CERIAS Tech Report 2001-129
The Problem of Highly Constrained Tasksin Group Decision Support Systems
by J Rees, R Barkhi
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 135 (2001) 220-229
www.elsevier.com/locate/dsw

Theory and Methodology

The problem of highly constrained tasks in group decision support
systems

Jackie Rees *, Reza Barkhi ®!

& Krannert Graduate School of Management, Purdue University, West Lafayette, IN 47907-1310, USA
® Department of Accounting and Information Systems, Pamplin College of Business, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

Received 25 January 2000; accepted 13 November 2000

Abstract

Most experimental uses of group decision support systems (GDSS) are associated with relatively unrestricted do-
mains, for example, idea generation and preference specification, where few restrictions on potential solutions exist.
However, an important GDSS task is that of resource allocation across functional areas of the organization, including
supply chain applications. These types of tasks, such as budget planning and production planning, are typically highly
constrained and difficult to solve optimally, necessitating the use of decision aids, such as those found in GDSS.

We use a model based on adaptive search of a genetic algorithm as the analogy for the group decision making
process. We apply this model to experimental data gathered from GDSS groups solving a production planning task.
The results indicate very low estimated crossover rates in the experimental data. We also run computational experi-
ments based on adaptive search to mimic the GDSS data and find that the low estimated crossover rate might be due to
the highly constrained search space explored by the decision making groups. The results suggest further investigation
into the presumed beneficial effects of group interaction in such highly constrained task domains, as it appears very little
true information exchange occurs between group members in such an environment. Furthermore, the simulation
technique can be used to help predict certain GDSS behaviors, thus improving the entire GDSS process. © 2001
Elsevier Science B.V. All rights reserved.

Keywords: Group decisions and negotiations; Genetic algorithms; Evolutionary computations

1. Introduction

Group decision support systems (GDSS) are
_ intended to support meetings and facilitate group

Corresponding author. Tel.: +1-765-494-0320; fax: +1-765- work in the organization. Speciﬁcally Gallupe and
495-9658. . . i

E-mail addresses: jrees@mgmt.purdue.edu (J. Rees), re- DeSanctis (198.8) deSCI.Albe the .purpose .Of GDSS to
za@vt.edu (R. Barkhi). be the promotion of interaction and information

! Tel.: 540-231-5869; fax: 540-231-2511. exchange among parties with conflicting goals and

0377-2217/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0377-2217(00)00323-4

J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229 221

priorities. This support for group interaction is
provided through communication support, process
structuring and decision tools. Sample applica-
tions of GDSS include quality team support at the
IRS (DeSanctis et al., 1992), and at IBM (Gro-
howski et al., 1995). These applications are often
strategic in nature, thus categorizing the task at
hand as preference tasks (McGrath, 1984), where
the number of possible alternative outcomes is
relatively large. Other popular uses of GDSS are
for idea generation or brainstorming tasks. These
applications are also relatively unconstrained, of-
ten limited to just the imagination of the partici-
pants.

Other GDSS tasks have serious implications for
not only the organization but for the entire supply
chain. These tasks include resource allocation
tasks such as budget planning and production
planning. These tasks can be classified as mixed-
motive negotiation tasks (McGrath, 1984). Typi-
cally, participants have mixed-motives to compete
and cooperate, and hence, the interests of all par-
ties cannot be accommodated. One feature distin-
guishing these types of tasks from others is the
highly constrained nature of the search space.
Examples of these tasks include budgeting and
order fulfillment both subject to resource con-
straints such as capacity limitations or financial
limitations. Within the context of Simon (1977)
view that managerial decision making is the search
for optimal or near-optimal solutions through a
solution space, many combinations (budget items,
production schedules) are infeasible thus requiring
increased considerable overhead in the search
process.

As stated above, the purpose of GDSS is to
facilitate interaction and information exchange
between group members. However, in such highly
constrained GDSS tasks, such as budgeting or
production planning applications, the question
arises of how much interaction and information
exchange actually occurs between GDSS users and
is that actual level of interaction and information
exchange appropriate to the desired GDSS out-
come?

Rees and Koehler (1999) have developed an
evolutionary model based on genetic search that
we use to describe adaptation in groups using

GDSS. We apply this model to data generated
from experimental GDSS sessions. The experi-
ments examined the application of GDSS to a
highly constrained task, namely a production
planning problem (Barkhi, 1995). This problem is
of considerable importance given the high dollar
impact such problems have on the organization
and on the entire supply chain. We use the ex-
perimental data to estimate the parameters for a
genetic search model for this problem. Subse-
quently, we use these genetic parameters to gain
insight into the levels of interaction and informa-
tion exchange between GDSS group members for
the particular GDSS experiments. Our objective is
to show that these parameters can be used to de-
velop adaptive search agents that mimic the pat-
tern of decisions made by experimental GDSS
groups. In addition, we examine the impact of the
highly constrained search space on the genetic
operator guiding information exchange and pro-
vide possible courses of action to improve the
search process.

The remainder of the paper is organized as
follows: Section 2 examines the background liter-
ature on the use of GDSS on such highly con-
strained problems. The role of evolutionary
modeling in the study of similar systems is dis-
cussed in this section. An overview of the genetic
algorithm as it is used in this context is also pro-
vided. Section 3 discusses the evolutionary model
and the roles of the genetic operators, selection,
crossover and mutation. Section 4 compares the
estimated crossover rates from GDSS data sets to
the simulated outcomes of such experiments. Fi-
nally, Section 5 presents the conclusions resulting
from the comparisons and states recommendations
for GDSS use in such problems as well as discusses
future research directions.

2. Literature review
2.1. GDSS tasks

The task addressed by GDSS users is obviously
an important variable in the application of such
systems (Lam, 1997). The majority of GDSS ex-
periments have utilized or focused on preference

222 J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229

and idea generation tasks. As described above,
these tasks are relatively unconstrained; few re-
strictions are placed on the search process. Less
attention has been focused on highly constrained
tasks. However, there exist several examples of the
application of GDSS to resource allocation type
tasks. Barkhi (1995) experimentally examined the
use of GDSS in a production planning setting.
Nunamaker et al. (1991) examined product design
and Dennis et al. (1995) used budget creation as
the GDSS task. These tasks are considered repre-
sentative of actual GDSS use in organizations
(Gillenwater et al., 1995) and are typically highly
constrained. Many of the possible solutions (or
“points™) in the search space are infeasible given
the constraints on the task. Additionally, these
tasks are complex enough to mandate the use of
decision tools to model and solve such tasks.
Within this context, GDSS is intended to not only
provide decision support but to also facilitate the
“...dynamic exchange of decisional information”
for such tasks (Gillenwater et al., 1995).

2.2. Evolutionary models

The need to better understand the underlying
processes within groups and other forms of orga-
nizations is not restricted to GDSS use. Compu-
tational models based on evolutionary algorithms,
such as the genetic algorithm have been applied in
several areas. Bruderer and Singh (1996) used a
genetic algorithm to model organizational evolu-
tion. This evolutionary model set the stage for
creation of a simulation model allowing greater
insights into the rise and fall of organizations given
specific characteristics. A genetic algorithm was
the model for group interaction and information
exchange within groups of artificial agents solving
rule induction problems (Sikora and Shaw, 1996).
Others have applied GAs to groups of agents
solving organizational problems (Marks et al.,
1995; de la Maza and Yuret, 1995). These exam-
ples demonstrate the potential utility in using an
evolutionary approach in modeling social pro-
cesses. The next section describes the genetic al-
gorithm as it will apply to the remainder of the

paper.

2.3. Genetic algorithms

Genetic algorithms are general-purpose search
algorithms driven by the basic principles of Dar-
winian natural selection and evolution. Search is
performed from a population of agents, rather
than the traditional single point. Such agents,
called strings or chromosomes, explore a space
using three basic operations. First, strings are
evaluated according to a given objective function.
This evaluation, or fitness, influences the propor-
tion of the string in the next time series, or gen-
eration. Fitter strings generally have a greater
chance of being stochastically selected for the next
generation. Second, selected strings are recom-
bined, or crossed, in hopes of discovering better or
fitter strings by combining genetic material. Third,
the selected strings are randomly mutated to re-
place any lost diversity after selection and cross-
over. As such, GAs are a stochastic search
technique.

The simple genetic algorithm uses three bio-
logically inspired operators. Selection, or repro-
duction, is the operator that tends to take the
“fittest” members of the population for use in
generating the next generation. Crossover com-
bines genetic material between selected members
of the population. Finally, mutation adds diversity
back into a population.

Selection occurs similar to that of asexual re-
production in the natural world. Chromosomes
that are deemed ““fit” by measure of a pre-defined
fitness function are stochastically more likely to be
represented in future populations. Strings are thus
drawn with replacement from the current genera-
tion with bias according to a fitness measure and
placed into the next generation. This method is
known as stochastic sampling with replacement, or
more commonly referred to as “‘roulette wheel”
selection. Other commonly used selection schemes
include tournament selection and rank selection.
In tournament selection, strings are drawn from
the population using the method above in pairs
and the string with the higher fitness value is
placed in the new population. Rank selection
starts by sorting the population according to fit-
ness value. Each string receives new copies that are
placed in the new population according to a

J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229 223

function of this ordering. Several other variations
of selection are discussed in Goldberg (1989).

Crossover implements a mating strategy for the
combination of “good” genetic material between
fit parents. After the selection procedure is com-
plete, crossover is applied with a predetermined,
fixed probability, called the crossover rate, usually
ranging from 0.6 to 1.0. Two members of the new
population are paired up, each selected with the
probability given by the crossover rate. In the most
common crossover scheme, one-point (also called
single-point) crossover, a single site is uniformly
selected with probability 1/(¢ — 1), where ¢ is the
length of the string. The parent sub strings are
exchanged on the right-hand side of the crossover
site. Two-point (also called multi-point) crossover
works in a manner similar to that of one-point
crossover. However, the string is viewed as a ring
and two crossover sites are randomly and uni-
formly selected. The sub strings demarcated by the
two points are thus exchanged. Uniform crossover
works slightly differently. Each string is selected
for crossover just as in single-point crossover, but
rather than selecting a crossover site, each bit in
the string is exchanged with the corresponding bit
in the other string with probability 27 (Vose,
1999). Other crossover schemes exist and are dis-
cussed in Goldberg (1989).

Mutation is the last operation on the popula-
tion before the next generation is completely
formed. In the binary case, mutation simply re-
quires the mutated bit becomes its complement,
i.e., 0 becomes 1 and vice versa. Under uniform
mutation, mutation is applied with a fixed, pre-
determined probability to each gene (each bit) in
every string. The mutation rate is kept very low,
usually between 0.001 and 0.005, in order to keep
the search from diversifying too rapidly. Other
mutation schemes are available, see Goldberg
(1989).

3. The evolutionary model for GDSS

The evolutionary model for GDSS is discussed
in its entirety in Rees and Koehler (1999). The
foundation of the model is the genetic algorithm.
This evolutionary model captures the adaptive

processes undergone by the group as it uses the
GDSS. The underlying principle of the model is
that the problem-solving process of GDSS groups
can be mimicked by a genetic algorithm utilizing
selection, crossover, and mutation (Rees and
Koehler, 1999). The model is especially suited to
highly structured task domains, such as produc-
tion planning problems.

The implementation of the model can be de-
scribed as follows: the ideas or proposed solutions
exchanged between group members using the
GDSS can be encoded as strings. These strings can
then be temporally grouped into populations or
generations of strings. The sizes of the populations
are variable and are a function of the interaction
between group members. The fitness function for
the group can take many forms. An incentive
scheme can easily be encoded into a fitness func-
tion, as can a voting scheme or perhaps a utility
function. The model assumes the genetic algorithm
has three operators: selection, crossover, and mu-
tation. The role and implementation of each of
these operators are discussed below.

The purpose of the selection operator is to
identify better or “fitter” solutions in accordance
with the fitness function and insert these strings
into the next generation. Ensuring the “survival of
the fittest” is the role of the selection operator. The
specific implementation of selection may vary from
application to application (and from task to task).
However, rank selection appears to be a generally
robust selection operation. Rank selection, con-
sidered a non-parametric procedure, sorts the
strings in the population according to fitness value.
Copies of individual strings are inserted into
the next generation according to a function of the
original ranking. Essentially, the higher-ranked the
idea, the more likely it will influence subsequent
generations.

The role of the crossover operator is to combine
“genetic”’ material or information between two
solution strings. For this reason the crossover
operator is often called the “exploitation” opera-
tor. Two strings are mated with probability y (the
crossover rate). Uniform crossover appears to be a
fairly good implementation choice for the evolu-
tionary model for GDSS (Rees and Koehler,
1999). Uniform crossover works by moving

224 J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229

bit-wise down the pair of strings, exchanging bits
with probability y. The appeal of uniform cross-
over is the ability to exchange a variable number of
information segments between the string pairs,
which is a more dynamic approach than either
single-point or multi-point crossover (Goldberg,
1989).

The role of the mutation operator is to prevent
the search from becoming trapped at local optima.
For this reason the mutation operator is often
called the “exploration” operator (Goldberg,
1989). Bits of information along the strings are
randomly altered at a pre-defined mutation rate, pu.
The mutation operation adds diversity to the
search by adding random information back to the
solution strings. Uniform mutation is the imple-
mentation of the mutation operator (Rees and
Koehler, 1999). Under uniform mutation, muta-
tion is applied with a fixed, pre-determined prob-
ability to each gene (each bit) in every solution
string. The mutation rate is kept very low, usually
between 0.001 and 0.5 to prevent the search from
diversifying too rapidly.

One of the advantages to using a GA as the
basis for an evolutionary model is that a large
body of mathematical knowledge exists about the
GA (Rees and Koehler, 1999). We use experi-
mental data from GDSS sessions (Barkhi, 1995),
and apply maximum-likelihood estimation tech-
niques to learn GA parameter settings for muta-
tion and crossover rates. This allows us to mimic
the decision process of GDSS users and estimate
the trajectory of their decision outcomes. In other
words, we use adaptive search and tailor it to
specific GDSS groups incorporating the decision
process of the group into the design of the adap-
tive search. In the next section we summarize the
mathematical models for the simple GA and show
how these can be used to determine a maximum-
likelihood estimate for a GDSS trajectory.

The model can be exactly described as follows:
Let Q be a collection of binary strings of length ¢
and let » = |Q| =2’ be the number of possible
strings. These strings can be equivalently consid-
ered as the integer equivalents 0, 1,...,» — 1. Let P
be a population of elements from €2, where n = |P|
is the population size and N is the number of pos-
sible populations. N is computed by the formula

N:(”jﬁ]1>. (1)

A population is a multi-set meaning: it may
contain multiple copies of the same string. Con-
sider the Markov chain where the possible popu-
lations of size n are the states. Express a state by
the vector of length r, ¢,, having as its kth com-
ponent the number of copies of string k in the
population. Let e be a vector of 1’s and ¢ its
transpose. Each ¢, is defined by

e,(rbi =n, (2)
(¢:),€{0,1,....n},

The transition probabilities from state (popula-
tion) i to j are computed by

J=0,1,...,r—1. (3)

R @)
v gy

where

Gig = M (T (), ()

Vose (1999) uses & to capture the selection pro-
cess and .# the mixing operators (mutation and
crossover). In particular

M (x); = (o:x)Mox, (6)
where the permutation of x, o;x, is defined by

Xka0
X = . (7)

Xk (r—1)

Let M, be the probability that the string of all
zeros is the child of the mating process between
parent strings g and k (where g and k are the in-
teger values corresponding to the strings). A gen-
eral form of the mixing matrix, M, was given by
Vose and Wright (1995) as

3 + (i _ .

MW=§:WM27W@®k@k®y=ﬂ- (8)
ik

Here u; and y; are called mutation and crossover

masks and 6(x) is 1 when x is true and 0 otherwise.

J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229 225

The various mutation and crossover schemes can
be captured using appropriate choices for these
masks. For example, letting

. if i >0,
’C"_{l—x—i—;(co if i =0,)

with ¢; = 27 giving uniform crossover.
For uniform mutation we have

= ()" (1=, (10)

where ¢€'i is the number of non-zero bits of i.
The selection process is captured through .
Rank selection is given by

D ()00 () <SG
7@, = [p(y) dy, (1)
> (@),0G)<f ()

where p is any continuous increasing probability
density over [0, 1] (see Vose, 1999).

These models can be easily extended to varying-
sized populations as follows. Let P;;(Z,J) be the
probability of going from state i (where popula-
tions are of size I) at time 7 (the current generation)
to state j (where populations are of size J) at time
t+ 1. Then we have

PU”:ﬂHé? (12)
D=)

where

o, =1, (13)
and

e, =J. (14)

Given an observed trajectory of a GA process,
we wish to estimate the underlying parameters
used by the GA. That is, we wish to estimate rates
¢ and u, the likelihood of an observed trajectory is
proportional to the product of the transition
probabilities along the path. Hence, the likelihood
of a given chain going from j; to j, to j3... is

leJz(Jl"]Z)sz,jz (‘]27']3) o .})jT—lJ.T(‘]T*I’JT)7 (15)

where J,J,,...,Jr are the population sizes at
times t =1,2,..., 7. We use a simple maximum-

likelihood procedure in deriving estimates. Maxi-
mum-likelihood estimators have several desirable
properties, including invariance, sufficiency (if the
parameter itself is sufficient) and efficiency
(Mood, 1950). To find the maximum-likelihood
estimate for each parameter of interest, namely
crossover, y, and mutation, u, we maximize the
likelihood function given above. Therefore, we
must solve

-1
max [[P o Jic); (16)
where T is the number of observed populations
and J; is population s size.

In order to find the maximum-likelihood esti-
mate for our Markov chain, we could set the
partial derivatives with respect to the mutation
and crossover operators to zero and solve for u
and y. The partial derivatives, with respect to y,
are relatively easy to derive but those for u are
highly non-linear. Furthermore, it is unlikely that
first-order conditions would be sufficient. Besides,
it appears the equations would be nearly impos-
sible to solve. Therefore, an approximately ex-
haustive search over a grid should be performed
to determine the (near) optimal values of the
crossover and mutation rates. An iteration
through the values of y from 0.0 to 0.5 (where 0.5
represents a random search in the binary case)
and the values of y from 0.0 to 1.0, inclusive, is
appropriate, in accordance with typical GA
practice.

4. The search problem

As discussed in Section 2, much of the prior
experimental research on GDSS has focused on
tasks that are not highly constrained. The im-
plications of such highly constrained tasks on
information exchange amongst GDSS group
members have not been well studied. For ex-
ample, do GDSS groups faced with highly con-
strained tasks exchange information the same
way as GDSS groups faced with tasks that have
few constraints? If we assume that GDSS groups
that face less-constrained tasks are able to ex-

226 J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229

change parts of ideas, or idea segments to build
better or more satisfactory ideas or solutions, do
GDSS groups facing more constrained tasks also
exchange these information segments? Or are
they required to exchange entire ideas, as com-
bining parts of ideas would typically result in
infeasible idea strings? Using the model de-
scribed in the previous section, it is possible to
gain insights into this GDSS process and others
using such tasks. Among the studies that have
been performed on highly constrained tasks,
Barkhi (1995) study examined groups faced with
a resource allocation problem, in this case a
production planning problem. The task faced by
the experimental groups was to determine the
optimal set of customer orders to fill, given
revenue and cost information, subject to de-
partmental capacity constraints, and departmen-
tal cost variation.

4.1. Task details

Four products are each made to order. Since
each product is customized to customer specifica-
tions, each customer order provides unique reve-
nue. There are three functional areas, marketing,
production and purchasing, each having one
manager. Each manager’s task is to decide which
customer orders to fill and how much depart-
mental effort to expend in filling each order. If an
order is selected for filling, the order must be
completely filled, in other words no partial orders
are allowed. A table containing 20 customer or-
ders, including products and their quantities was
provided to group members. Also, the expected
revenues from each customer order were provided
to the group members.

Each manager was provided an internal (as in
internal to the specific department) description of
the uncompensated departmental costs (UDEC)
and actual departmental costs (ADC) associated
with each customer order. Each manager needed
to choose which level of effort to expend for
filling a specific customer order. The effort level
was discretized into four levels and the UDECs
and the ADCs were provided at each level. As
can be expected, as the UDEC increases, the

ADC decreases but not necessarily in a linear
fashion. Also, for each order, the projected costs
(PC), the cost estimate each department has for
filling the order, were provided. Each department
manager also received a set of capacity limits for
each product. Each department receives the pro-
jected costs for every other department within the
firm, but UDEC and ADC are considered inter-
nal to each department and are only provided to
outside departments (including the leader) at the
discretion of the individual departmental man-
ager. The departmental managers could elect to
provide the leader with false information re-
garding these costs, withhold the figures or pro-
vide accurate estimates of these departmental
costs. This simulated manufacturing company
produces K different products. Each customer
order specifies the quantity of each of the prod-
ucts requested. There are S customer orders, each
with different profit implications and product
quantity requirements. The problem presented to
each group is to decide which subset of these S
orders to fill with the objective of profit maxi-
mization considering that manufacturing capacity
cannot be violated.
The terminology:

D number of departments

K number of products

S number of customer orders

E number of effort levels

PCy projected cost of filling order 7 at dept.
d

ADCyy actual departmental cost of filling or-

der i expending effort j at department d
uncompensated departmental effort
cost is cost that the department d in-
curs for filling order i at effort level j
Rev; revenue generated by filling order i

{ 1 if order i taken at effort level j,

Xij 0 otherwise
Y 1 if order i taken,
’ 0 otherwise
o quantity of product k requested by
order i
Cy production capacity of product k

The problem that each group member had to
solve can be modeled as follows:

J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229 227

E D
max Z: Z: <Revl~ — ;ADCW> (0.15)
1= J= =
— UDEC,, | X; (17)

S
st Y Oa¥%i<C fork=1,... K.
i=1

The data from the experiments (Barkhi, 1995),
including the solutions proposed (and the order in
which they were proposed) and the group deci-
sions, were used to validate the model. The ex-
periments were performed on 50 experimental
groups (although data from two groups were later
discarded), where each group was comprised of
upper-classmen business school students. The
subjects were rewarded with class credit in accor-
dance to performance in the experiments. The GA
model was applied using rank selection, uniform
crossover and uniform mutation. This yielded the
estimated or “best fit” crossover and mutation
rates from the experimental data. As the groups
had already ‘“solved” the production-planning
problem, feasibility in terms of the crossover op-
erator was not an issue, although it was in the
simulation described below. The estimated cross-
over and mutation rates from the experimental
data are provided in Table 1. The estimated rates
were computed for each experimental group (48
total) and averaged to get overall crossover and
mutation rates. The population sizes were dy-
namic, meaning we allowed the population size to
vary as a function of group member interaction
(Rees and Koehler, 1999).

One thing to notice is that the estimated
crossover rate seems rather low compared to tra-
ditional GA settings, usually ranging from 0.6 to
1.0. The estimated mutation rate does not raise
any such flags. To shed more light on this issue, we
conducted computational experiments by simu-

Table 1
Estimated crossover and mutation rates using rank selection

Average estimated
uniform crossover rate

0.121 0.029

Average estimated
uniform mutation rate

lating the GDSS task with the adaptive search
technique. The parameters of the adaptive search

were derived from the experimental data (Barkhi,
1995).

4.2. Simulation details

A simulation was developed to better under-
stand the resulting low estimates of the crossover
parameter. Group member ‘“‘agents’ were created,
where each agent had access to the order infor-
mation as the respective human group members.
Each agent can generate a solution to the problem,
which can be encoded as a string of 20 binary
digits. A “1”” indicates that a particular customer’s
order is to be included in the set of orders to be
filled, whereas a “0” indicates that a particular
customer’s order is to be excluded from the set of
final orders. The agents are uniformly chosen with
replacement to contribute their solution to the rest
of the group members. After four solutions have
been generated, the solutions are selected, crossed
and mutated in accordance with the GA settings.
The process then repeats itself for five generations.
Five was chosen due to its consistency with the
number of solutions generated by the experimental
GDSS groups in Barkhi (1995) study.

4.3. Results

The groups’ average fitness was maximized
between 0 < y < 0.4 and 0.001 < u < 0.01. The
summarized findings are presented in Table 2.
Each row in the table indicates the average fitness
(through simulation) for each possible setting of
crossover and mutation rates. These findings are
fairly consistent with the estimated crossover and
mutation rates found from applying the evolu-
tionary model to the experimental data. Specifi-
cally, this finding indicates that the genetic
algorithm was not able to take full advantage of
the crossover operator, most likely due to the
highly constrained nature of the search problem,
that is very few combinations of orders were fea-
sible. This resulted in many of the crossed-over
string pairs being unusable in solving the problem.

228 J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229

Table 2
Computational results for selected crossover and mutation rates

Uniform Uniform Average fitness
crossover rate mutation rate value
0.1 0.001 75.375
0.1 0.01 63.75
0.1 0.1 65.375
0.3 0.001 75.375
0.3 0.01 63.75
0.3 0.1 68.438
0.7 0.001 53.625
0.7 0.01 63.75
0.7 0.1 63.938
1.0 0.001 61.25
1.0 0.01 63.75
1.0 0.1 70.375

This also indicates that exploration via the muta-
tion operator becomes more critical to the success
of the search as opposed to the traditional cross-
over operator. An interesting possibility suggested
by the simulated data set is the potential of an
interaction effect occurring between the various
combinations of crossover and mutation rates.

As the behavior of the interaction between the
crossover and mutation operators is not com-
pletely understood within the GA community, we
will leave this possibility as potential for future
research.

5. Conclusions

The major finding of this research was that the
information exchange between GDSS group
members for this particular task was mostly limited
to the exchange of entire solution strings, rather
than exchanging parts of solution strings, which
inherently limits the information exchange capa-
bilities of GDSS use. It appears that the GDSS
users for this task relied essentially on enumerative
search, where the generation of points was pro-
vided by the particular decision aid employed, ra-
ther than engaging in an intelligent search. This
finding leads us to re-affirm that the appropriate
GDSS tool is needed for the problem and the
context and that there should be task-technology fit
(Zigurs and Buckland, 1998). This in itself was
nothing new. The new and relevant finding was the

problem space can be so constrained as to mitigate
the so-called “helpful” effects of GDSS the most
important of which is fostering information ex-
change. Therefore, this finding needs to be taken
into account when selecting GDSS tools. The im-
plication is that the specific decision support tool is
very important not only in generating feasible so-
lutions but also in guiding the users towards the
best possible solution for the group as a whole and
each of the GDSS users.

Additionally, this finding calls into question the
lack of appropriate GDSS simulation tools. The
simulation performed in this experiment is quite
simplistic. However, the findings, while prelimi-
nary, are insightful and provide evidence that
GDSS users are not exchanging as much infor-
mation as previously assumed. Much could be
done to create a fairly sophisticated simulation
tool that would be helpful to GDSS researchers in
studying different GDSS configurations, such as
group size, task, incentive structure and other
variables.

Future research calls for enhancing the current
GA model to examine various implementations of
crossover and mutation operators. One possibility
discussed in Section 2 includes using crossover and
mutation masks, allowing the best crossover and
mutation operator implementation to be compu-
tationally determined for a particular data set.
Additionally, more GDSS experiments examining
these types of constrained problems need to be
undertaken to gain further insight into the process.
These tasks can certainly be extended across the
supply chain and to long-term planning type tasks.
Also, more comparative research needs to be per-
formed on relatively unconstrained tasks. This
research would provide another useful benchmark
for this and future, related study.

Another avenue of research is that of adaptive
GDSS, incorporating adaptive GA-fueled agents
into GDSS. By incorporating adaptive agents into
the system, the agents could act as additional
problem solvers. The solutions generated by the
agents could be provided to the appropriate group
members, thus expanding the search for each user.
Whether or not this improvement in the search
process would lead to improved outcomes is un-
certain at this point. However, the demand for

J. Rees, R. Barkhi | European Journal of Operational Research 135 (2001) 220-229 229

improved problem-solving techniques, especially
for technology-assisted groups is only increasing,
thus more research needs to be performed on such
issues.

References

Barkhi, R., 1995. An empirical study of the impact of
proximity, leader, and incentives on negotiation process
and outcomes in a group decision support setting. Unpub-
lished doctoral dissertation. The Ohio State University.

Bruderer, E., Singh, J.V., 1996. Organizational evolution,
learning, and selection: A genetic-algorithm-based model.
Academy of Management Journal 39 (5), 1322-1349.

de la Maza, M., Yuret, D., 1995. A model of stock market
participants. In: Biethahn, J., Nissen, N. (Eds.), Evolution-
ary Algorithms in Management Applications. Springer,
New York, pp. 290-302.

Dennis, A.R., George, J.F., Jessup, L.M., Nunamaker Jr., J.F.,
Vogel, D.R., 1995. Information technology to support
electronic meetings. MIS Quarterly 12 (4), 591-624.

DeSanctis, G., Poole, M.S., Lewis, H., Desharnais, G., 1992.
Using computing in quality team meetings: Initial observa-
tions from the IRS-Minnesota project. Journal of Manage-
ment Information Systems 8§ (3), 7-26.

Gallupe, R.B., DeSanctis, G., 1988. Computer-based support
for group problem-finding: An experimental investigation.
MIS Quarterly 12 (2), 277-296.

Gillenwater, E.L., Conlon, S., Hwang, C., 1995. Distributed
manufacturing support systems: The integration of distrib-
uted group support systems with manufacturing support
systems. Omega 23 (6), 653.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimi-
zation, and Machine Learning. Addison-Wesley, Reading,
MA.

Grohowski, R., McGoff, C., Vogel, D., Martz, B., Nunamaker,
J., 1995. Implementing electronic meeting systems at IBM:
Lessons learned and success factors. MIS Quarterly 14 (4),
369-383.

Lam, S.K., 1997. The effects of group decision support systems
and task structures on group communication and decision
quality. Journal of Management Information Systems 13
(4), 193-215.

Marks, R.E., Midgley, D.F., Cooper, L.G., 1995. Adaptive
behaviour in an oligopoly. In: Biethahn, J., Nissen, N.
(Eds.), Evolutionary Algorithms in Management Applica-
tions, Springer, New York, pp. 225-239.

McGrath, J.E., 1984. Groups: Interaction and Performance.
Prentice-Hall, Englewood Cliffs, NJ.

Mood, A.M., 1950. Introduction to the Theory of Statistics.
McGraw-Hill, New York.

Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R.,
George, J.F., 1991. Electronic meeting systems to support
group work. Communications of the ACM 34 (7), 40-61.

Rees, J., Koehler, G.J., 1999. A new direction in group support
system theory: An evolutionary approach to group decision-
making, in review.

Sikora, R., Shaw, M.J., 1996. A computational study of
distributed rule learning. Information Systems Research 7
(2), 189-197.

Simon, H.A., 1977. The New Science of Management Decision.
Prentice-Hall, Englewood Cliffs, NJ.

Vose, M.D., 1999. The Simple Genetic Algorithm: Foundations
and Theory. MIT Press, Cambridge, MA.

Vose, M.D., Wright, A.H., 1995. Simple genetic algorithms
with linear fitness. Evolutionary Computation 2 (4), 347—
368.

Zigurs, 1., Buckland, B.K., 1998. A theory of task/technology fit
and group support systems effectiveness. MIS Quarterly 22
(3), 313-334.

