +MT

2
M2)x

= (MT
1 b1 +MT

1 b2 +MT
2 b1 +MT

2 b2)

Using the Matrix-Vector Product protocol and the Matrix
Product protocol (both protocols will be described next),
Alice and Bob can get the following:

V1 + V2 =MT
1
M2

W1 +W2 =MT
2 M1

v1 + v2 =MT
1
b1

w1 + w2 =MT
2 b2

where matricesV1, W1, vectorsv1 andw1 are known
only to Alice; matricesV2, W2, vectorsv2 andw2 are
known only to Bob. LetM 0

1 = MT
1 M1 + V1 + W1,

M 0
2

= MT
2
M2 + V2 + W2, b01 = MT

1
b1 + v1 + w1,

b0
2
=MT

2
b2 + v2 + w2, we have

(M 0
1
+M 0

2
)x = b0

1
+ b0

2

whereM 0
1

andM 0
2

aren� n matrices, andb0
1

andb0
2

are
vectors of lengthn; M 0

1 andb01 are known only to Alice, and
M 0

2
andb0

2
are known only to Bob. This is a PPC-LSE prob-

lem. It can be solved using the PPC-LSE protocol described
in 3.2.

Protocol 4. (Matrix Product Protocol) Alice has a private
matrix A, Bob has a private matrixB. At the end of the
protocol, Alice getsRa, and Bob getsRb, whereRa+Rb =
AB, Ra andRb are random matrices.

1. Alice and Bob agree on two numbersp andm, such
thatpm is so big that conductingpm additions is com-
putationally infeasible.

2. Alice generatesm random matricesX1; : : : ; Xm, such
thatA = X1 + : : :+Xm.

3. For eachj = 1; : : : ;m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:

(H1; : : : ; Hp)

where for a secret1 � k � p, Hk = Xj ; the
rest of the sequence are random matrices.k is
a secret random number known only by Alice,
namely Bob does not know the position ofX j in
the whole sequence.

(b) Bob computesHiB � Rj for eachi = 1; : : : ; p,
whereRj is a random matrix.

(c) Using the1-out-of-N Oblivious Transfer proto-
col, Alice gets back the result of

HkB �Rj = XjB �Rj

4. Alice getsRa =
Pm

j=1(XjB�Rj) = AB�
Pm

j=1 Rj ,
and Bob getsRb =

Pm

j=1 Rj .

Protocol 5. (Matrix-Vector Product Protocol) Alice has a
private matrixA, Bob has a private vectorb. At the end of
the protocol, Alice getsra, and Bob getsrb, wherera+rb =
Ab,Ra andRb are random vectors.

The protocol is similar to the Matrix Product protocol.
Just replace each occurrence of matrixB in the Matrix
Product protocol with the vectorb; replace the random ma-
trix Rj with the random vectorrj for j = 1; : : : ;m; also
replace the matrixRa with the vectorra, andRb with rb.

Protocol 6. (PPC-LLS)

1. Using the Matrix-Vector product protocol and the Ma-
trix product protocol, Alice getsV1, W1, v1, andw1;
Bob getsV2, W2, v2, andw2; where,Ui andWi are
matrices,vi andwi are vectors, andV1+V2 =MT

1
M2,

W1 +W2 = MT
2 M1, v1 + v2 = MT

1 b1, w1 + w2 =
MT

2
b2.

2. Alice computesM 0
1 = MT

1 M1 + V1 +W1 andb01 =
MT

1
b1 + v1 + w1.

3. Bob computesM 0
2
= MT

2
M2 + V2 +W2 andb0

2
=

MT
2 b2 + v2 + w2.

4. Alice and Bob use PPC-LSE protocol to solve(M 0
1
+

M 0
2)x = b01 + b02.

The linear least-squares problem are normally used in re-
gression and mathematical modeling. Consider building an
investment model for a financial organization. One exam-
ple is to model customers’ investment as a function of age.
In such a case the bank knows or believes or hopes there
aren different factors–all related to the age–that influence
the customers’ decision on investment, and the bank wants
to build a mathematical model according to thesen factors.
Formally speaking, the bank want to find out the function
b(t) =

Pn

i=1 xifi(t), wheret is the variable representing
the age, andfi(t) express the different age factors.

Suppose now that the bank takes a large number of ob-
servation from the data it collected, and obtains valuesb j



for t valuestj , j = 1; : : : ;m, andm > n. The problem
of building such a mathematical model is just to solve the
following linear least-square system:

dj =

nX
i=1

fi(tj)xi; j = 1; : : : ;m

There are times when one financial organization does not
have the sufficient data to build such a mathematical model,
it thereby needs to cooperate with another financial organi-
zation, who also wants to benefit from such a cooperation.
So both financial organizations would contribute their own
data toward building such a model. Because this type of
data usually consists of proprietary information that none
of the financial organizations is willing to disclose to the
others, these two financial organizations need to find a way
to build the mathematical model without violating their pri-
vacy constraints. They can use PPC-LLS protocol.

Theorem 4. PPC-LLS protocol is a protocol for privately
computing the solution to the Linear Least-Squares Prob-
lem.

The theorem is correct because the PPC-LLS protocol is
reduced to the PPC-LSE protocol, which is already proved.

4 Protocol Efficiency

A Comparison to Generic Solutions.
The motivation of this research, i.e. designing specific

solutions for each specific problems, is to reduce the com-
munication cost. Therefore, in this section, we will com-
pare the communication cost of our approach with that of
the general solutions (the circuit evaluation approach)

For the PPC-LSE problem (and also for the PPC-LLE
problem because it can be reduced to the PPC-LSE prob-
lem), assume the size of the matrixM is n � n, and the
d is the maximum length to represent a number inF . As-
sume that Gaussian elimination method is used in both the
PPC-LSE protocol and the general solution.

As we know that the cost of Gaussian elimination takes
O(n3) multiplication operations. And by a rough estimate,
the size of a secure circuit for a single multiplication is
aboutO(d2). Therefore, the total size of the circuit to con-
duct the Gaussian elimination isO(n3 � d2).

In the PPC-LSE protocol, the cost of communication is
O(� �n2), where� is the security parameter. Since the dif-
ficulty to compromise the security isO(2� � n2) (n2 is in-
troduced by the multiplication of a matrix and a vector, and
2� is introduced by the oblivious transfer), setting� = 256
is reasonably secure. Therefore the cost of communication
O(� � n2) is significantly better thanO(n3 � d2).

5 Conclusion and Future Work

In this paper, we have defined a set of new privacy-
preserving cooperative scientific computation problems:
privacy-preserving cooperative linear system of equations
problem and privacy-preserving cooperative linear least-
square problem. We have developed protocols to solve these
problems.

The major limitation of this work is due to the finite
field assumption, which makes the computations in our pa-
per somewhat different from the original scientific compu-
tations. In our future work, we would like to define a finite
field that makes our computations consistent with the origi-
nal scientific computations. Another alternative is to devise
meaningful privacy requirements over infinite field, rather
than using what Goldreich defined for a finite domain.

Rice points out that usingM TMx = MT b to solve the
linear least-square problem is not always the best approach,
because it introduces the ill-conditioned matrixM TM–the
condition number ofM TM is the condition number ofM
squared [20]. In the case where condition number ofM TM

is too bad, the solution might be random numbers unrelated
to the original problem. In those cases, other approaches–
such as the Gram-Schmidt Orthogonalization approach and
the Orthogonal Matrix Factorization approach– are better
than the normal equations approach. Developing protocols
to solve the least-square problem using these approaches is
an avenue we could pursue in the future work.

There are some other interesting scientific computation
problems that we will study in the future work, such as how
to computeeigenvalues, eigenvectors, determinants, condi-
tions, and factorization of a matrix in the privacy-preserving
cooperative computation situation.
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