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Abstract

Thegrowth of the Internethastriggeredtremendousp-
portunitiesfor coopeative computationjn which multiple
partiesneedto jointly conductcomputatiortasksbasedon
the private inputs they eac supply Thesecomputations
couldoccurbetweemmutuallyuntrustedoarties,or evenbe-
tweencompetitos. For example two competingfinancial
organizationgnightjointly investin a projectthat mustsat-
isfy both organizations’private and valuable constaints.
Today to conductsuc a computation,one mustusually
knowthe inputsfrom all the participants; howerer if no-
bodycanbe trustedenoughto knowall the inputs, privacy
will becomea primary concern.

Linear systemof equationsproblemand linear least-
squae problemproblemsare two importantscientificcom-
putationsthat involvelinear equations. Solutionsto these
problemsare widely usedin manyareassud as banking
manufacturing and telecommunicationsHowerer, the ex-
isting solutionsdo not extendto the privacy-preservingco-
opeftive computatiorsituation,in which the linear equa-
tions are shawed by multiple parties, who do not want to
disclosetheir datato the otherparties.

In this paper we formally definethesespecificprivacy-
preservingcoopentive computatiorproblems,and present
protocolsto solvethem.

1 Intr oduction

The growth of the Internethastriggeredtiremendousp-
portunitiesfor cooperatie computation,n which multiple
partiesneedto jointly conductcomputationtasksbasedon
the private inputs they eachsupply Thesecomputations
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could occur betweenmutually untrustedparties, or even
betweencompetitors. For example,two competingfinan-
cial organizationsnightjointly investin a projectthatmust
satisfyboth organizationsprivateandvaluableconstraints.
Today to conductsucha computation,one must usually
know inputs from all the participants;however if nobody
canbetrustedenoughto know all the inputs, privacy will
becomea primary concern.For example,considerthe fol-
lowing applications:

Two financial organizationgplan to cooperatiely work
on a projectfor mutualbenefit. Eachof the organizations
would like its own requirementsheing satisfied(usually
theserequirementaremodeledaslinearequations) How-
ever, the requirementsncludestheir projectsof the likely
future evolution of certaincommodityprices,interestand
inflationrates,economicstatisticsandcustomersportfolio
holdings. Thesearevaluableproprietarydatathat nobody
is willing to discloseto otherparties,or evento a “trusted”
third party. How couldthesetwo financialorganizationgo-
operateon this project?

Two companiesA andB areinvestigatinganopportunity
for apartnershipCompaly A’s goalis to optimizethe cost
of amanufcturingprocessAs partof the partnershipcom-
pary B will conductpartof the processBecausef this, A
doesnot know B’s constrainton that part of the process,
unlessB tells A, nordoesB know A’s constraintsUsually,
the constraintgeflecttheinformationaboutthe compary’s
resourcestrataic plans,costinformation,andbusinessle-
cisions. They aresocritical thatboth companiegry every
measurdo protectthem. Consideringthat the partnership
is notformedyet, B is afraidthat,if the partnershipventu-
ally fallsthrough,theinformationit providesto A mightbe
usedby A for B’'sdisadwantage With suchaconcern,B re-
ally doesnotfeel comfortableto give its informationto ary
othercompary, neitherdoesA. How couldthesetwo com-
paniedind outthebenefitof a potentialpartnershipvithout
risking their privateinformation?

The above examples, without the privagy concerns,



could usually be modeledas linear systemsof equations
problemsor linearleastsquareproblemq15]. Thesescien-
tific computationproblemshave proved valuablefor mod-
elingmary anddiversetypesof problemsn planning,rout-
ing, scheduling,assignmentand design. Industriesthat
male use of theseproblemsand their extensionsinclude
banking, transportation.enegy, telecommunicationsand
manufcturingof mary kinds. Although theseproblems
have beenwell studiedin the literature,their currentsolu-
tionsrarelyextendto the situationin which multiple parties
wantto jointly conductthe computationdasedon the pri-
vateinputs. For instance Alice hask linearequationsn n
unknownvariablesr;; Bobhasn — k linearequationsn the
samen unknowvnz;. Alice andBobwantto find thesolution
(z1,-..,z,) thatsatisfieshe combinedn linearequations.
We know how to solve the problemif Alice cangive her
equationgo Bob or vice versa,becauset is just a normal
linear systemof equationgproblem. However, if the equa-
tions ownedby eachparty are so valuableproprietarydata
thatneithemartyis willing to discloseto theother, theprob-
lem canno longerbe solved usingthe traditionalmethods,
suchasGaussiareliminationand LU factorizationpecause
thesemethodsassumeéhatonewho conductghe computa-
tion knows all theinputs,anassumptiorthatis nottrueary
morein theprivagy-preserving-ooperatie computatiorsit-
uation. We needto find solutionsthatallow Alice andBob
to jointly solve their combinedn linearequationswvhile not
disclosingeachpersons privateequationgo the other

Currently to solve the above problems,a commonly
adoptedstratayy is to assumehetrustworthinessof thepar
ticipants,or to assumehe existenceof atrustedthird party.
Suchassumptionsare quite strong and maybeinfeasible,
andclearlyit is desirableto have solutionsthatdo notrely
onthecompletetrustworthinessof participantsor third par
ties. Moreover, in certainsituation,even thoughwe could
trustthatthe otherpartieswill not useour privateinforma-
tion againstour wish, we cannotguarantedhat their sys-
temsbeingsecureenoughto preventour informationfrom
being stolen. On the otherhand,from the trustedparties’
point of view, in orderto conductsucha cooperatre com-
putation, they have to carry the extra burdenof securing
otherparty’s data. If a disgruntledemployeeor a security
breachcauseshecompromiseof thedata thesetrustedpar
ties might face expensve lawsuits. Therefore,it is to the
favor of every participantghatnobodyknowsthe otherpar
ties’ secreinformation.Protocolshatcansupporthistype
of joint scientificcomputationsvhile protectingthe partici-
pants’privacy areof growing importance.

In this paper we introducethe privacy-preservingco-
operatve scientific computationgPPCSC)problem. The
generaldefinition of the PPCSCproblemis that two or
morepartieswantto conductascientificcomputatiorbased
on their private inputs, but neitherparty is willing to dis-

closeits own input to anybody else(including a so-called
trustedthird party). We have further definedseveral spe-
cific PPCSCproblems,including privacy-preservingcoop-
eratve linearsystemof equation§PPC-LSE)problem,and
privacy-preservingcooperatie linear least-squargPPC-
LLE) problem,all of whichinvolve a matrix.

There are several ways to sharea matrix. Depending
on how sucha matrix is sharedby Alice and Bob, or in
anothemword how Alice andBob cooperatavith eachother,
the problemscould appearin a variety of forms. Figurel
describeshreedifferenttypesof cooperation.

Figure 1(b) depictsthe homogeneougooperation,in
which eachparty providesits own equations;Figure 1(c)
depictsthe heterogeneousooperationjn which both par
tieshaveto jointly specifyeachsingleequationjigure1(d)
depictsthe hybrid cooperationin which both partiescoop-
eratein anarbitraryway. (b) and(c) are moremeaningful
cooperationghan(d) in reallife, andthey aretwo special
case®f problem(d). We have developeda protocolto solve
theproblem(d): (M; + Mas)x = by + bo, wherematrix M,
and vector b; belongto one party, matrix M, and vector
bs belongto the other party. At the end of the protocol,
both partiesknow the solution 2 while nobodyknows the
otherparty’s privateinputs. Basedon this protocolandthe
similar techniqueswe have solved PPC-LSEproblemsand
PPC-LLEproblems.

The generalizatiorof the PPCSCproblemis referredto
as SecureMulti-party Computationproblem(SMC) in the
literature[22]. Generallyspeaking,a securemulti-party
computatiorproblemdealswith computingany probabilis-
tic function on ary input, in a distributed network where
eachparticipantholds one of the inputs, ensuringthat no
moreinformationis revealedto a participantin the compu-
tation than can be computedfrom that participants input
andoutput[8].

Goldreich statesin [6] that the generalsecuremulti-
partycomputatiorproblemis solvablein theory but healso
pointsout thatusingthe solutionsderived by thesegeneral
resultsfor specialcasesof multi-party computationcanbe
impractical;specialsolutionsshouldbe developedfor spe-
cial casedor efficiency reasons.Motivatedby this asser
tion, we are interestedin seekingspecialsolutionsto the
specificPPCSCproblem,solutionsthat are more efficient
thanthegeneratheoreticsolutions.

In therestof this paper the next subsectiompresentshe
relatedwork. Section2 present$ormaldefinitionof thepri-
vagy. Section3 describeshePPC-LSEPPC-LLEprotocols
andtheir applications.Section4 discusseshe efficiengy of
theseprotocols. Section5 summarizeghe paperandlays
outsomefuturework.
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(a) Normal Linear Equations
(without cooperation)

(c) Heterogeneous Cooperation

b1l: Alice’s private vector,

(b) Homogeneous Cooperation

(d) Hybrid Cooperation

Legend: M1: Alice’s private matrix, M2: Bob’s private matrix
b2: Bob's private vector

M1+M2 X = bl+b

Figure 1. Various ways of cooperation

1.1 RelatedWork

The history of the multi-party computationproblemis
extensie sinceit wasintroducedby Yao[22] andextended
by Goldreich, Micali, and Wigderson[18], and by mary
others.In the past,securenulti-party computatiorresearch
hasmostly beenfocusing on the theoreticalstudies,very
few applied problemshave beenstudied. Thosefew ap-
plied problemsinclude Private Information Retrieval prob-
lem (PIR)[12, 3,11, 10, 13, 17, 14, 9], Jointdigital sigha-
ture[21, 5] andjoint decryption.electionsoverthelnternet,
electronicbidding [2], and privagy-preservingdatamining
[16, 1].

1-out-of- NV Oblivious Transfer

An 1-out-of-N Oblivious Transferprotocol[7, 4] refersto
aprotocolwhereat the beginningof the protocoloneparty,
Bob hasN inputs X1, ..., Xy andat the end of the pro-
tocol the otherparty, Alice, learnsoneof theinputs X for
somel < I < N of her choice,without learningary-
thing aboutthe other inputs and without allowing Bob to
learnarything aboutl. An efficient 1-out-of-N Oblivious
Transfemprotocolwasproposedn [19] by NaorandPinkas.
Their solutioncanachieze O(m) communicatiorcomplex-
ity, wherem is the securityparamete(i.e. thelengthof a
numberthatis hardto factor). This protocolsenesasan
importantbuilding block for our protocols,andthe ideasof
usingthe 1-out-of-N Oblivious Transferprotocolasbuild-
ing block arepioneeredy NaorandPinkasin [19].

2 Security Definition

The modelfor this work is that of generalmulti-party
computation,more specifically betweentwo semi-honest
parties. Our formal definitionsare accordingto Goldreich
in [6]. We now presentin brief the definition for general
two-party computationof a functionality with semi-honest
partiesonly. They aretakenfrom [6].

Definition 2.1. (privacy w.r.t. semi-honesbehavior): Let
f o {0,1}* x {0,1}* — {0,1}* x {0,1}* be a func-
tionality, where f;(x,y)(resp., f2(z,y) denotesthe first
(resp., second) elementof f(z,y), and II be a two-
party protocol for computing f. The vi ew of the
first (resp., second)party during an execution of II on
(z,y), denotedVIEW (x,y) (resp.,VIEWI(z,y)), is
(z,rt,mi,...,m}) (resp.,(y,7?,m2,...,m?)), wherer!
(resp.r?) representthe outcomeof thefirst (resp. second)
party’s internal coin tossesandm.} (resp.,m?) represents
the it* messagét hasreceived. The out put of the first
(resp.,second)party during an executionof II on (z,y),
denotedOUT PUT(x,y) (resp.,OUTPUTY (z,y)), is
implicit in the party’s view of the execution.

e We saythatw privately conputes f if there
exist polynomialtime algorithms,denotedS; and Ss
suchthat

{(Sl(xafl(xay))7f2(xay))}z,y6 0,1}*
= {(VIEW{'(z,y), OUTPUT;!(2,9))}s,ye 0,1}

{(fl(x y) S2(y f2 z y }a:,yel{[O 1}*

= {(OUTPUT{ (=, y) VIEW; (z,9))}e,ye{0,1}+



where= denotesomputationaindistinguishability

VIEW! (z,y) andVIEW(z,y), OUTPUT (z,y)
and OUTPUT3Y(z,y) are relatedrandomvariables,de-
finedasa functionof the samerandomexecution.

3 SomePrivacy-Presering Cooperative Sci-
entific Computations

In this section,we describetwo related protocolsfor
privagy-preservingcooperatie scientific computation,in-
cluding the protocolsfor the privag/-preservingcoopera-
tive linear systemof equations(PPC-LSE)and privacgy-
preservingcooperatie linear least-squargroblem (PPC-
LLS). We assume finite field F', andall computationsre
over this finite field, meaningthat entriesof matrices(or
vectors)areelementof afinite field andadditionandmul-
tiplication are definedwith respectto thatfield. As a re-
sult, this assumptiormakesthe scopeof the computations
someavhat different than the original computations. Such
anassumptioris madeto achieve the privacy requirements
accordingto Goldreichs definitions[6]. We believe that
droppingthis finite field assumptioris possibleif different
privagy requirementgdefinedin aninfinite domain)canbe
used.

3.1 Two Models of Cooperation

A commonproperty of the abore PPC-LSEand PPC-
LLE problemsis the combiningknowledgeof a matrix M
andof avectorb. We have describedn Figurel threedif-
ferentwaysof combiningknowledge with (b) and(c) being
the specialcaseof (d). However, in reallife, casegb) and
(c) aremoremeaningfuthan(d) becauséhey tendto model
thewaysof actualcooperations.

In the PPC-LSEandPPC-LLEproblems,A andb usu-
ally represena setof linearconstraints Sometimeshe co-
operatingpartieseachhasits own set of constraints,but
sometimesthey have to jointly specify eachsingle con-
straint. Thereforewe classify the cooperationto two ba-
sic models the hetepgeneousnodelandthehomaeneous
model.

Model 1. (HomaeneousModel) Alice hasa matrix M;

andavectorb;; Bob hasa matrix M, andavectorb,. The
sizeof My ism; X n, thesizeof M, ismy x n; thelengths
of thevectorsh; andb, arem, andms,, respectiely. Alice

andBobwantto solve

M, A
(3)=-(&)
The model could be transformedto the the following
form:

(5 )+ (ot ))==(5)+ ()

Model 2. (HetelogeneousModel) Alice hasa matrix Mj;
Bob hasa matrix M,. Thesizeof M, ism x nq, the size
of M5 ism x na, Wwheren; + n, = n. Alice andBob both
know avectorb of lengthm. They wantto solve

(M1 Mg).%':b

The above linear equationscould be transformedo the
thefollowing form:

(M 0)+(0 M ))z=b+0

Becauséothmodelsarethe specialcasesf the hybrid
model(Figurel d), our solutionsaredevelopedfor the hy-
brid model.

3.2 Linear Systemof Equations Problem

Problem1. (PPC-LSEAlice hasamatrix M, andavector
b1, andBob hasamatrix M, andavectorb,, whereM; and
My aren x n matrices,andb; andby aren-dimensional
vectors.Without disclosingtheir privateinputsto the other
party, Alice andBob wantto solve thelinearequation

(My + Ma)x = by + by

The Protocol Without concerningabout the privagy, a
straightforvard solution would be to ask one party (say
Bob) to sendhis M> andb, to the otherparty, Alice. This
however doesnot work if Bob is concernedaboutthe pri-
vagy of his data. Bob cannotsimply sendM; andb; to
Alice; he hasto disguisethe datain a way suchthat Alice
cannotderive the original datafrom the disguiseddata.

Our solutionis basedon the factthatthe solutionto the
linear equations(M; + Ms)x = by + by is equivalentto
thesolutionto thelinearequationsP(M; + M>)QQ 1z =
P(by + b2). If Alice knows M' = P(M; + M»)Q and
b' = P(b1 + b2), shecansolvethelinearequatiorproblem:
M'z = V', andthusgettingthefinal solutionz, wherex =
Qz. But how canAlice know M' andb’ withoutbeingable
to derive the value of M, andb,? To solwe this problem,
Bob generateswo invertiblerandomn x n matricesP and
. ThenAlice andBob usesecureprotocols(will describe
themlater) to getAlice (andonly Alice) to learnthe value
of P(M; + M)Q andP(b; + bs). However, Alice will not
learnthevalueof PM;Q, PM>(Q, Pby, Pby, muchlessP,
Q, Mo, or bs.

After Alice getsM' = P(M; + M>)Q andd’ = P(by +
bs), shecansolvethelinearequations\f’z = b' by herself,
andthensendthe solutionZ to Bob, who cancomputethe



final solutionz = Qz. Finally Bob sendsthe solutionto
Alice. Althoughwe do not preventdisruptionof the entire
computatiorif Alice or Bob misbeh&es,we doallow Alice

to detectthe casewhereBob learnsthe correctanswerbut
doesnot allow Alice to learnthe correctanswer For ex-

ample,after gettingthe actualsolution,with an evil mind,
Bob may decidenot to tell Alice the actualsolutionz. He
cando thiswithout beingcaughtbecausde cansendanar-

bitrary vectorto Alice, who hasno way to verify whether
the receved vectoris the actualsolution or not. This is
not fair to Alice. To achieve the fairnessAlice shouldre-
guestBobto sendbackavectorv = Msx — by alongwith

the solutionz. This vectordoesnot give Alice any more
power to derive Bob’s databecauséf Bob is honest,Al-

ice will know the value of Msz — b anyway becauseof

(My + M)z = by + be. Butif Bob still wantsto cheathe
hasto find two vectorsz’ andv’, suchthat Mz’ — b, = o',

Without knowing M; and b;, Bob cannotfind thesetwo

vectors.Theprotocolis describedn thefollowing:

Protocol1. (PPC-LSEAlice hasamatrix M; andavector
b1, andBob hasa matrix M, andavectorb,. M; and M,
aren x n matrices}p; andb, aren-dimensionalector

1. Bobgenerateswo invertiblerandonmn x n matricesP
andq@.

2. Alice andBob usea secureprotocol (will describeit
later)to evaluateM' = P(M; + M;)Q@. Only Alice
knowstheresultM'.

3. Alice andBob usea secureprotocol (will describeit
later)to evaluated! = P(b; + bz). Only Alice knows
theresultd'.

4. Alice solvesthe linear equationsM’z = b'. If the
solutiondoesnot exist, Alice tells Bob so, thentermi-
natesthe protocol. If the solutionexists, Alice sends
the solutionz to Bobh.

5. Bobcomputess = Q% andv = Mszx — by, thensends
bothvectorsr andv to Alice.

6. Alice checkswhetherz is the actualsolutionby ver-
ifying whether||(M;2z — by) + v|| equalsto zero (or
closeto zerowithin the acceptableangeif computa-
tion errorsareinevitable).

Private Evaluation of M' = P(M; + M>)Q

To privately evaluate M’, Alice could sendp matricesto
Bob, with oneof the matricesbeing M/; andtherestof the
matricesbeingrandom;however, Bob doesnotknow which
oneis M;. ThenBobcomputeghe P(H; + M>)Q for each
matricesH; hereceves.At theendAlice useshe 1-out-of-
N oblivioustransfemprotocolto getbackfrom Bob oneand

only oneof theresult,theresultof M' = P(M; + M>)Q.
Becauseof the way the 1-out-of-N oblivioustransferpro-
tocol works, Alice candecidewhich resultto get, but Bob
cannotlearnwhich one Alice haschosen. However there
is onedrawbackin this approach:if the value of M; has
certainpublic-knonvn properties Bob might be ableto dif-
ferentiateM; from the otherseemlyrandomvectors.More
seriously after Bob finally getsthesolutionz, it only takes
him p? triesto find both M, andb, .

The above dravback can be fixed by dividing the ma-
trix M into m randommatricesXy, ..., X,,, with M; =
Z;’;l X;. Alice andBob canusethe samemethodasde-
scribedaboveto computeP (X; + M>)(. As aresultof the
protocol, Alice gets P(X; + M>)Q andBob only knows
oneof thep vectorsis X;, but becausef therandomnesef
X;, Bob cannoffind outwhichoneis X;. Certainly thereis
1 out p possibilitythatBob could guessthe correctX;, but
sinceM; is thesumof m suchrandommatricesthechance
thatBob guesghe correctM; is 1 out p™, which couldbe
very smallif we chosep™ largeenough.

However, knowing the valuesof P(X; + M»)Q for
i = 1,...,m might make it easierfor Alice to figure out
the value of M, therefore,Bob alsoneedsto disguisethe
resultsof P(X;+ M>)@. Onewayto dothisis to divide M,
to m randommatriceq(Ys, . . ., Y;,) aswell, eachtime Bob
returnsthevaluesof P(X; + Y;)Q + R; fori = 1,...,m,
whereR;’s arealsorandommatrices.

After Alice getsP(X;+Y;)Q+R; fori = 1,...,m, she
cansumthemupandget P(M; + M>)Q + > .-, R;. Bob
cansendtheresultof 37" | R; to Alice who canthenget
P(M; + M>)Q. Figure2 explainshow the protocolworks.
Thedetail of the protocolis describedn thefollowing:

Protocol 2. Alice hasa Matrix M;, andBob hasa Matrix
M, andtwo randommatricesP and().

1. Alice andBob agreeon two numbersp andm, such
thatp™ is sobig thatconductingp™ additionsis com-
putationallyinfeasible. For example, Alice and Bob
couldchoosep = 2 andm = 1024.

2. Alice generates randommatricesXy, . .., X,,, such
thatM1 = X1 + ... +Xm

3. Bob generatesn randommatricesYs, ..., Y,,, such
thatMs =Y, + ...+ Y,,.

4. For eachj = 1,...,m, Alice and Bob conductthe

following sub-steps:
(a) Alice sendghefollowing sequencéo Bob:
(Hy,...,Hp)

wherefor a secretl < k < p, Hy = Xj; the
restof the sequenceare randommatrices. k is



Alice
private input: M1

Bob
private input M2=Y1+...+Y4

¢

4
S8 hiding X1,...,X4 O 02 o @
among random matrices O 8( O ‘O
M1=X1+X2+X3+X4 X1 : 1
o 1O 10 O
L X3
P(X1+Y1)Q+R1, ..., oo O 0 e O
—-out-of- : 1
P(X4+Y4)Q+R4 Oblivious Transfer O O O 50

Alice gets: ‘

P(M1+M2)Q =P(X1+Y1)Q+RL + .. +P(X4+Y4)Q+R4— (R1+..+RH)

Figure 2. Private Evaluation of P(M; + M>)Q

a secretrandomnumberknown only by Alice,
namelyBob doesnotknow the positionof X; in
thewholesequence.

(b) Bob computesP(H; + Y;)Q + R; for eachi =
1,...,p, whereR; is arandommatrix.

(c) Usingthe 1-out-of-N Oblivious Transferproto-
col, Alice getsbacktheresultof

P(Hy +Y;)Q + R; = P(X; +Y;)Q + R;
5. Bobsendsy_7, R; to Alice.

6. Alice computesM’ = 37", (P(X; + Y;)Q + R;) —
Y Ry = P(My + My)Q.

Intuitively, Alice preseresherprivagy by bothdividing
hermatrix M; to p randommatriceswhich arefurtherhid-
denamongmary otherrandommatricesandby gettingthe
resultsbackusingthe 1-out-of-N oblivious transferproto-
col. Bob’s privagy is preseredby the 1-out-of-Noblivious
transfermprotocol,randommatricesY;'sandR;’s.

Theorem 1. TheprotocolIl for computingM’ =
M>)Q is private

P(M +

Proof. We shov a simulator S; for simulating
view (M, Ms) suchthat {S; (M, M'), -} is indistin-
guishablefrom {(view! (M, Ms), outputi(M;, Ms))}.
S recevesasinput (M7, M') (input/output)of Alice. Re-
call thattheview of apartyis definedby (z,r,m1,ma2,...)
wherez is theinput, r is the privatecoin tossesandm; the
ith messageeceved.

e Si, uponinput (M;, M') first choosegswo invertible
randommatricesP’ and @' (thesematricessimulate
P and( respectiely).

¢ S; thenfinds M}, (to simulateM) by solving P! (M; +
M)Q' = M.

e S; then generatesn randommatricesY; for i =
1,...,m,suchthat}>" Y/ = MJ.

e S generatesnatricesX; for i = 1,...,m usingthe
samecoin tosses that Alice usesin generatinghese

matrices.
e S; generatesnatricesR; fori =1,...,m.
LetSl(Ml,Ml) = {Ml,’l‘, Pl(Xl + lel)Ql + Rll, ey

P'(Xp+Y)Q +R,, > Ri}. Sinceview(! (My, M>)
= {Mla'ra P(Xl + le)Q + R17 Tt P(Xm + Ym)Q +
Rm, > iy Ri}. And {S{(My, M"), —} is computationally
indistinguishabldrom {view!'(M;, M), —}

We now shov a simulator S, for simulating
viewl(My, Ms) suchthat {M', S2(Ms,—)} is indistin-
guishablefrom {(outputi!(My, My)), views (M, M)},

Bob generatesm x p random n x n matrices
{Hi 1, Hlp), -y (Hyo,---,Hy, )} Eachele-
mentis uniformly dlstrlbuted Therefore, S (M, —) =
{Ma,r, (Hiq,---,Hi ), ooy (Hpyq,---5 Hyy )b We
also have m'ewg[(Ml, MQ)} = {MQ, r, (Hl,l; ey Hlyp),

ey (Hma,...,Hmp)}. Becauseof the definition of
H;;, {M',S2(Ms,—)} is computationallyindistinguish-
ablefrom {(outputi!(My, My)), views (M, M) }.

O

Private Evaluation of b’ = P(b; + b)

This protocolis similar to the protocol of evaluating M'.
andthe securitypropertycanbe provedsimilarly.



Protocol 3. Alice hasavectorb;, Bob hasa vectorb, and
arandommatrix P.

1. Alice andBob agreeon two numbersp andm, such
thatp™ is sobig thatconductingp™ additionsis com-
putationallyinfeasible.

2. Alice generatesn randomvectorszy, . .., Z.,,, such
thatby =21 + ... + T

3. Bobgenerates: randomvectorsy, . ..
bo =y1+...+Ym.

, Ym, SUChthat

4. For eachj = 1,...,m, Alice and Bob conductthe
following sub-steps:

(a) Alice sendghefollowing sequencéo Bob:
(h1y...,hyp)

wherefor a secretl < k < p, hy = z;; the
rest of the sequencere randomvectors. & is
a secretrandomnumberknown only by Alice,
namelyBob doesnot know the positionof «; in
thewholesequence.

(b) Bob computesP(h; + y;) + r; for eachi =
1,...,p, wherer; is arandomvector

(c) Usingthe 1-out-of-N Oblivious Transferproto-
col, Alice getsbacktheresultof

P(hi +y;) +rj = Plzj +y;) +7;
5. Bobsendsy 7", r; to Alice.

6. Alice computesh! = >, (P(z; + y;) + 1) —
Z;nzl r; = P(b1 + ba).

Theorem 2. The protocol for computingd’ = P(by + bs)
is private

Theorem 3. PPC-LSEprotocolis a protocolfor privately
computingthe solutionto the Linear Systenof Equations
problem.

Proof. We needto shawv a simulator S; for simulating
view?((Ml,bl), (Mg,bg)) suchthat {Sl((Ml,bl),!IJ),.'L'}
is indistinguishable from {(view((My,b;), (M2, b)),
outputy (M, b1), (M2, b)))}.

o Alice generatesandommatrix M’, andthensetsb’ =
M'z. M'isto simulateP(M, + M>)Q, andd’ is to
simulateP (b + bs).

e Fromtheproof of the protocolsfor evaluatingM’ and
b', we cansimilarly simulateAlice’s view uponthein-
putof (My, M') (resp.,(b1, b")).

Based on the proof of the protocols for evaluat-
ing M' and b, we know that {S:((M1,b),z),z}
is indistinguishable from {(viewi((My,b;), (Ma,bs)),
outputS (M, by), (Ma,b2)))}.

The designof the simulatorSs is similarly basedon the
simulatorsusedin the proof of the protocolsfor evaluating
M'andt'.

O
3.3 Privacy-Presenving  Cooperative  Linear
Least-SquaresProblem

The linear systemof equationsproblem consistsof n
equationsof n unknown variables. There are situations
wherewe have more equationgo satisfythanthe number
of unknown variables.Most often, we cannotsatisfyall of
theseequations,but we may find a solution that can sat-
isfy themasbestaswe can. This problemis calledthelin-
earleast-squaregroblem.We solve the privacgy-preserving
cooperatie linearleast-squaregroblem(PPC-LLS)in this
subsection.

Problem2. (PPC-LLS)Alice hasamatrix A/; andavector
b1, and Bob hasa matrix M, anda vectorby, where M;
andM» arem x n matriceg(m > n), andb; andb, arem-
dimensionalectors.Withoutdisclosingtheir privateinputs
to the other party, Alice and Bob wantto solve the linear
equations

(M1 + MQ)SL' = b1 + b2

Sincethereare more conditions(equationsYo be satisfied
thandegreesof freedom(variables),t is unlikely thatthey

canall be satisfied.Therefore they wantto attemptto sat-
isfy the equationsasbestasthey can—thais, make the size
of theresidualvectorr with components

n
’I“j = Cj — E aj,-m,-
i=1

assmallaspossible(a;; arethe entriesin the new matrix
M = M, + My, c; aretheentriesin thenew vectorb = b; +

b2). Theleast-squaresriterionis the useof the Euclidean
(or least-squaresjormfor thesizeof r; thatis, minimize

= [rll2

Solution: Linear leastsquaregproblemMz = b canbe
expressedn linearsystem:

MTMz=MTp

which containsn linear equationsin the n unknowns z;,
hencecan be solved using the usualmethodsfor the lin-
ear equationsproblem, suchas the the Gaussiarelimina-
tion methodandthe Cholesk method ,Suchanapproacho



solve the least-squareproblemis calledthe normalequa-
tions approactbecause/ T Mz = MTb arenormalequa-
tions.

In the privacgy-preserving cooperatie linear least-
squareproblem,M = M; + M, b = by + bs, therefore
wehare MTM = MMy + MT My + M M, + MT M,
andMTh = Mirbl + MinQ + MZTbl + MZTI)Q

Therefore, the linear equationsM” Mz = MTb be-
comeghefollowing:

(M My + MMy + MM + MT M)z

= (MTby + MTby + MIby + MTby)

UsingtheMatrix-VectorProductprotocolandtheMatrix
Productprotocol (both protocolswill be describednext),
Alice andBob cangetthefollowing:

Vi + Vo = M{ My

Wy + Wy = M My
’U1—|-’l)2=Min1
’LU1+'U}2:M2Tb2

wherematricesV;, Wi, vectorsv; andw; areknown
only to Alice; matricesV,, Wy, vectorsvy, and wo are
known only to Bob. Let M| = MIM; + Vi + Wy,
Mé = M2TM2+‘/2+W2, 11 = M1Tb1+v1+w1,
by, = MFby + vy + ws, we have

(M] + M)z = b, + b,

whereM| and M, aren x n matricesandb} andbd, are
vectorsof lengthn; MJ andb; areknown only to Alice, and
M}, andb), areknawn only to Bob. Thisis aPPC-LSEprob-
lem. It canbesolvedusingthe PPC-LSEprotocoldescribed
in3.2.

Protocol4. (Matrix ProductProtocol) Alice hasa private
matrix A, Bob hasa private matrix B. At the end of the
protocol,Alice getsR, , andBobgetsR;, whereR, + Ry =
AB, R, and R, arerandommatrices.

1. Alice andBob agreeon two numbersp andm, such
thatp™ is sobig thatconductingp™ additionsis com-
putationallyinfeasible.

2. Alice generates» randommatricesXy, . ..
thatAd = X; + ...+ X,,.

, Xm,such
3. For eachj = 1,...,m, Alice and Bob conductthe
following sub-steps:
(a) Alice sendghefollowing sequencéo Bob:

(Hi,...,Hp)

wherefor a secretl < k < p, Hy = Xj; the
restof the sequenceare randommatrices. k is
a secretrandomnumberknown only by Alice,
namelyBob doesnotknow thepositionof X in
thewholesequence.

(b) Bobcomputesd;B — R; foreachi =1,...,p,
whereR; is arandommatrix.

(c) Usingthe 1-out-of-N Oblivious Transferproto-
col, Alice getsbacktheresultof

HyB—R; = X;B — R,

4. Alice getsR, = i, (X;B—R;) = AB-_7"| R;,
andBobgetsR, = 3", R;.

Protocol 5. (Matrix-Vector Product Protocol) Alice hasa
privatematrix A, Bob hasa privatevectorb. At the endof
theprotocol,Alice getsr,, andBobgetsr,, wherer,+r, =
Ab, R, and R, arerandomvectors.

The protocolis similar to the Matrix Productprotocol.
Justreplaceeach occurrenceof matrix B in the Matrix
Productprotocolwith the vectorb; replacetherandomma-
trix R; with the randomvectorr; for j = 1,...,m; also
replacethe matrix R,, with thevectorr,, and Ry with r.

Protocol 6. (PPC-LLS)

1. Usingthe Matrix-Vectorproductprotocolandthe Ma-
trix productprotocol, Alice getsVy, Wi, vy, andwy;
Bob getsVs, Wa, vy, andws; where,U; and W; are
matricesy; andw; arevectorsandV; +Va = M Mo,
Wi+ Wy = MI My, vy +v2 = M{by, wy +we =
MLb,.

2. Alice computesM| = M M; + Vi + W, andd, =
MlTbl + v +wq.

3. Bob computesM} = MI M, + Vo + Wy andbly, =
M2Tb2 + vy + wa.

4. Alice andBob usePPC-LSEprotocolto solve (M| +
M)z = b} + bs,.

Thelinearleast-squaregroblemarenormallyusedn re-
gressiorandmathematicamodeling.Considerbuilding an
investmentmodelfor a financial organization. One exam-
ple is to modelcustomersinvestmentsa function of age.
In sucha casethe bank knows or believesor hopesthere
aren differentfactors—allrelatedto the age—thainfluence
the customerstdecisionon investmentandthe bankwants
to build amathematicaimodelaccordingo thesen factors.
Formally speaking the bankwant to find out the function
b(t) = Yi, z; fi(t), wheret is the variablerepresenting
theage,and f;(t) expressthedifferentagefactors.

Supposenow thatthe banktakesa large numberof ob-
senation from the datait collected,and obtainsvaluesb;



for ¢t valuest;, j = 1,...,m, andm > n. The problem
of building sucha mathematicamodelis just to solve the
following linearleast-squarsystem:

n
dj = Zfz(t])m“] = 17“'Jm
i=1

Therearetimeswhenonefinancialorganizatiordoesnot
have the sufficientdatato build suchamathematicaiodel,
it therebyneeddo cooperatavith anotheffinancialorgani-
zation,who alsowantsto benefitfrom sucha cooperation.
Sobothfinancialorganizationsvould contribute their own
datatoward building sucha model. Becausethis type of
datausually consistsof proprietaryinformationthat none
of the financial organizationds willing to discloseto the
others thesetwo financialorganizationsieedto find a way
to build themathematicainodelwithoutviolating their pri-
vagy constraintsThey canusePPC-LLSprotocol.

Theorem4. PPC-LLSprotocolis a protocol for privately
computingthe solutionto the Linear Least-Squags Prob-
lem.

Thetheoremis correctbecauseéhe PPC-LLSprotocolis
reducedo the PPC-LSEprotocol,whichis alreadyproved.

4 Protocol Efficiency

A Comparisonto Generic Solutions.

The motivation of this researchj.e. designingspecific
solutionsfor eachspecificproblems;is to reducethe com-
municationcost. Therefore,in this section,we will com-
parethe communicationcostof our approachwith that of
thegenerakolutions(thecircuit evaluationapproach)

For the PPC-LSEproblem(and also for the PPC-LLE
problembecausét canbe reducedto the PPC-LSEprob-
lem), assumehe size of the matrix M is n x n, andthe
d is the maximumlengthto represena.numberin F. As-
sumethat Gaussiareliminationmethodis usedin boththe
PPC-LSEprotocolandthe generakolution.

As we know thatthe costof Gaussiareliminationtakes
O(n?®) multiplication operations And by aroughestimate,
the size of a securecircuit for a single multiplication is
aboutO(d?). Thereforethetotal sizeof thecircuit to con-
ductthe Gaussiareliminationis O(n? x d2).

In the PPC-LSEprotocol,the costof communications
O(u *n?), wherey is the securityparameterSincethe dif-
ficulty to compromisethe securityis O (2 * n?) (n? isin-
troducedby the multiplicationof a matrix andavector and
2# is introducedby the oblivioustransfer),settingu = 256
is reasonablysecure.Thereforethe costof communication
O(p * n?) is significantlybetterthanO (n®  d?).

5 Conclusionand Futur e Work

In this paper we have defineda set of new privacgy-
preserving cooperatie scientific computation problems:
privagy-preservingcooperatie linear systemof equations
problem and privagy-preservingcooperatie linear least-
squargproblem.We have developedprotocolso solvethese
problems.

The major limitation of this work is due to the finite
field assumptionywhich makesthe computationsn our pa-
per somevhatdifferentfrom the original scientificcompu-
tations. In our futurework, we would lik e to definea finite
field thatmakesour computationgonsistentvith the origi-
nal scientificcomputationsAnotheralternatveis to devise
meaningfulprivagy requirementover infinite field, rather
thanusingwhatGoldreichdefinedfor afinite domain.

Rice pointsout thatusingM T Mz = MTb to solve the
linearleast-squargroblemis notalwaysthebestapproach,
becausét introducesheill-conditionedmatrix M7 M—the
conditionnumberof M M is the conditionnumberof M
squaed[20]. In thecasewhereconditionnumberof M T M
is too bad,the solutionmight berandomnumberaunrelated
to the original problem. In thosecasesptherapproaches—
suchasthe Gram-SchmidOrthogonalizatiorapproactand
the OrthogonalMatrix Factorizationapproach-are better
thanthe normalequationsapproach.Developingprotocols
to solve theleast-squar@roblemusingtheseapproachets
anavenuewe could pursuein the futurework.

Thereare someotherinterestingscientificcomputation
problemghatwe will studyin thefuturework, suchashow
to computeeigervalues eigervectors, determinantscondi-
tions, andfactorizatiorof amatrixin the privacy-preserving
cooperatve computatiorsituation.
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