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Abstract

Thegrowthof theInternethastriggeredtremendousop-
portunitiesfor cooperativecomputation,in which multiple
partiesneedto jointly conductcomputationtasksbasedon
the private inputs they each supply. Thesecomputations
couldoccurbetweenmutuallyuntrustedparties,or evenbe-
tweencompetitors. For example, two competingfinancial
organizationsmightjointly investin a projectthatmustsat-
isfy both organizations’private and valuableconstraints.
Today, to conductsuch a computation,one must usually
know the inputs from all the participants; however if no-
bodycanbetrustedenoughto knowall the inputs,privacy
will becomea primaryconcern.

Linear systemsof equationsproblemand linear least-
squareproblemproblemsare two importantscientificcom-
putationsthat involvelinear equations.Solutionsto these
problemsare widely usedin manyareassuch as banking,
manufacturing, and telecommunications.However, the ex-
isting solutionsdo not extendto theprivacy-preservingco-
operativecomputationsituation,in which the linear equa-
tions are shared by multiple parties, who do not want to
disclosetheir datato theotherparties.

In this paper, we formally definethesespecificprivacy-
preservingcooperativecomputationproblems,andpresent
protocolsto solvethem.

1 Intr oduction

Thegrowth of theInternethastriggeredtremendousop-
portunitiesfor cooperative computation,in which multiple
partiesneedto jointly conductcomputationtasksbasedon
the private inputs they eachsupply. Thesecomputations�
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could occur betweenmutually untrustedparties,or even
betweencompetitors.For example,two competingfinan-
cial organizationsmight jointly investin aprojectthatmust
satisfybothorganizations’privateandvaluableconstraints.
Today, to conductsucha computation,one must usually
know inputs from all the participants;however if nobody
canbe trustedenoughto know all the inputs,privacy will
becomea primaryconcern.For example,considerthe fol-
lowing applications:

Two financialorganizationsplan to cooperatively work
on a project for mutualbenefit. Eachof the organizations
would like its own requirementsbeing satisfied(usually,
theserequirementsaremodeledaslinearequations).How-
ever, the requirementsincludestheir projectsof the likely
future evolution of certaincommodityprices,interestand
inflationrates,economicstatistics,andcustomers’portfolio
holdings. Thesearevaluableproprietarydatathat nobody
is willing to discloseto otherparties,or evento a “trusted”
third party. How couldthesetwo financialorganizationsco-
operateon thisproject?

Two companies� and� areinvestigatinganopportunity
for a partnership.Company � ’s goalis to optimizethecost
of amanufacturingprocess.Aspartof thepartnership,com-
pany � will conductpartof theprocess.Becauseof this, �
doesnot know � ’s constraintson that part of the process,
unless� tells � , nordoes� know � ’sconstraints.Usually,
theconstraintsreflectthe informationaboutthecompany’s
resource,strategic plans,costinformation,andbusinessde-
cisions. They aresocritical thatbothcompaniestry every
measureto protectthem. Consideringthat the partnership
is not formedyet, � is afraidthat,if thepartnershipeventu-
ally falls through,theinformationit providesto � mightbe
usedby � for � ’sdisadvantage.With suchaconcern,� re-
ally doesnot feel comfortableto give its informationto any
othercompany, neitherdoes� . How couldthesetwo com-
paniesfind out thebenefitof apotentialpartnershipwithout
risking their privateinformation?

The above examples, without the privacy concerns,



could usually be modeledas linear systemsof equations
problemsor linearleastsquaresproblems[15]. Thesescien-
tific computationproblemshave provedvaluablefor mod-
elingmany anddiversetypesof problemsin planning,rout-
ing, scheduling,assignment,and design. Industriesthat
make useof theseproblemsand their extensionsinclude
banking, transportation,energy, telecommunications,and
manufacturingof many kinds. Although theseproblems
have beenwell studiedin the literature,their currentsolu-
tionsrarelyextendto thesituationin whichmultipleparties
want to jointly conductthecomputationsbasedon thepri-
vateinputs. For instance,Alice has � linearequationsin �
unknownvariables�
	 ; Bobhas���
� linearequationsin the
same� unknown �
	 . Alice andBobwanttofind thesolution� ���������������
��� thatsatisfiesthecombined� linearequations.
We know how to solve the problemif Alice cangive her
equationsto Bob or vice versa,becauseit is just a normal
linearsystemof equationsproblem. However, if theequa-
tionsownedby eachpartyaresovaluableproprietarydata
thatneitherpartyis willing to discloseto theother, theprob-
lem canno longerbesolvedusingthetraditionalmethods,
suchasGaussianeliminationand ��� factorization,because
thesemethodsassumethatonewho conductsthecomputa-
tion knowsall theinputs,anassumptionthatis not trueany
morein theprivacy-preservingcooperativecomputationsit-
uation.We needto find solutionsthatallow Alice andBob
to jointly solve their combined� linearequationswhile not
disclosingeachperson’sprivateequationsto theother.

Currently, to solve the above problems,a commonly
adoptedstrategy is to assumethetrustworthinessof thepar-
ticipants,or to assumetheexistenceof a trustedthird party.
Suchassumptionsare quite strongand maybeinfeasible,
andclearly it is desirableto have solutionsthatdo not rely
onthecompletetrustworthinessof participantsor third par-
ties. Moreover, in certainsituation,even thoughwe could
trust that theotherpartieswill not useour privateinforma-
tion againstour wish, we cannotguaranteethat their sys-
temsbeingsecureenoughto preventour informationfrom
beingstolen. On the otherhand,from the trustedparties’
point of view, in orderto conductsucha cooperative com-
putation, they have to carry the extra burdenof securing
otherparty’s data. If a disgruntledemployeeor a security
breachcausesthecompromiseof thedata,thesetrustedpar-
ties might faceexpensive lawsuits. Therefore,it is to the
favor of everyparticipantsthatnobodyknowstheotherpar-
ties’ secretinformation.Protocolsthatcansupportthis type
of joint scientificcomputationswhile protectingthepartici-
pants’privacy areof growing importance.

In this paper, we introducethe privacy-preservingco-
operative scientific computations(PPCSC)problem. The
generaldefinition of the PPCSCproblem is that two or
morepartieswantto conductascientificcomputationbased
on their private inputs,but neitherparty is willing to dis-

closeits own input to anybody else(including a so-called
trustedthird party). We have further definedseveral spe-
cific PPCSCproblems,includingprivacy-preservingcoop-
erative linearsystemof equations(PPC-LSE)problem,and
privacy-preservingcooperative linear least-square(PPC-
LLE) problem,all of which involveamatrix.

Thereare several ways to sharea matrix. Depending
on how sucha matrix is sharedby Alice and Bob, or in
anotherwordhow Alice andBobcooperatewith eachother,
the problemscould appearin a variety of forms. Figure1
describesthreedifferenttypesof cooperation.

Figure 1(b) depicts the homogeneouscooperation,in
which eachparty provides its own equations;Figure 1(c)
depictsthe heterogeneouscooperation,in which both par-
tieshaveto jointly specifyeachsingleequation;Figure1(d)
depictsthehybrid cooperation,in which bothpartiescoop-
eratein an arbitraryway. (b) and(c) aremoremeaningful
cooperationsthan(d) in real life, andthey aretwo special
casesof problem(d). Wehavedevelopedaprotocolto solve
theproblem(d):

��� �! �#" �$�
%'&��( )& " , wherematrix
� �

and vector &�� belongto one party, matrix
�*"

and vector& " belongto the other party. At the end of the protocol,
both partiesknow the solution � while nobodyknows the
otherparty’s privateinputs. Basedon this protocolandthe
similar techniques,wehavesolvedPPC-LSEproblemsand
PPC-LLEproblems.

Thegeneralizationof thePPCSCproblemis referredto
asSecureMulti-party Computationproblem(SMC) in the
literature [22]. Generallyspeaking,a securemulti-party
computationproblemdealswith computingany probabilis-
tic function on any input, in a distributed network where
eachparticipantholdsone of the inputs, ensuringthat no
moreinformationis revealedto a participantin thecompu-
tation than can be computedfrom that participant’s input
andoutput[8].

Goldreich statesin [6] that the generalsecuremulti-
partycomputationproblemis solvablein theory, but healso
pointsout thatusingthesolutionsderivedby thesegeneral
resultsfor specialcasesof multi-partycomputationcanbe
impractical;specialsolutionsshouldbedevelopedfor spe-
cial casesfor efficiency reasons.Motivatedby this asser-
tion, we are interestedin seekingspecialsolutionsto the
specificPPCSCproblem,solutionsthat aremoreefficient
thanthegeneraltheoreticsolutions.

In therestof this paper, thenext subsectionpresentsthe
relatedwork. Section2 presentsformaldefinitionof thepri-
vacy. Section3describesthePPC-LSE,PPC-LLEprotocols
andtheir applications.Section4 discussestheefficiency of
theseprotocols. Section5 summarizesthe paperandlays
out somefuturework.
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(a) Normal Linear Equations
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(b) Homogeneous Cooperation
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Legend: M1: Alice’s private matrix,  M2: Bob’s private matrix
b1: Alice’s private vector,    b2: Bob’s private vector

M1 M2 X = 

X = 

M1 + M2 b1+ b1

Figure 1. Various ways of cooperation

1.1 RelatedWork

The history of the multi-party computationproblemis
extensivesinceit wasintroducedby Yao[22] andextended
by Goldreich,Micali, and Wigderson[18], and by many
others.In thepast,securemulti-partycomputationresearch
hasmostly beenfocusingon the theoreticalstudies,very
few appliedproblemshave beenstudied. Thosefew ap-
plied problemsincludePrivateInformationRetrieval prob-
lem (PIR) [12, 3, 11, 10, 13, 17, 14, 9], Jointdigital signa-
ture[21, 5] andjoint decryption,electionsovertheInternet,
electronicbidding [2], andprivacy-preservingdatamining
[16, 1].

+
-out-of- , ObliviousTransfer

An
+
-out-of-, ObliviousTransferprotocol[7, 4] refersto

aprotocolwhereat thebeginningof theprotocoloneparty,
Bob has , inputs -
�.����������-0/ andat the endof the pro-
tocol theotherparty, Alice, learnsoneof theinputs -21 for
some

+436573 , of her choice,without learningany-
thing aboutthe other inputs andwithout allowing Bob to
learnanything about

5
. An efficient

+
-out-of-, Oblivious

Transferprotocolwasproposedin [19] by NaorandPinkas.
Their solutioncanachieve 8 �:9 � communicationcomplex-
ity, where

9
is the securityparameter(i.e. the lengthof a

numberthat is hard to factor). This protocolservesasan
importantbuilding block for our protocols,andtheideasof
usingthe

+
-out-of-, ObliviousTransferprotocolasbuild-

ing block arepioneeredby NaorandPinkasin [19].

2 Security Definition

The model for this work is that of generalmulti-party
computation,more specifically betweentwo semi-honest
parties. Our formal definitionsareaccordingto Goldreich
in [6]. We now presentin brief the definition for general
two-partycomputationof a functionality with semi-honest
partiesonly. They aretakenfrom [6].

Definition 2.1. (privacy w.r.t. semi-honestbehavior): Let;=<?>A@ � +�B�C?D >A@ � +�B�CFEG >A@ � +�B�C?D >A@ � +�B�C be a func-
tionality, where

; � � �(�IHJ� (resp.,
; "K� �(�IHJ� denotesthe first

(resp., second) element of
; � �L�IHJ� , and M be a two-

party protocol for computing
;

. The view of the
first (resp., second)party during an execution of M on� �(�IHJ� , denotedN 5PORQ4S� � �L��HT� (resp., N 5PORQ4S" � �(�IHJ� ), is� �(�IU � � 9 �� ��������� 9 �V � (resp.,

� H���U " � 9 " � ��������� 9 "V � ), where U �
(resp.,U " ) representstheoutcomeof thefirst (resp.,second)
party’s internalcoin tosses,and

9 �	 (resp.,
9 "	 ) represents

the W VYX messageit hasreceived. Theoutput of the first
(resp.,second)party during an executionof M on

� �(�IHJ� ,
denoted8Z�\[^]R��[ S� � �(�IHJ� (resp., 8Z�\[^]R��[ S" � �(�IHJ� ), is
implicit in theparty’sview of theexecution._ We say that ` privately computes

;
if there

exist polynomial time algorithms,denotedaL� and a "
suchthat> � aL� � �L� ; � � �L�IHJ���b� ; "c� �L�IHJ��� BAdKe fhgPiIj�e ��kmln > � N 5cORQ S� � �(�IHJ�b�m8Z�\[^]R�\[ S" � �(�IHJ�I� BAdKe fhgPiIj�e �okml> � ; � � �L��HT���oa "c� H�� ; "K� �(�IHJ�I��� Bhd�e fhgPiIj�e ��k ln > � 8Z��[^]R�\[ S� � �L��HT���oN 5cORQ4S" � �(�IHJ�I� BAdKe fhgPiIj�e �okml



where n denotescomputationalindistinguishability.N 5cOpQ S� � �L�IHJ� and N 5PORQ S" � �(�IHJ� , 8Z�\[^]R�\[ S� � �(�IHJ�
and 8Z�\[^]R�\[ S" � �L��HJ� are relatedrandomvariables,de-
finedasa functionof thesamerandomexecution.

3 SomePrivacy-Preserving Cooperative Sci-
entific Computations

In this section,we describetwo relatedprotocols for
privacy-preservingcooperative scientific computation,in-
cluding the protocolsfor the privacy-preservingcoopera-
tive linear systemof equations(PPC-LSE)and privacy-
preservingcooperative linear least-squareproblem(PPC-
LLS). We assumea finite field q , andall computationsare
over this finite field, meaningthat entriesof matrices(or
vectors)areelementsof a finite field andadditionandmul-
tiplication are definedwith respectto that field. As a re-
sult, this assumptionmakesthe scopeof the computations
somewhat different than the original computations.Such
anassumptionis madeto achieve theprivacy requirements
accordingto Goldreich’s definitions[6]. We believe that
droppingthis finite field assumptionis possibleif different
privacy requirements(definedin aninfinite domain)canbe
used.

3.1 Two Modelsof Cooperation

A commonpropertyof the above PPC-LSEand PPC-
LLE problemsis thecombiningknowledgeof a matrix

�
andof a vector & . We have describedin Figure1 threedif-
ferentwaysof combiningknowledge,with (b) and(c) being
thespecialcasesof (d). However, in real life, cases(b) and
(c)aremoremeaningfulthan(d) becausethey tendto model
thewaysof actualcooperations.

In thePPC-LSEandPPC-LLEproblems,
�

and & usu-
ally representa setof linearconstraints.Sometimestheco-
operatingpartieseachhas its own set of constraints,but
sometimesthey have to jointly specify eachsingle con-
straint. Thereforewe classify the cooperationto two ba-
sic models,theheterogeneousmodelandthehomogeneous
model.

Model 1. (HomogeneousModel) Alice has a matrix
� �

anda vector & � ; Bob hasa matrix
� "

anda vector & " . The
sizeof

� � is
9 � D � , thesizeof

� "
is
9 " D � ; thelengths

of thevectors&�� and & " are
9 � and

9?"
, respectively. Alice

andBobwantto solver � �� "ts �u% r & �& "ts
The model could be transformedto the the following

form:

r^r � �@ s  r @� "tsvs �u% r &��@ s  r @& ")s
Model 2. (HeterogeneousModel) Alice hasa matrix

� � ;
Bob hasa matrix

�#"
. Thesizeof

� � is
9 D �(� , the size

of
�#"

is
9 D � " , where�(�w *� " %x� . Alice andBob both

know a vector & of length
9

. They wantto solvey � � �#"{z �u%'&
The above linear equationscouldbe transformedto the

thefollowing form:y�y � � @ z  y @ �#" zAz �u%'&w @
Becausebothmodelsarethespecialcasesof thehybrid

model(Figure1 d), our solutionsaredevelopedfor thehy-
brid model.

3.2 Linear Systemof EquationsProblem

Problem1. (PPC-LSE)Alice hasamatrix
� � andavector&�� , andBobhasamatrix

�#"
andavector & " , where

� � and� "
are � D � matrices,and & � and & " are � -dimensional

vectors.Without disclosingtheir privateinputsto theother
party, Alice andBobwantto solve thelinearequation�|� �w �#" �$�?%F&��} ~& "
The Protocol Without concerningabout the privacy, a
straightforward solution would be to ask one party (say
Bob) to sendhis

�*"
and & " to theotherparty, Alice. This

however doesnot work if Bob is concernedaboutthe pri-
vacy of his data. Bob cannotsimply send

� � and & � to
Alice; he hasto disguisethe datain a way suchthatAlice
cannotderive theoriginaldatafrom thedisguiseddata.

Our solutionis basedon thefact that thesolutionto the
linear equations

�|� �  � " �$�F%�& �  4& " is equivalentto
thesolutionto thelinearequations] ��� �� �#" �I�R��� � ��%] � &��\ �& " � . If Alice knows

��� %�] �|� �� �#" �I� and& � %'] � &��! )& " � , shecansolvethelinearequationproblem:���o���%�& � , andthusgettingthefinal solution � , where ��%� �� . But how canAlice know
���

and & � withoutbeingable
to derive the valueof

�#"
and & " ? To solve this problem,

Bobgeneratestwo invertiblerandom� D � matrices] and� . ThenAlice andBob usesecureprotocols(will describe
themlater) to getAlice (andonly Alice) to learnthevalue
of ] ��� �  � " �I� and ] � & �  )& " � . However, Alice will not
learnthevalueof ] � � � , ] � " � , ]Z& � , ]Z& " , muchless] ,� ,
� "

, or & " .
After Alice gets

��� %F] �|� �  � " �I� and & � %F] � & �  & " � , shecansolvethelinearequations
���o��u%'& � by herself,

andthensendthesolution
�� to Bob, who cancomputethe



final solution �F%�� �� . Finally Bob sendsthe solution to
Alice. Althoughwe do not preventdisruptionof theentire
computationif Alice or Bobmisbehaves,wedoallow Alice
to detectthecasewhereBob learnsthecorrectanswerbut
doesnot allow Alice to learn the correctanswer. For ex-
ample,after gettingthe actualsolution,with an evil mind,
Bob maydecidenot to tell Alice theactualsolution � . He
cando thiswithoutbeingcaughtbecausehecansendanar-
bitrary vectorto Alice, who hasno way to verify whether
the received vector is the actualsolution or not. This is
not fair to Alice. To achieve the fairness,Alice shouldre-
questBob to sendbacka vector ��% �*" ���*& " alongwith
the solution � . This vectordoesnot give Alice any more
power to derive Bob’s databecauseif Bob is honest,Al-
ice will know the valueof

�#" �t�F& " anyway becauseof�|� �  � " ���u%�& �  ~& " . But if Bob still wantsto cheat,he
hasto find two vectors� � and � � , suchthat

� � � � ��& � %'� � .
Without knowing

� � and & � , Bob cannotfind thesetwo
vectors.Theprotocolis describedin thefollowing:

Protocol1. (PPC-LSE)Alice hasamatrix
� � andavector& � , andBob hasa matrix

� "
anda vector & " . � � and

� "
are � D � matrices;& � and & " are � -dimensionalvector.

1. Bobgeneratestwo invertiblerandom� D � matrices]
and � .

2. Alice andBob usea secureprotocol(will describeit
later) to evaluate

� � %�] �|� �� �#" ��� . Only Alice
knowstheresult

���
.

3. Alice andBob usea secureprotocol(will describeit
later) to evaluate& � %�] � &��� �& " � . Only Alice knows
theresult & � .

4. Alice solves the linear equations
� � ���%�& � . If the

solutiondoesnot exist, Alice tells Bob so,thentermi-
natesthe protocol. If the solutionexists, Alice sends
thesolution

�� to Bob.

5. Bobcomputes�?%F� �� and ��% � " �R�t& " , thensends
bothvectors� and � to Alice.

6. Alice checkswhether � is the actualsolutionby ver-
ifying whether ��� �|� � ����& � �� x����� equalsto zero(or
closeto zerowithin the acceptablerangeif computa-
tion errorsareinevitable).

PrivateEvaluation of
��� %'] ��� �  � " �I�

To privately evaluate
���

, Alice could send � matricesto
Bob,with oneof thematricesbeing

� � andtherestof the
matricesbeingrandom;however, Bobdoesnotknow which
oneis

� � . ThenBobcomputesthe ] �Y� 	  � " ��� for each
matrices

� 	 hereceives.At theendAlice usesthe
+
-out-of-, oblivioustransferprotocolto getbackfrom Boboneand

only oneof theresult,theresultof
��� %�] ��� �� �#" �I� .

Becauseof the way the
+
-out-of-, oblivious transferpro-

tocol works,Alice candecidewhich resultto get,but Bob
cannotlearnwhich oneAlice haschosen.However there
is onedrawback in this approach:if the valueof

� � has
certainpublic-known properties,Bob might beableto dif-
ferentiate

� � from theotherseemlyrandomvectors.More
seriously, afterBob finally getsthesolution � , it only takes
him � " triesto find both

� � and &�� .
The above drawbackcan be fixed by dividing the ma-

trix
� � into

9
randommatrices-��h���������I-2� , with

� �p%� �	��(� -2	 . Alice andBob canusethe samemethodasde-
scribedaboveto compute] � -2	K �#" �I� . As aresultof the
protocol, Alice gets ] � -2	  �#" �I� andBob only knows
oneof the � vectorsis -2	 , but becauseof therandomnessof- 	 , Bobcannotfind outwhichoneis - 	 . Certainly, thereis+

out � possibilitythatBob couldguessthecorrect - 	 , but
since

� � is thesumof
9

suchrandommatrices,thechance
thatBob guessthecorrect

� � is
+

out � � , which couldbe
verysmall if we chose� � largeenough.

However, knowing the valuesof ] � - 	  � " �I� forWp% + ��������� 9 might make it easierfor Alice to figure out
the valueof

�#"
, therefore,Bob alsoneedsto disguisethe

resultsof ] � -2	� �#" �I� . Onewayto dothisis to divide
�#"

to
9

randommatrices( ¡��.���������o¡
� ) aswell, eachtimeBob
returnsthevaluesof ] � -2	¢ ~¡¢	����' ¤£\	 for W�% + ��������� 9 ,
where£\	 ’s arealsorandommatrices.

After Alice gets] � -2	b 0¡
	��I�? 0£�	 for W % + ��������� 9 , she
cansumthemup andget ] ��� �w �*" �I�x � �	��(� £\	 . Bob
cansendthe resultof

� �	��(� £ 	 to Alice who canthenget] �|� �  � " �I� . Figure2 explainshow theprotocolworks.
Thedetailof theprotocolis describedin thefollowing:

Protocol2. Alice hasa Matrix
� � , andBob hasa Matrix�#"

andtwo randommatrices] and � .

1. Alice andBob agreeon two numbers� and
9

, such
that � � is sobig thatconducting� � additionsis com-
putationallyinfeasible. For example,Alice andBob
couldchoose��%�¥ and

9 % + @ ¥.¦ .
2. Alice generates

9
randommatrices-��h���������I-2� , such

that
� �§%'-��w x�����A *-2� .

3. Bob generates
9

randommatrices ¡ � ����������¡ � , such
that

�#" %F¡��� x�����A ¤¡
� .

4. For each ¨4% + ��������� 9 , Alice and Bob conductthe
following sub-steps:

(a) Alice sendsthefollowing sequenceto Bob:�|� � ��������� �R© �
wherefor a secret

+#3 � 3 � ,
�2ª %«-p¬ ; the

rest of the sequenceare randommatrices. � is



Alice Bob

Alice gets: 

X1 X3X2 X4

X1

X2

X3
P(X1+Y1)Q+R1, ...,

Oblivious Transfer
1−out−of−N

among random matrices

hiding X1,...,X4
X4

P(X4+Y4)Q+R4

private input: M1 private input M2=Y1+...+Y4

M1=X1+X2+X3+X4

P(M1+M2)Q =P(X1+Y1)Q+R1 + ...+P(X4+Y4)Q+R4− (R1+...+R4)

Figure 2. Private Evaluation of ] �|� �w �#" �I�
a secretrandomnumberknown only by Alice,
namelyBobdoesnot know thepositionof -p¬ in
thewholesequence.

(b) Bob computes] �Y� 	  ~¡ ¬ �I�F �£ ¬ for eachW­%+ ���������Y� , where£ ¬ is a randommatrix.

(c) Using the
+
-out-of-, Oblivious Transferproto-

col, Alice getsbacktheresultof] �Y� ª  ¤¡ ¬ ���x *£ ¬ %F] � - ¬  *¡ ¬ �I�' ¤£ ¬
5. Bobsends

� �¬��(� £§¬ to Alice.

6. Alice computes
��� % � �¬��(� � ] � -p¬­ ¤¡J¬A�I�' ¤£§¬A� �� �¬��(� £§¬v%'] ��� �w �*" �I� .

Intuitively, Alice preservesherprivacy by bothdividing
hermatrix

� � to � randommatriceswhich arefurtherhid-
denamongmany otherrandommatrices,andby gettingthe
resultsbackusingthe

+
-out-of-, oblivious transferproto-

col. Bob’sprivacy is preservedby the1-out-of-Noblivious
transferprotocol,randommatrices¡¢	 ’s and £�	 ’s.

Theorem1. Theprotocol M for computing
��� %'] �|� �� �#" �I� is private.

Proof. We show a simulator a � for simulating�cW$®A¯ S� �|� � � � " � such that
> a � ��� � � ��� ����� B is indistin-

guishablefrom
> � �cW$®A¯ S� �|� � � � " �b�}°h±¢²³��±¢² S" �|� � � � " �I� B .a � receivesasinput

�|� � � ��� � (input/output)of Alice. Re-
call thattheview of apartyis definedby

� �(�IU.� 9 ��� 9u" �������´�
where� is theinput, U is theprivatecoin tossesand

9 	 theW th messagereceived._ a � , uponinput
�|� � � ��� � first choosestwo invertible

randommatrices ] � and � � (thesematricessimulate] and � respectively).

_ aL� thenfinds
���"

(tosimulate
�#"

) bysolving ] ���|� �� ���" �I� � % ��� ._ a � then generates
9

randommatrices ¡ �	 for W�%+ ��������� 9 , suchthat
� �	��(� ¡ �	 % ���" ._ aL� generatesmatrices-2	 for W�% + ��������� 9 usingthe

samecoin tossesU thatAlice usesin generatingthese
matrices._ aL� generatesmatrices£\	 for W % + ��������� 9 .

Let a(� �|� �h� ��� �w% > � �h�IU.��] ��� -��­ �¡ �� �I� �  ~£ �� �J�������] �|� -2�� 
¡ �� �I� �  �£ �� � � �	��(� £ �	 B . Since�PWµ®A¯ S� ��� �h� �#" �% > � � �IU.��] � - �  4¡ � �I�� 4£ � �¶��������] � - �  4¡ � �I�· £ � � � �	��(� £ 	 B . And
> a � �|� � � ��� �b��� B is computationally

indistinguishablefrom
> �PW$®�¯ S� ��� � � � " ����� B

We now show a simulator a " for simulating�cW$®A¯ S" �|� �.� �#" � such that
> ��� �oa "c�|�#" ���^� B is indistin-

guishablefrom
> � °h±
²³�
±
² S � �|� �.� �#" �I� , �PWµ®A¯ S" �|� �h� �*" � B ,

Bob generates
9 � � random � D � matrices> �|���� e � ��������� ���� e © � , ������� �|���� e � ��������� ���� e © � B . Each ele-

ment is uniformly distributed. Therefore, a "c�|�#" ���^�0%> �#" �IU.� �|���� e � ��������� ���� e © �b�\������� �|���� e � ��������� ���� e © � B . We
also have �cW$®A¯ S" �|� �.� �#" � B % > �#" �IU.� �|� � e ����������� � � e © ���������� �|� � e �.��������� � � e © � B . Becauseof the definition of� 	 e ¬ , > ��� �oa " �|� " ���^� B is computationallyindistinguish-
ablefrom

> � °h±
²³�
±
² S � �|� � � � " �I� , �PWµ®A¯ S" �|� � � � " � B .
PrivateEvaluation of & � %'] � & �  ~& " �
This protocol is similar to the protocol of evaluating

���
.

andthesecuritypropertycanbeprovedsimilarly.



Protocol3. Alice hasa vector &�� , Bob hasa vector & " and
arandommatrix ] .

1. Alice andBob agreeon two numbers� and
9

, such
that � � is sobig thatconducting� � additionsis com-
putationallyinfeasible.

2. Alice generates
9

randomvectors � � ����������� � , such
that & � %'� �  '�����A #� � .

3. Bobgenerates
9

randomvectorsH � ���������IH � , suchthat& " %�H �  x�����A *H � .

4. For each ¨�% + ��������� 9 , Alice and Bob conductthe
following sub-steps:

(a) Alice sendsthefollowing sequenceto Bob:��¸ ����������� ¸ © �
wherefor a secret

+x3 � 3 � ,
¸¢ª %¹�T¬ ; the

rest of the sequenceare randomvectors. � is
a secretrandomnumberknown only by Alice,
namelyBob doesnot know thepositionof � ¬ in
thewholesequence.

(b) Bob computes] �|¸ 	­ �Hh¬��� ºUb¬ for each W#%+ ���������Y� , whereUb¬ is a randomvector.

(c) Using the
+
-out-of-, Oblivious Transferproto-

col, Alice getsbacktheresultof] ��¸ 	¢ #Hh¬��L *Ub¬\%'] � �T¬» *Hh¬A�L *Ub¬
5. Bobsends

� �¬��(� Ub¬ to Alice.

6. Alice computes & � % � �¬��¶� � ] � � ¬  �H ¬ �Z �U ¬ ���� �¬��(� Ub¬§%F] � &��w ¤& " � .
Theorem2. Theprotocol for computing& � %¼] � & �  x& " �
is private.

Theorem3. PPC-LSEprotocol is a protocol for privately
computingthe solution to the Linear Systemof Equations
problem.

Proof. We need to show a simulator aL� for simulating�cW$®A¯ S� �I�|� �h�o&����b� �|�#" �o& " �I� suchthat
> a(� �I��� �.�m&������I���b�I� B

is indistinguishable from
> � �PW$®A¯ S� �I�|� � �o& � �b� �|� " �o& � �I���°h±
²³�
±
² S" �I�|� � �o& � �b� �|� " �o& " �I��� B ._ Alice generatesrandommatrix

���
, andthensets& � %��� � .

���
is to simulate ] �|� �� �*" �I� , and & � is to

simulate] � &��w ¤& " � ._ Fromtheproof of theprotocolsfor evaluating
���

and& � , wecansimilarly simulateAlice’sview uponthein-
put of

�|� �h� ��� � (resp.,
� &��h�m& � � ).

Based on the proof of the protocols for evaluat-
ing

���
and & � , we know that

> aL� ���|� �.�o&����b�I���b��� B
is indistinguishable from

> � �cW$®A¯ S� �I��� � �m& � ��� �|� " �o& " �I���°h±
²³�
±
² S" �I��� � �m& � ��� �|� " �o& " �I��� B .
Thedesignof thesimulator a " is similarly basedon the

simulatorsusedin theproof of theprotocolsfor evaluating���
and & � .

3.3 Privacy-Preserving Cooperative Linear
Least-SquaresProblem

The linear systemof equationsproblemconsistsof �
equationsof � unknown variables. There are situations
wherewe have moreequationsto satisfy thanthe number
of unknown variables.Most often,we cannotsatisfyall of
theseequations,but we may find a solution that can sat-
isfy themasbestaswe can.This problemis calledthelin-
earleast-squaresproblem.We solve theprivacy-preserving
cooperative linearleast-squaresproblem(PPC-LLS)in this
subsection.

Problem2. (PPC-LLS)Alice hasamatrix
� � andavector&�� , andBob hasa matrix

�#"
anda vector & " , where

� �
and

�#"
are
9 D � matrices(

9�½ � ), and &�� and & " are
9

-
dimensionalvectors.Withoutdisclosingtheirprivateinputs
to the otherparty, Alice andBob want to solve the linear
equations �|� �  � " �$�?%F& �  ~& "
Sincetherearemoreconditions(equations)to be satisfied
thandegreesof freedom(variables),it is unlikely that they
canall besatisfied.Therefore,they want to attemptto sat-
isfy theequationsasbestasthey can–thatis, make thesize
of theresidualvector U with components

U ¬ %F¾ ¬ � �¿ 	��(�LÀ ¬�	 � 	
assmall aspossible( À ¬�	 arethe entriesin the new matrix� % � �K �#" , ¾o¬ aretheentriesin thenew vector &§%*&��c & " ). The least-squarescriterion is theuseof the Euclidean
(or least-squares)normfor thesizeof U ; thatis, minimizeÁÂÂÃ �¿¬��(� U

"¬ %���� UJ��� "
Solution: Linear leastsquaresproblem

� �'%�& canbe
expressedin linearsystem:��Ä(� ��% ��Ä &
which contains � linear equationsin the � unknowns � 	 ,
hencecan be solved using the usualmethodsfor the lin-
ear equationsproblem,suchas the the Gaussianelimina-
tion methodandtheCholesky method,Suchanapproachto



solve the least-squaresproblemis calledthe normalequa-
tionsapproachbecause

� Ä � �)% � Ä & arenormalequa-
tions.

In the privacy-preserving cooperative linear least-
squaresproblem,

� % � �  � " , &p%�& �  '& " , therefore
wehave

� Ä � % � Ä� � �  � Ä� � "  � Ä" � �  � Ä" � " ,
and

� Ä &§% � Ä� & �  � Ä� & "  � Ä" & �  � Ä" & " .
Therefore,the linear equations

� Ä � ��% � Ä & be-
comesthefollowing:�|��Ä� � �  ��Ä� � "  ��Ä" � �  ��Ä" � " �$�% ����Ä� &��w ��Ä� & "  ��Ä" &��} ��Ä" & " �

UsingtheMatrix-VectorProductprotocolandtheMatrix
Productprotocol (both protocolswill be describednext),
Alice andBobcangetthefollowing:N �  �N " % � Ä� � "Q �  Q " % � Ä" � �� �  *� " % ��Ä� & �¯ �  *¯ " % � Ä" & "

wherematrices N � , Q � , vectors � � and ¯ � are known
only to Alice; matrices N " , Q " , vectors � " and ¯ " are
known only to Bob. Let

���� % � Ä� � �  �N �  Q � ,���" % � Ä" �#"  �N "  Q " , & � � % � Ä� &��p ·�c�� ·¯^� ,& �" % � Ä" & "  #� "  #¯ " , wehave�|� ��  � �" �$�?%F& ��  ~& �"
where

���� and
���"

are � D � matrices,and & � � and & �" are
vectorsof length � ;

���� and & � � areknownonly to Alice, and���"
and & �" areknown only to Bob. Thisis aPPC-LSEprob-

lem. It canbesolvedusingthePPC-LSEprotocoldescribed
in 3.2.

Protocol4. (Matrix ProductProtocol) Alice hasa private
matrix � , Bob hasa privatematrix � . At the endof the
protocol,Alice gets£�Å , andBobgets£�Æ , where£\Å� 2£\Æ�%�^� , £ Å and £ Æ arerandommatrices.

1. Alice andBob agreeon two numbers� and
9

, such
that � � is sobig thatconducting� � additionsis com-
putationallyinfeasible.

2. Alice generates
9

randommatrices-
�.����������-0� , such
that �F%x- �  '�����h *- � .

3. For each ¨�% + ��������� 9 , Alice and Bob conductthe
following sub-steps:

(a) Alice sendsthefollowing sequenceto Bob:�Y� ����������� � © �

wherefor a secret
+#3 � 3 � ,

�2ª %«-p¬ ; the
rest of the sequenceare randommatrices. � is
a secretrandomnumberknown only by Alice,
namelyBob doesnot know thepositionof - ¬ in
thewholesequence.

(b) Bob computes
� 	 ���*£ ¬ for eachW­% + ���������Y� ,

where£v¬ is a randommatrix.

(c) Using the
+
-out-of-, Oblivious Transferproto-

col, Alice getsbacktheresultof�2ª ���Ç£v¬�%x-p¬����{£§¬
4. Alice gets£�Å�% � �¬��¶� � - ¬ ���v£ ¬ �¢%'�^��� � �¬��(� £ ¬ ,

andBobgets£ Æ % � �¬��(� £v¬ .
Protocol5. (Matrix-Vector Product Protocol) Alice hasa
privatematrix � , Bob hasa privatevector & . At theendof
theprotocol,Alice getsUAÅ , andBobgetsUAÆ , whereUAÅc ÈUAÆ»%��& , £ Å and £ Æ arerandomvectors.

The protocol is similar to the Matrix Productprotocol.
Just replaceeachoccurrenceof matrix � in the Matrix
Productprotocolwith thevector & ; replacetherandomma-
trix £v¬ with the randomvector Ub¬ for ¨{% + ��������� 9 ; also
replacethematrix £ Å with thevector U Å , and £ Æ with U Æ .
Protocol6. (PPC-LLS)

1. UsingtheMatrix-VectorproductprotocolandtheMa-
trix productprotocol,Alice gets N � , Q � , � � , and ¯ � ;
Bob gets N " , Q " , � " , and ¯ " ; where, � 	 and

Q 	 are
matrices,��	 and̄§	 arevectors,and N��. ZN " % � Ä� �#" ,Q �­ Q " % � Ä" � � , �c�� ~� " % � Ä� &�� , ¯^�» ~¯ " %� Ä" & " .

2. Alice computes
���� % � Ä� � �  xN �  Q � and & � � %� Ä� & �  #� �  *¯ � .

3. Bob computes
���" % � Ä" �#"  �N "  Q " and & �" %� Ä" & "  #� "  *¯ " .

4. Alice andBob usePPC-LSEprotocolto solve
�|����  � �" �$��%�& ��  ¤& �" .

Thelinearleast-squaresproblemarenormallyusedin re-
gressionandmathematicalmodeling.Considerbuilding an
investmentmodel for a financialorganization.Oneexam-
ple is to modelcustomers’investmentasa functionof age.
In sucha casethe bankknows or believesor hopesthere
are � differentfactors–allrelatedto the age–thatinfluence
thecustomers’decisionon investment,andthebankwants
to build amathematicalmodelaccordingto these� factors.
Formally speaking,the bankwant to find out the function& � ²I��% � �	��(� � 	 ; 	 � ²I� , where ² is the variablerepresenting
theage,and

; 	 � ²I� expressthedifferentagefactors.
Supposenow that the banktakesa largenumberof ob-

servation from the datait collected,andobtainsvalues &o¬



for ² values ²�¬ , ¨*% + ��������� 9 , and
9É½ � . The problem

of building sucha mathematicalmodel is just to solve the
following linearleast-squaresystem:

Ê ¬\% �¿ 	��(� ; 	 � ²�¬h�$�¢	I�µ¨p% + ��������� 9
Therearetimeswhenonefinancialorganizationdoesnot

havethesufficientdatato build suchamathematicalmodel,
it therebyneedsto cooperatewith anotherfinancialorgani-
zation,who alsowantsto benefitfrom sucha cooperation.
Sobothfinancialorganizationswould contributetheir own
datatoward building sucha model. Becausethis type of
datausually consistsof proprietaryinformation that none
of the financial organizationsis willing to discloseto the
others,thesetwo financialorganizationsneedto find a way
to build themathematicalmodelwithoutviolating theirpri-
vacy constraints.They canusePPC-LLSprotocol.

Theorem4. PPC-LLSprotocol is a protocol for privately
computingthe solution to the Linear Least-SquaresProb-
lem.

Thetheoremis correctbecausethePPC-LLSprotocolis
reducedto thePPC-LSEprotocol,which is alreadyproved.

4 Protocol Efficiency

A Comparison to GenericSolutions.
The motivation of this research,i.e. designingspecific

solutionsfor eachspecificproblems,is to reducethecom-
municationcost. Therefore,in this section,we will com-
parethe communicationcostof our approachwith that of
thegeneralsolutions(thecircuit evaluationapproach)

For the PPC-LSEproblem(and also for the PPC-LLE
problembecauseit canbe reducedto the PPC-LSEprob-
lem), assumethe sizeof the matrix

�
is � D � , and theÊ

is the maximumlengthto representa numberin q . As-
sumethatGaussianeliminationmethodis usedin both the
PPC-LSEprotocolandthegeneralsolution.

As we know that thecostof Gaussianeliminationtakes8 � �!Ëh� multiplicationoperations.And by a roughestimate,
the size of a securecircuit for a single multiplication is
about 8 � Ê " � . Therefore,thetotal sizeof thecircuit to con-
ducttheGaussianeliminationis 8 � �!Ë � Ê " � .

In the PPC-LSEprotocol,thecostof communicationis8 �:Ì � � " � , where
Ì

is thesecurityparameter. Sincethedif-
ficulty to compromisethesecurityis 8 � ¥�Í � � " � ( � " is in-
troducedby themultiplicationof amatrix andavector, and¥�Í is introducedby theoblivioustransfer),setting

Ì %�¥cÎ�Ï
is reasonablysecure.Thereforethecostof communication8 �:Ì � � " � is significantlybetterthan 8 � �!Ë � Ê " � .

5 Conclusionand Future Work

In this paper, we have defineda set of new privacy-
preservingcooperative scientific computationproblems:
privacy-preservingcooperative linear systemof equations
problem and privacy-preservingcooperative linear least-
squareproblem.Wehavedevelopedprotocolsto solvethese
problems.

The major limitation of this work is due to the finite
field assumption,which makesthecomputationsin our pa-
persomewhatdifferentfrom theoriginal scientificcompu-
tations.In our futurework, we would like to definea finite
field thatmakesourcomputationsconsistentwith theorigi-
nal scientificcomputations.Anotheralternative is to devise
meaningfulprivacy requirementsover infinite field, rather
thanusingwhatGoldreichdefinedfor afinite domain.

Ricepointsout thatusing
� Ä � �)% � Ä & to solve the

linearleast-squareproblemis notalwaysthebestapproach,
becauseit introducestheill-conditionedmatrix

� Ä �
–the

conditionnumberof
� Ä �

is theconditionnumberof
�

squared[20]. In thecasewhereconditionnumberof
� Ä �

is toobad,thesolutionmightberandomnumbersunrelated
to the original problem. In thosecases,otherapproaches–
suchastheGram-SchmidtOrthogonalizationapproachand
the OrthogonalMatrix Factorizationapproach–are better
thanthenormalequationsapproach.Developingprotocols
to solve theleast-squareproblemusingtheseapproachesis
anavenuewe couldpursuein thefuturework.

Therearesomeother interestingscientificcomputation
problemsthatwewill studyin thefuturework, suchashow
to computeeigenvalues, eigenvectors, determinants, condi-
tions, andfactorizationof amatrix in theprivacy-preserving
cooperativecomputationsituation.
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