

CERIAS Tech Report 2000-28

BETTER LOGGING THROUGH FORMALITY
APPLYING FORMAL SPECIFICATION TECHNIQUES
TO IMPROVE AUDIT LOGS AND LOG CONSUMERS

by Chapman Flack and Mikhail J. Atallah

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47909

Better Logging through Formality

Applying Formal Specification Techniques to Improve
Audit Logs and Log Consumers

Chapman Flack� and Mikhail J. Atallah��

CERIAS, Purdue University
1315 Recitation Bldg., West Lafayette, IN 47907-1315 USA

{flack,mja}@cerias.purdue.edu

Abstract. We rely on programs that consume audit logs to do so suc-
cessfully (a robustness issue) and form the correct interpretations of the
input (a semantic issue). The vendor’s documentation of the log for-
mat is an important part of the specification for any log consumer. As
a specification, it is subject to improvement using formal specification
techniques. This work presents a methodology for formalizing and refin-
ing the description of an audit log to improve robustness and semantic
accuracy of programs that use the log. Ideally applied during design of
a new format, the methodology is also profitably applied to existing log
formats. Its application to Solaris BSM (an existing, commercial format)
demonstrated utility by detecting ambiguities or errors of several types
in the documentation or implementation of BSM logging, and identify-
ing opportunities to improve the content of the logs. The products of
this work are the methodology itself for use in refining other log formats
and their consumers, and an annotated, machine-readable grammar for
Solaris BSM that can be used by the community to quickly construct
applications that consume BSM logs.

Keywords: log, formal, specification, documentation, reliability, inter-
operability, CIDF, BSM, grammar

1 Introduction

Audit logs maintained by computing systems can be used for a variety of pur-
poses, such as to detect misuse, to document conformance to policy, and to
understand and recover from software or hardware failures. Any such applica-
tion presumes a log consumer, software that can read and analyze the log, and

� Supported in part by an Intel Foundation Graduate Fellowship, by contracts
MDA904-96-1-0116 and MDA904-97-6-0176 from Maryland Procurement Office,
and by sponsors of the Center for Education and Research in Information Assur-
ance and Security.

�� Supported in part by Grant EIA-9903545 from the National Science Foundation,
and by sponsors of the Center for Education and Research in Information Assurance
and Security.

H. Debar, L. Mé, and F. Wu (Eds.): RAID 2000, LNCS 1907, pp. 1–16, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Chapman Flack and Mikhail J. Atallah

draw conclusions of interest about the state history of the system that produced
the log.

Two requirements that apply to any log consumer are easily stated: the
consumer should be able to read any sequence of the possible log records without
failure, and any results computed (or conclusions drawn) should be correct (or
justifiable). These requirements may not have the same weight in all applications.
Some unreliability in a tool devised ad hoc to count uses of a certain software
package, for example, may be tolerated as a practical matter.

Also, it may suffice for an ad hoc tool to skim the log for a very small frac-
tion of its information content, as the use to which the information will be put
is known in advance. However, initiatives like the Common Intrusion Detection
Framework (CIDF)[14] place a renewed emphasis on exchanging event informa-
tion among multiple agents, where one agent should not discard information
another may need. CIDF’s Common Intrusion Specification Language (CISL) is
necessarily expressive enough to convey the semantic nuances of event records;
that very expressiveness increases the pressure on any system that would trans-
late logs into CISL not to miss or mistranslate those nuances, lest later analysis
be led into error. In a production intrusion detection system, failures caused by
incorrect handling of the input, or unsound conclusions resulting from semantic
misunderstandings, may be costly. In unlucky cases, they may represent new,
exploitable vulnerabilities introduced by the security tool itself.

This paper describes a way to reduce the risk, observing simply but centrally
that the usual documentation accompanying a system that produces logs is also
a partial specification for software that must consume those logs. Software engi-
neering techniques for formalizing specifications can therefore be applied to find
and purge ambiguities and inconsistencies, and reshape the document into one
from which reliable log consumers can more readily and consistently be built.
Opportunities to improve the log itself may be revealed in the same process.

The amount of attention devoted here to the mere task of reading a stream
of data may be surprising to a reader who has not been immersed for some time
in extracting meaning from audit logs of general purpose systems. The case that
an audit log is a peculiarly complex stream of data, presenting subtle issues of
interpretation, will be built in Sect. 4 with quantitative support in Sect. 6.

2 Contributions

Contributions of this work include artifacts of immediate use to the community,
and suggestions with demonstrated potential to improve design of future audit
producers and consumers.

– A grammar and lexical analyzer package for Sun’s Basic Security Module[8]
(BSM) audit data through Solaris 2.6. The package, requiring Java[3] and
the ANTLR parser generator[11], produces a parser for BSM audit that can
be rapidly extended with processing specific to an application. The parser is
conservative: it may signal a syntax error on an undocumented BSM record
that was not covered in our test data, but will not silently accept invalid

Better Logging through Formality 3

input. Undocumented rules are readily added to the grammar as they are
discovered. The package, available for educational and research purposes,
has been used to speed development in one completed and several ongoing
BSM-related projects.

– The BSM grammar in the package is extensively annotated, with hyper-
links from grammar rules to the corresponding pages of Sun documentation.
While others working with BSM have undoubtedly noted some of the same
ambiguous or misdocumented records that we have, and probably some not
present in our test data, there has not always been a document available to
the community and intended to detail such discoveries in one place.

– While grammars and parsing techniques arguably offer a natural approach to
the reliable processing of structured information that auditing requires, they
have been strangely often neglected in practice, as described in Sect. 4. Ques-
tions of practicality may have discouraged more widespread adoption. For
example, while it is clear that audit records must be described by some gram-
mar,1 that observation does not alone guarantee a tractably parsed gram-
mar. [4] Section 5.2 argues for more optimism, and this work demonstrates
practicality and effectiveness on a widely-available, commercial audit format.
At the same time, the complete grammar can be studied for useful insights
such as which aspects of BSM logs are beyond the expressive power of, e.g.
regular expressions.

– The requirement to draw justifiable conclusions, mentioned in Sect. 1, reveals
that not only syntax but semantics must be captured. Semantic content is
an, or possibly the, important thing to get right. Providing a grammar does
not lay the issue to rest, but does help in two ways. First, Sect. 4 argues that
the grammatical structure of the input cannot be ignored without sacrific-
ing semantic information. Second, in a more cognitive than technical vein,
without a concrete representation of the details to be resolved, promising
discussions about audit content sometimes end up, to recycle Pauli, “not
even wrong.”

3 Audience

This paper assumes a familiarity with parsing concepts and some parser gen-
erating tool, such as might be acquired in an undergraduate compilers course.
Examples will be in the notation of the ANTLR parser generator, similar enough
to other tools’ notations that the reader need not know ANTLR per se to follow
the arguments, but may refer to [11] to pursue niceties that are tangential.

Examples of BSM event record formats will be presented and discussed. For
the most part, these are records of UNIX system calls and the discussion may
assume a familiarity with the operations and subtleties of the programming
interface for UNIX or a similar operating system, and some of the ways those
operations can be abused, such as might be expected in the intrusion detection
1 They are produced by a Turing-equivalent machine.

4 Chapman Flack and Mikhail J. Atallah

community. Terms such as ‘rules’ and ‘transition diagrams’ familiar from rule-
based (e.g. [10]) and state-based (e.g. [5]) intrusion detection efforts will be used
freely. Sample BSM records, being binary rather than text, would add little to
the perspicuity of the grammar examples they match, and such low level details
play no role in the discussions. No specific familiarity with BSM will be required
to follow the arguments, though the reader whose curiosity is piqued may refer
to [8].

4 Other Approaches

It is not necessary to have a grammar to extract some useful information from
an input stream. Various intrusion detection systems support BSM audit logs,
and we obtained access to code or internals documentation to see how three
of them do it.2 ASAX[10], IDIOT[2], and USTAT[5] all skim information from
BSM logs without concern for grammatical structure. This section will compare
their approaches and examine some consequences. The critique is not intended
to disparage these projects, which set out to shed light on other aspects of the
intrusion detection problem and did so with acknowledged success. The con-
sequences discussion will include some issues that apply to a grammar-based
approach as well, and so should be considered in any audit project.

4.1 Canonical Form

All three systems have some notion of a canonical form into which the native
BSM log is transformed as a preprocessing step. Their canonical forms are rather
different in intent and reality from CISL. Where CISL sets out to allow hetero-
geneous applications across platforms to share event and analysis data and agree
on their interpretation, the canonical forms of ASAX, IDIOT, and USTAT serve
mostly to simplify porting of the tools themselves.

4.2 How the Log Is Processed

ASAX. In ASAX, most of the work of converting BSM to the “normalized audit
data format” (NADF) is done in conv_bsm.c. Examination reveals a table, each
row of which contains a BSM token ID, a base NADF field ID, and a pointer.
There is a row for every BSM token type expected to occur; for tokens that
can appear multiply in one event record (arg, for example), several rows are
allocated. Before each BSM record is processed, the pointer is nulled in each
row. Then, for each token in the record, if a row can be found that contains the
token’s ID and a null pointer, the first such row is updated to point to the token.

After the whole record has been read, the rows for token types that did not
appear in the record still have null pointers, while rows for token types that
2 We suspect the way these tools process the BSM input is typical, but there are

certainly other tools that support BSM for which we did not obtain source code or
sufficiently low-level documentation to make a determination.

Better Logging through Formality 5

appeared point to the corresponding tokens. Finally, in the order of appearance
in the table, tokens are copied field-by-field to the NADF record. The final
NADF record contains verbatim copies of the fields from the BSM record, but
with padding to support aligned access, and reordered to match the order of
token IDs in the table.

IDIOT. IDIOT’s canonical form is slightly more abstracted from the underlying
audit format than is NADF. IDIOT defines a set of attribute names and picks
out field values of interest from BSM tokens as they are encountered, binding
them to the corresponding IDIOT attributes. The mapping is done by a script
that reads the line-oriented output of praudit, a Sun tool that renders the BSM
data in readable text, one BSM token per line.

USTAT. USTAT also defines its own abstract event record, whose attributes
(with a few exceptions) are bound to fields of BSM tokens as shown in Fig. 4.5
of [5], provided those tokens appear in the incoming event record.

4.3 Consequences

Invalid Input Detected Late or Not at All. A strategy of simply copying
data from tokens as they appear, best seen in the ASAX source, will not detect
ungrammatical input, such as an event header followed by an impossible se-
quence of tokens for that event. An invalid stream of native data can be silently
transformed to an invalid stream in canonical form, leaving the problem to be
detected in a later processing step, if at all.

Semantic Interpretation Left to Later Stages. The canonicalizers used
by ASAX, IDIOT, and USTAT defer, to varying degrees, details of the native
audit format to be handled by the later, ostensibly less platform-specific, stages
of analysis. The situation is clearest in ASAX, whose canonical form is nothing
more than the native form with fields reordered and padded for aligned access.
The specific significance of information within the fields is left to be spelled out
in RUSSEL, the language of ASAX rules. Dealing with native format issues in
rules complicates porting those rules, even to other flavors of UNIX whose audit
formats differ even though the system calls and their semantics are the same.
Format idiosyncrasies of a given field or event must also be handled in each rule
that involves the field or event, and a rule language may not have convenient
facilities for functions or subroutines.3

IDIOT and USTAT take on more of the interpretation problem at the time
of canonicalization, at least picking out certain fields of interest and mapping
them into a set of attributes intended to be less platform specific. However, the
3 It is possible in ASAX to isolate some format-specific processing in functions written

in a traditional programming language, linked to ASAX, and invoked in RUSSEL
rules.

6 Chapman Flack and Mikhail J. Atallah

combination of such selective inclusion of fields with disregard for grammatical
structure can lead to loss of semantic content, as described next.

Lost Syntactic Cues to Meaning. Consider the BSM grammar rules in Fig. 1.
To determine whether an ioctl system call was applied to a socket, an other
non-file, a file descriptor with no cached name, or an ordinary good file descriptor
requires careful consideration of what tokens appeared in the record. If a parser
is used, subsequent analysis logic has only to look at the parse tree to determine
which rule matched the input. Absent a parser, some analysis effort equivalent
to deciding which rule would have matched is deferred to later processing stages.
Again, in ASAX, the work can be done by RUSSEL rules that are tightly bound
to the details of the native format, explicitly testing for the presence of certain
fields or for distinctive field values.

IoctlGoodFileDescr

: path (attr)? arg[2,"cmd"] arg[3,"arg"] (arg[2,"strioctl:vnode"])?

;

IoctlSocket

: (socket)? arg[2,"cmd"] arg[3,"arg"]

;

IoctlNonFile

: arg[1,"fd"] arg[2,"cmd"] arg[3,"arg"]

;

IoctlNoName

: arg[1,"no path: fd"] (attr)? arg[2,"cmd"] arg[3,"arg"]

(arg[2,"strioctl:vnode"])* // have seen 0, 1, or 2 of these

;

Fig. 1. ANTLR grammar rules for a portion of a system call record. The parser’s
decision which rule to apply distills semantic content from a series of specific tests
that would otherwise be left to later processing stages

In IDIOT or USTAT the situation is complicated by the mapping of native
fields into canonical attributes. In Fig. 1, if the optional attribute and vnode
arguments are absent, determining which of the last two rules to apply hinges
on the text string of the first arg token. Because the text in an arg token is a
constant string serving only as a syntactic cue, it is not copied to the canonical
form used by IDIOT or USTAT. As a result, the semantic content conveyed in
a parse of the native format cannot be recovered at all in IDIOT or USTAT, an
example of the semantic sacrifice risked when grammatical structure is ignored.

Nonconservative Transformations. The problem of dangerous transforma-
tions must be considered in any audit project, grammar-based or not. However,
the systems described in this section offer examples to illustrate this important
issue.

Better Logging through Formality 7

IDIOT relies on Sun’s praudit tool to preprocess the binary log format into
a text representation. The transformations made by praudit go beyond repre-
senting the binary log. User and group IDs, for example, are presented as user
and group names, and the transformation reflects the name-to-ID mapping in
effect at the time praudit runs, not at the time of the audited event. That trans-
formation can be disabled by a praudit option, but others cannot. IP addresses,
for example, are displayed as domain names by praudit, a transformation that
reflects the state of the Domain Name System[9] at the time the tool is run, not
when the event was logged.4

The USTAT document in Sect. 4.1.2.6[5] describes another nonconserva-
tive transformation. BSM records often present path names in a non-canonical
form such as /etc/../usr/share. USTAT’s preprocessor, accordingly, includes
a “filename correcting routine,” the wisdom of which can be questioned on two
grounds.5 First, such a transformation cannot be said to conserve correctness
without knowing the state of the affected file systems, including symbolic links
and any cycles in the directory graph reflecting accidental or deliberate file sys-
tem corruption at the time the event was logged. Second, the exact form of the
path name appearing in the log reflects the kernel’s construction of the path
from a process root and working directory and any symbolic links encountered;
it conveys part of how the event came to pass, and may have forensic value.

Audit records are often consulted in cases where the integrity of the system
that produced those records is in doubt. It seems prudent, in transformations
applied to those records after the fact, to avoid unnecessary assumptions about
the state of the system that produced them. The same concern need not apply to
transformations reliant on mappings that are widely known and independent of
any single computer system. Those transformations, such as IP protocol numbers
to the names of those protocols, may arguably be used wherever they would be
useful.

4.4 Discussion

The intrusion detection systems just described all translate native BSM audit
logs into some canonical form without looking at grammatical structure. They
do so, however, by defining canonical forms that offer little semantic support
to later analysis stages. The proposal by Bishop[1] is another example of such
a canonical form. Where such a form is used, the authors of rules or transition
diagrams must still account for what is meant in the original native form when,
for example, a certain field is absent from a record. The rules, therefore, become
platform specific.6

4 A more fundamental, equally fatal, but less enlightening nonconservative transfor-
mation applied by praudit is the presentation of the log data in a delimited form
with no escaped representation for occurrences of the delimiter in the data. This
feature alone rules out any role for praudit in a reliable consumer of BSM logs.

5 This transformation is also done by praudit.
6 While this paper was in preparation, a portion of the EMERALD project[6], eXpert-

BSM became available for review. Unfortunately, the distribution terms prohibit

8 Chapman Flack and Mikhail J. Atallah

Such lazy translation is not even an option if the target representation, like
CISL, intends to convey the semantic nuances revealed by a careful parse of the
original. A translator that overlooks or mistranslates those nuances will produce
a false translation that may lead later analysis into error.

Finally, canonical or intermediate representations of audit data should be
scrutinized for assumptions that would require nonconservative transformations
during conversion. An example would be a canonical form that identifies ma-
chines by domain names, if IP numbers are used in the native form.

5 Appropriateness of a Grammar Approach

At least two objections may be considered to a grammar representation of a
logging format.

5.1 Efficiency

Logs are voluminous and efficiency in their processing is important. Developers
observing that constraint may lean toward ad hoc and handcrafted techniques
and away from strict attention to grammatical structure. Section 4, however,
showed that the price of parsing, if saved up front, must be paid later if the full
information content is to be extracted from the input. In fact the price is paid
with interest, as a single test and decision not made on the initial parse of the
data may have to be duplicated in many rules that apply to the same records.
It was not in the scope of this work to build otherwise-comparable intrusion
detection systems and obtain a performance comparison, but these observa-
tions, coupled with the importance of reliability and maintainability, suggest
that grammar techniques in audit processing should not be dismissed out of
hand on efficiency grounds.

5.2 Applicability

The foregoing discussion breaks down unless it is reasonable to expect that audit
logs can be described by grammars in the classes that enjoy efficient parsing
algorithms.

A distinction must first be made, just as in the specification of programming
languages. A grammar like that given in the Java specification[3] does not pur-
port to describe the language “all semantically reasonable Java programs”; it
describes the simpler language, “syntactically valid Java programs.” The gram-
mar, therefore, is a specification with a deliberately limited scope. Aspects of
the language excluded from its scope fall into two broad categories:

reverse-engineering to discern just how the log is processed, but [7] presents some
sample detection rules for this newer tool and here again, rules that describe attacks
applicable to UNIX systems generally must be written to the specifics of the BSM
format.

Better Logging through Formality 9

Unspecified Aspects. Some aspects of a language are not addressed by any
part of the specification. For example, the Java grammar imposes no structure
on a methodBody or other block, other than that it be some sequence of zero
or more blockStatements. The statements themselves, and their subproductions,
are explicitly specified, but it is considered beyond the scope of a language
specification to characterize how those statements might be placed in meaningful
blocks by programmers.

Aspects Specified Extragrammatically. Some details of the language are
explicitly specified elsewhere. For example, Java’s official grammar is Chapter
19 of the Java specification. Other chapters, in prose or grammar-like notation,
contain requirements not embodied in the grammar itself, such as those for
casts and parenthesized expressions, or field and method modifiers. Therefore,
the grammar describes a superset of conforming programs, which must be culled
after parsing by enforcing the extragrammatical requirements.

For Java, two factors contributed to the exclusion of these details from the
grammar itself: the choice to provide a grammar no more complex than can be
parsed left to right without backtracking and with only one token of lookahead,
and the choice to adopt a C-like syntax, which includes constructs that cannot
be parsed that way.

Minimizing Extragrammatical Requirements. The need for the second
kind of scope restriction can be reduced by relaxing restrictions on the gram-
mar to be provided. For example, ANTLR supports LL(k) grammars for config-
urable k with predicates (a form of localized backtracking)[12], and comes with
a k = 2 Java grammar that explicitly embodies requirements for casts, etc., that
had to be left out of the official LALR(1) Java grammar.

If not constrained to perpetuate difficult features of an existing language, a
designer can so craft a new language that a simple, efficiently parsed class of
grammar is adequate to specify it, and few or none of its syntactic features need
to be specified extragrammatically. The designer of a new audit logging format
is in such a position.

Application to Audit Logs. The specification for an audit log, like that
for a programming language, may be deliberately restricted in scope. While
each individual event, and its subproductions, should be explicitly specified, the
sequences in which events may appear in actual use of the system depend on
user and program behavior, and their easy characterization a priori is unlikely.
As with a block of “zero or more statements,” the simple “zero or more events of
any type” is a permissive superset of the expected event sequences and presents
no difficulty in parsing.

The individual event records are produced by code that must execute when,
and only when, the corresponding events take place. Necessary restrictions on
the logging code (e.g. termination guarantees) limit its complexity and, with

10 Chapman Flack and Mikhail J. Atallah

it, the complexity of the grammar required to describe the record, even if the
format was not designed with a specific grammar class in mind. The commercial
log format described in the next section was successfully described in ANTLR
notation with 1-token lookahead for most choices. The predicates required at
other choice points all amount to constant-depth additional local lookahead.

6 Formalizing the BSM Audit Format

This work began when a robust consumer for Sun’s Basic Security Module (BSM)
audit log format[8] was needed for another project. The existing documentation
on the format was transcribed into a grammar notation. Before a parser could
be generated to test the grammar against actual logs, it was necessary to modify
the grammar to resolve all ambiguities detected by the parser generator. The
grammar was then iteratively refined by generating a parser, running it on actual
logs, and observing parse errors. A parse error could represent an error in the
BSM documentation, or a fault in the Solaris log production code. It could be
resolved for the next iteration by modifying either the grammar or the Solaris
code. For this project, modifying the code was not an option, so all parse errors
were resolved by modifying the grammar, leading ultimately to a grammar that
describes closely the log that Solaris actually produces, even in instances that
seem unintended.

The resulting grammar contains 327 named, nonterminal rules. Examination
shows that the rules are associated in a straightforward manner with the 267
kernel and user event types and 41 token types found in the Solaris 2.6 system
files, and follow the Sun documentation with only necessary departures. That
is, the number of rules does not reflect an especially obfuscated grammar but,
rather, an indication of the intrinsic complexity of the audit log alluded to in
Sect. 1. By comparison, the example grammar supplied with ANTLR for the
Java 1.1 programming language includes 64 such rules.

The remainder of this section will discuss selected examples of the flaws
or ambiguities in BSM documentation or implementation that were detected
by this methodology. The entire grammar, with annotations describing discrep-
ancies, can be downloaded from http://www.cerias.purdue.edu/software/
with the other files needed to compile and run a working BSM parser. To print
the grammar as an appendix would be impractical because of its size, and would
sacrifice the hyperlinks that connect the grammar rules to the corresponding
sections of Sun’s BSM documentation.

6.1 Difficulties Detected by Static Analysis in Parser Generator

Non-LL(1) Constructs. Many of the ambiguities that were automatically de-
tected simply reflected features of the BSM log format that cannot be recognized
by an LL parser with one lookahead token; they were resolved by adding explicit
lookahead at strategic places in the grammar. They do not reflect inherent ambi-
guity in the log format, but nevertheless are possible pitfalls for developers who

Better Logging through Formality 11

attempt to develop a straightforward BSM consumer tool from the documenta-
tion without a parser generator’s rigorous analysis.

Constructs Resolvable with Semantic Information. Compiling a näive
version of our BSM grammar will result in 16 warnings of ambiguity apparently
inherent in the log syntax, any one of which would suffice to dash the hope
of reliably processing BSM logs, whether by a conventional parser or by any
other means. Although it is impossible in these cases to determine the correct
grammar rule to apply from the sequence of BSM token types alone, they can be
resolved by looking explicitly into the values carried by certain of those tokens,
an operation known in ANTLR terms as a “semantic predicate.” Specifically, a
BSM ‘arg’ token contains a data field whose value is necessary and sufficient to
resolve these 16 cases. The data values, which are constant character strings, are
shown in the printed documentation, albeit without an explanation that they are
essential at parse time to properly interpret the log. Both IDIOT and USTAT
appear to discard these values in the conversion to canonical form, perhaps on the
assumption that a token field whose value is constant does not convey essential
information.

True Ambiguity. It may not be surprising, given the complexity of what BSM
must log and the lack of formal analysis in its original design, that a few ambi-
guities remain. Instead of reflecting limitations of a particular parsing technique
they are, if the BSM documentation is correct, inherent in the log format. Fig-
ure 2 is an example.

The description with two optional ‘text’ tokens followed by two mandatory
ones leads to a formal ambiguity if an event record has exactly three text tokens
following the header. It is clear in that case that one of the two optional text
tokens is present, but the parser cannot determine whether it is the driver major
number or the driver name. The ambiguity cannot be resolved, even with a
semantic predicate, unless there is a way to tell decisively by looking at the text
string whether it is a driver major number or a driver name. Perhaps the number
is always a text string of only digits and the name must begin with a non-digit,
but this should be stated in the BSM documentation if programs are expected to
depend on it. Or, it may be that the documentation is mistaken in showing the
number and name as being independently optional: perhaps it should be “[text
text] text text” with the first two both there or both absent. If that is the case,
the documentation should be corrected.

Without access to the intent of the BSM developers, the grammar was mod-
ified to embody the last interpretation, which is reasonable and conservative
under the circumstances. It will work if the first two ‘text’ tokens are both
present and if they are both absent. If an instance is encountered of the ambigu-
ous case with one of the two present, a parse exception will be signaled, avoiding
an undetected misinterpretation.

12 Chapman Flack and Mikhail J. Atallah

Event Name Event ID Event Class Mask

AUE_MODADDMAJ 246 ad 0x00000800

Format:

 header-token

 [text-token] driver major number)

 [text-token] (driver name)

 text-token (root dir.|"no rootdir")

 text-token (driver major number|"no drvname")

 argument-token (5, "", number of aliases)

 (0..n)[text-token] (aliases)

 subject-token

 return-token

Fig. 2. Description of a record from [8]

6.2 Difficulties Detected in Testing

After the statically-detectable problems were resolved, the grammar was repeat-
edly used to generate a parser. The parser was applied to a collection of 2.2
megabytes of BSM audit data obtained in-house and from other institutions,
from SunOS and Solaris systems as recent as Solaris 2.6. Two general classes of
discrepancy were detected between the BSM documents and the actual logs.

Undocumented Records. Some records were encountered in the sample logs
that simply do not appear in the documentation. Corresponding rules were added
to the grammar to allow the logs to be parsed. Fig. 3 is an example.

AUE_CONNECT

: %AUE_CONNECT socket socket subj ret

;

Fig. 3. ANTLR grammar rule for an event record that appears in our sample
logs but is not documented

Misdocumented or Misimplemented Records. Some records were encoun-
tered for event types that were documented, but parse errors were detected
because the records did not conform to the published format. Fig. 4 is an exam-
ple. So that the logs could be parsed, the affected grammar rules were changed

Better Logging through Formality 13

from direct transcriptions of the documentation to reflect the records actually
encountered.

Event Name Program Event ID Event Class Mask

AUE_su /usr/bin/su 6159 lo 0x00001000

Format:

 header-token

 text-token (error message)

 subject-token

 return-token

Fig. 4. Description of a record from [8]. In actual audit logs examined in this
work, the text and subject tokens appear in the reverse order

6.3 Difficulties Not Automatically Detected

Figure 5 illustrates a point where the published BSM documentation is incom-
plete, and hence the interpretation of a log record is not completely determined,
but the formal method described in this work could not detect the problem.
The problem was recognized, however, during the process of transcribing the
documentation into a grammar, and the discipline of that process may have
contributed to that recognition.

Two tokens are shown as optional: the file attributes for the source file, and
the rename destination path. The rule is quite readily parsable, but has two sus-
picious features. First, the optional tokens are shown as independently optional,
implying four possible record variants for the rename event. In actual logs, only
two—both tokens present, both absent—have been observed. The documenta-
tion may be incorrect, but the methodology will not detect the problem. The rule
as stated presents no parsing difficulty that would be detected in static analysis,
and, if incorrect, it matches a superset of the records that can be encountered, so
no parse error will be produced. Nevertheless, it should spur any conscientious
developer of a log consumer to wonder exactly what should be inferred about the
state of the audited system when each of the—as written—four variant forms is
encountered.

The second suspicious feature is that the destination path is shown as op-
tional at all. It is absent in our samples only when the file attributes are absent
also, which seems to happen only when the source file is not found. The feature

14 Chapman Flack and Mikhail J. Atallah

rename(2)

Event Name Event ID Event Class Mask

AUE_RENAME 42 fc,fd 0x00000030

Format:

 header-token

 path-token (from name)

 [attr-token] (from name)

 [path-token] (to name)

 subject-token

 return-token

Fig. 5. Description of a record from [8]. Why is the “to name” optional?

may be an artifact of some implementation detail within the rename system
call. It might be worth changing, however. An intrusion detection system might
recognize a certain intrusion attempt from a rename with a specific destination.
Detection could be delayed if the intruder mistypes the source file name the first
time, causing the recognizable destination path to be omitted from the record.

7 Methodological Recommendations

The ideal time to apply the ideas of this work would be during the design of the
audit log format for a new system. A new log format can be designed to fall in
a language class that is easily parsed with modest lookahead, and specification
ambiguities detected by static analysis can be eliminated before implementa-
tion. Specification-driven tools can speed implementation and testing, and the
annotated grammar can be provided as documentation.

The ideas can still be applied, however, when an existing log format is re-
viewed for possible improvement, and even in the simple development of tools
to consume an existing format. In this less ideal setting, too late for the other
formal-method benefits cited above, the technique has valuable potential for
improved understanding of the log nuances and more thorough validation and
verification of the software. It was applied in that way to BSM in this work,
suggesting a methodology for similar projects. An existing audit format can be
approached by iterating these four steps:

1. Prepare a grammar by transcription from whatever documents are available.
As ambiguities are detected by the parser-generator’s analysis, return to the
documents, sample logs, experimentation, or system source code (if available)

Better Logging through Formality 15

to determine if any information present in the log can be used in explicit
predicates to resolve the ambiguities. Also make note of constructs whose
semantic significance is unclear to the human reviewer, even if not formally
ambiguous.

2. When the grammar can be successfully compiled, apply the parser to a good
sample of audit data and note any parsing diagnostics. Determine whether
these represent flaws in the log documentation, the logging implementation,
the grammar, or combinations of these. If this process is undertaken by a
vendor, whatever needs to be corrected can be. Otherwise, options may be
limited to suggesting fixes or documenting the issue and complicating the
grammar.

3. Given a grammar that successfully describes the logs, scrutinize it for the
semantic nuances of the rules. Choice points in the grammar always have
semantic significance: because log records are produced by an automaton,
the production of one of several forms of a record depends on and conveys
information about the state of the system. An event record whose grammar
rule shows three optional fields, for example, can make eight distinguish-
able statements about a particular event and the system state in which it
occurred, beyond what is conveyed by field values. If the eight semantic nu-
ances are not clear, return to documents, experiments, or source code until
a satisfactory account of them can be made, or until the grammar rule can
be tightened to imply fewer cases.

4. Update grammar, documentation, or code as necessary and possible, and
repeat.

8 Future Work

– BSM and other auditing systems can have configuration options that control
the inclusion or omission of certain optional fields in some records. Our
grammar was tested on audit logs produced on systems with similar settings
for those options. A single grammar could rapidly grow unwieldy if extended
to accept the logs produced under all settings of the configuration options.
Environment grammars [13] address the problem of parsing such classes of
similar languages as efficiently as context-free languages, and could offer a
cleaner solution.
As it happens, the difference between an environment-grammar parser and
an ANTLR parser resides entirely in the analysis algorithms used during
parser generation. The structures and features required at run time by a
parser specified by an environment grammar are exactly those of a parser
generated by ANTLR.

– The modest cost of careful parsing might be further discounted in a self-
contained application where the exact information needed from the log is
known in advance. For example, a self-contained intrusion detection system
might compile its rule base together with the full log grammar, producing a
parser that skims lazily where possible.

16 Chapman Flack and Mikhail J. Atallah

References

[1] Matt Bishop. A standard audit trail format. In Proceedings of the 1995 National
Information Systems Security Conference, pages 136–145, Baltimore, Maryland,
October 1995. 7

[2] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spafford. IDIOT
users guide. Technical Report TR-96-050, Purdue University, September 1996. 4

[3] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996. 2, 8

[4] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979. 3

[5] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX. MS
thesis, University of California, Santa Barbara, November 1992. 4, 5, 7

[6] SRI International. EMERALD website. http://www.sdl.sri.com/emerald/, April
2000. 7

[7] Ulf Lindqvist and Phillip A. Porras. Detecting computer and network misuse
through the production-based expert system toolset (P-BEST). In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, Oakland, California, October
1999. 8

[8] Sun Microsystems. SunSHIELD Basic Security Module Guide. Sun Microsystems,
901 San Antonio Road, Palo Alto, California, Solaris 2.6 edition, 1997. Part
Number 802-5757-10. 2, 4, 10, 12, 13, 14

[9] P. Mockapetris. Domain names – concepts and facilities. STD 13, ISI, November
1987. 7

[10] Abdelaziz Mounji. Languages and Tools for Rule-Based Distributed Intrusion
Detection. D.Sc. thesis, Universitaires Notre-Dame de la Paix Namur (Belgium),
September 1997. 4

[11] Terence Parr. ANTLR website. http://www.antlr.org/, February 2000. 2, 3
[12] Terence John Parr. Obtaining Practical Variants of LL(k) and LR(k) for k > 1

by Splitting the Atomic k-tuple. PhD thesis, Purdue University, August 1993. 9
[13] Manfred Ruschitzka. Two-level grammars for data conversions. Future Generation

Computer Systems, pages 373–380, 1990. 15
[14] Brian Tung. Common intrusion detection framework. http://www.gidos.org/,

November 1999. 2

	Better Logging through Formality
	Introduction
	Contributions
	Audience
	Other Approaches
	Canonical Form
	How the Log Is Processed
	ASAX.
	IDIOT.
	USTAT.

	Consequences
	Invalid Input Detected Late or Not at All.
	Semantic Interpretation Left to Later Stages.
	Lost Syntactic Cues to Meaning.
	Nonconservative Transformations.

	Discussion

	Appropriateness of a Grammar Approach
	Efficiency
	Applicability
	Unspecified Aspects.
	Aspects Specified Extragrammatically.
	Minimizing Extragrammatical Requirements.
	Application to Audit Logs.

	Formalizing the BSM Audit Format
	Difficulties Detected by Static Analysis in Parser Generator
	Non-LL(1) Constructs.
	Constructs Resolvable with Semantic Information.
	True Ambiguity.

	Difficulties Detected in Testing
	Undocumented Records.
	Misdocumented or Misimplemented Records.

	Difficulties Not Automatically Detected

	Methodological Recommendations
	Future Work

