
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CERIAS Tech Report 2000-15 
 

Protocols for Secure Remote Database 
Access with Approximate Matching 

 
Wenliang Du, Mikhail J. Atallah 

Center for Education and Research in 
Information Assurance and Security 

Purdue University, West Lafayette, IN 47907 
 
 
 
 



Protocols for Secure Remote Database Access with

Approximate Matching�

Wenliang Du

CERIAS

Purdue University

West Lafayette, IN 47907

Email: duw@cerias.purdue.edu

Tel: (765) 496-6765

Mikhail J. Atallah

CERIAS

Purdue University

West Lafayette, IN 47907

Email: mja@cs.purdue.edu

Tel: (765) 494-6017

Abstract

Suppose that Bob has a databaseD and that Alice wants to perform a search queryq onD (e.g.,

“is q in D?”). Since Alice is concerned about her privacy, she does not want Bob to know the query

q or the response to the query. How could this be done? There are elegant cryptographic techniques

for solving this problem under various constraints (such as “Bob should know neitherq nor the answer

to the query” and “Alice should learn nothing aboutD other than the answer to the query”), while

optimizing various performance criteria (e.g., amount of communication).

We consider the version of this problem where the query is of the type “isq approximatelyinD?” for

a number of different notions of “approximate”, some of which arise in image processing and template

matching, while others are of the string-edit type that arise in biological sequence comparisons. New

techniques are needed in this framework of approximate searching, because each notion of “approximate

equality” introduces its own set of difficulties; using encryption is more problematic in this framework

because the items that are approximately equal cease to be so after encryption or cryptographic hash-

ing. Practical protocols for solving such problems make possible new forms of e-commerce between

proprietary database owners and customers who seek to query the database, with privacy.

We first present four secure remote database access models that are used in the e-commerce, each of

which has different privacy requirement. We then present our solutions for achieving privacy in each of

these four models.

Keywords: Privacy, security, secure multi-party computation, pattern matching, approximate pattern

matching.

�Portions of this work were supported by Grant EIA-9903545 from the National Science Foundation, and by sponsors of the
Center for Education and Research in Information Assurance and Security.

1



1 Introduction

Consider the following real-life scenario: Alice thinks that she may have some genetic disease, so she wants

to investigate it further. She also knows that Bob has a database containing known DNA patterns about

various diseases. After Alice gets a sample of her DNA sequence, she sends it to Bob, who will then tell

Alice the diagnosis. However, if Alice is concerned about her privacy, the above process is not acceptable

because it does not prevent Bob from knowing Alice’s private information–both the query and the result.

This kind of situation, which is likely to arise as e-commerce develops, motivates the following general

problem formulation:

Secure Database Access (SDA) Problem: Alice has a strings, and Bob has a database of strings

T = ft1; : : : ; tNg; Alice wants to know the result of whether there exists a stringti in Bob’s

database that “matches”s. The “match” could be an exact match or an approximate match.

How to design a protocol that can accomplish this task without revealing Alice’s secrets to

Bob?

Because of its practical importance and also because not much work has been done for approximate

pattern matching in the SDA context, our work particularly focuses on approximate pattern matching.

The exact matching problem has been extensively considered in the literature [19, 6, 17, 16, 20, 22, 21,

13], even though it can theoretically be solved using the general techniques of secure multi-party computa-

tion [10]. The motivation for giving specialized solutions to it is that they are moreefficientthan those that

follow from the above-mentioned general techniques. This is also our motivation in considering approx-

imate pattern matching even though it too is a special case of the general secure multi-party computation

problem. Unlike exact pattern matching that produces “yes” and “no” answers, approximate pattern match-

ing measures the difference between the two targets, and produces ascoreto indicate how different the two

targets are. The metrics used to measure the difference usually are heuristic and are application-dependent.

For example, in image template matching [14, 18],
Pn

i=1(ai�bi)
2 and

Pn
i=1 jai�bij are used to measure the

difference between two sequencesa andb. In DNA sequence matching [15],edit distance[2] makes more

sense than the above measurements;edit distancemeasures the cost of transforming one given sequence to

another given sequence, and its special case,longest common subsequenceis used to measure how similar

two sequences are.

Solving approximate pattern matching problems within the SDA framework is quite a nontrivial task.

Consider the
Pn

i=1 jai� bij metric as an example. The known PIR (private information retrieval) techniques

[19, 6, 17, 16, 20, 22, 21, 13] can be used by Alice to efficiently access each individualbi without revealing

to Bob anything about whichbi (or even whichb) Alice accessed (more on this later), but doing this for each

individual bi and then calculating
Pn

i=1 jai � bij violates the requirement that Alice should know the total

score
Pn

i=1 jai � bij without knowing anything other than that score, i.e., without learning anything about

the individualbi values. Using a general secure multi-party computation protocol typically does not lead to

2



an efficient solution. The goals of our research, and the results presented in this paper, are finding efficient

ways to do such approximate pattern matchings without disclosing private information.

The actual practice of remote database access does not all fit into the same model we described in the

above SDA formulation. For example, in some situations, Bob’s database could be proprietary whereas

in some others it could be public (in either case the protocol should reveal nothing to Bob about Alice’s

query). The “proprietary” nature of a database might make the solution more difficult because Alice should

not be able to know more information than the response to her query. There is also another practical frame-

work, within which Alice uses Bob to store a (suitable disguised) version of her private database (a form

of outsourcing) and whose solutions could be much different. Based on these various practical variants of

the problem, we have investigated four SDA models, and defined a class of SDA problems for each model

according to the metrics we use for approximate pattern matching. Of course the difficulties of the problems

are not the same for the different metrics, and so far we have solved a subset of those problems. A summary

of our results is listed below (the results are stated more precisely in Section 4, and the models are defined

in Section 3 – in the meantime see Figure 1 in that section for a summary of each model).

� For the Private Information Matching Model, we have a solution to the approximate pattern matching

based on the
Pn

i=1(ai � bi)
2 with O(n2 � N) communication cost, wheren is the length of each

pattern andN is the size of the database.

� For the Private Information Matching Model, We also have a solution to the approximate pattern

matching based on
Pn

i=1 jai�bijmetrics using a Monte Carlo technique; the solution gives an estimate

result, and it hasO(n�W �N) communication cost, whereW is a parameter that affects the accuracy

of the estimate.

� For the Private Information Matching Model, if we assume that the alphabet is known to the involved

parties and its size is finite, we have a solution to approximate pattern matching based on general
Pn

i=1 f(ai � bi) metrics, hence the solutions for the special cases of
Pn

i=1 jai � bij,
Pn

i=1(ai � bi)
2,

and
Pn

i=1 Æ(ai; bi) (whereÆ(x; y) is 1 if x = y and 0 otherwise). These solutions haveO(m � n �N)

communication cost, wherem is the number of the symbols in the alphabet. In many cases,m is

small. For instance,m is four in DNA databases.

� For the Secure Storage Outsourcing Model, we have a solution to approximate pattern matching based

on the
Pn

i=1(ai�bi)
2 metrics. The solution is practical because it has onlyO(n) communication cost,

andO(n) is optimal because that is how long the answer is.

� For the Secure Storage Outsourcing and Computation Model, we also have a solution to approximate

pattern matching based on the
Pn

i=1(ai � bi)
2 metrics. This solution is also practical because of its

O(n2) communication cost.

3



Motivation

Why do we care about the privacy of a database query? In the example used earlier in this section, if a match

is found in the database, Bob immediately knows that Alice has such a disease; even worse, after receiving

Alice’s DNA sequence, Bob can derive much about Alice from the DNA, such as other health problems that

Alice might have. If Bob is not trustworthy, Bob could disclose the information about Alice to other parties,

and Alice might have difficulty getting employment, insurance, credit, etc. On the other hand, even if Alice

trusts Bob, and Bob has no intention of disclosing Alice’s private information, Bob might still prefer that

Alice’s query be kept private out of liability concerns: If Bob knows Alice’s DNA information, and that

information is accidentally disclosed (perhaps by a disgruntled employee of Bob’s, or after a system break-

in), Bob might face an expensive lawsuit from Alice. From this perspective, a trusted Bob will actually

prefer not to know either Alice’s query or its response.

With the growth of the Internet, more and more e-commerce transactions like the above will take place.

There are already DNA pattern databases, public databases about diseases, patent databases, and in the future

we may see many more commercial databases and the related database access services, such as fingerprint

databases, signature databases, medical record databases, and many more. Privacy will be a major issue

in such e-commerce. Assuming the trustworthiness of the service providers, as is done today, is risky;

therefore protocols that can support remote access operations while protecting the client’s privacy are of

growing importance.

One of the fundamental operations behind the queries described in the examples above is pattern match-

ing. Therefore, the basic problem that we face is how to conduct pattern matching operations at the server

side while the server has no knowledge of the client’s actual query (or the response to it). In some database

access situations, exact pattern matching is used, such as query by name, query by social security number,

etc. However, in many other situations, exact pattern matching is unrealistic. For instance, in fingerprint

matching, even if two fingerprints come from the same finger, they are unlikely to be exactly the same be-

cause there is some information loss in the process of deriving an electronic form (usually a complex data

structure of features) from a raw fingerprint image. Similarly in voice, face, and DNA matching; in these

and many other situations, exact matching is not expected and some form of approximate pattern matching

is more useful.

Background Information on Secure Multi-party Computation

The above problem is a special case of the general secure multi-party computation problem [28]. Generally

speaking, a multi-party computation problem deals with computing any probabilistic function on any input,

in a distributed network where each participant holds one of the inputs, ensuring independence of the inputs,

correctness of the computation, and that no more information is revealed to a participant in the computation

than can be computed from that participant’s input and output [12]. Other examples of such computations

include: elections over the Internet, electronic bidding, joint signatures, and joint decryption. The history

4



of the multi-party computation problem is extensive since it was introduced by Yao [28] and extended by

Goldreich, Micali, and Wigderson [23], and by many others: GoldWasser [12] predicts that “the field of

multi-party computations is today where public-key cryptography was ten years ago, namely an extremely

powerful tool and rich theory whose real-life usage is at this time only beginning but will become in the

future an integral part of our computing reality”.

Goldreich states in [10] that the general secure multi-party computation problem is solvable in theory.

However, Goldreich also points out that using the solutions derived by these general results for special cases

of multi-party computation, are impractical; special solutions should be developed for special cases for

efficiency reasons.

One of the well-known special cases of multi-party computation is the Private Information Retrieval

(PIR) problem: The problem consists of a client and server. The client needs to get theith bit of a binary

sequence from the server without letting the server know thei; the server does not want the client to know

the binary sequence either. A solution for this problem is not difficult; however an efficient solution, in

particular a solution with minimal communication cost, is not easy. Studies [19, 6, 17, 16, 20, 22, 21, 13]

have shown that one can design a protocol to solve the PIR problem with much better communication

complexity than the theoretical solutions. Pattern matching is another such specific computation, and the

recent progress in the PIR problem motivated us to speculate that there exist solutions that are better than

the general theoretical one for this particular kind of secure multi-party computation.

Secure Multi-party Protocol v.s. Anonymous Communication Protocol

Anonymous communication protocols [24, 11] were designed to achieve somewhat related goals, so why

not use them? Anonymity techniques help to hide the identity of the information sender, rather than the

information being sent. For example, when people browse the web, they can use anonymous communication

protocols to keep their identities secret, but the web query usually is not secret because the web server has

to know the query in order to send a reply back. In situations where the identity of the information sender

needs to be protected, anonymous communication protocols are appropriate. However, there are situations

where anonymous communication protocols cannot replace secure multi-party computation protocols. First,

certain types of information intrinsically reveal the identity of someone related to the information (e.g., social

security number). Secondly, in some situations, it is the information itself that needs to be protected, not

the identity of the information sender. For instance, if Alice has an invention, she has to search if such an

invention is new before she files for a patent. When conducting the query, Alice may want to keep the query

private (perhaps to avoid part of her idea being stolen by people who have access to her query); she does

not care whether her identity is revealed. Thirdly, in certain situations, one has to be a registered member in

order to use the database access service; this makes hiding user’s identity difficult because the user has to

register and login first, which might already disclose her identity.

Furthermore, most of the known practical anonymous protocols, such as Crowds [24], Onion routing

5



[11] andAnonymizer.comuse one or severaltrustedthird parties. In our secure multi-party computation

protocols, we do not use a trusted third party; even if a third party is used, we generally assume that the third

party is not trusted, and should learn nothing about either Alice’s query, or Bob’s data, or about the response

to the query.

Therefore anonymity does not totally solve our problems, and cannot replace secure multi-party com-

putation. Rather, by combining anonymity techniques with secure multi-party computation techniques, one

can achieve better overall privacy more efficiently.

2 Related Work

As Goldwasser points out in [12], in the 80’s the focus of research was to show the most general result

possible, yielding multi-party protocol solutions for any probabilistic function. Much of the current work

is to focus onefficientandnon-interactivesolutions to special important problems such as joint-signatures,

joint-decryption, and secure and private database access.

Among various multi-party computation problems, the Private Information Retrieval (PIR) problem has

been widely studied; it is also the problem most related to what we present in this paper (although here we

use none of the elegant techniques for PIR that are found in the literature for reasons we explained earlier

in this paper). The PIR problem consists of devising a protocol involving a user and a database server, each

having a secret input. The database’s secret input is called thedata string, anN -bit stringB = b1b2 : : : bN .

The user’s secret input is an integeri between 1 andn. The protocol should enable the user to learnbi in a

communication-efficient way and at the same time hidei from the database.

The trivial solution is having the database send an encryption of the entire stringB to the user. However,

this solution is not efficient because of itsO(N) communication complexity. Much work has been done

to reduce the communication complexity [19, 6, 17, 16, 20, 22, 21, 13]. Our work is motivated by this

framework, including its emphasis on reducing communication complexity.

Chor et al. point out that a major drawback of all known PIR schemes is the assumption that the user

knows thephysical addressof the sought item [9]. In the current database query scenario, the user typically

holds a keyword and the database internally converts this keyword into a physical address. To solve this

problem, Choret al. propose a scheme to privately access data by keywords [9]. The difference between

the problem studied in Chor’s paper and the problems in our paper is that we extend the problem to cover

approximate pattern matching.

Songet al. propose a scheme to conduct searches on encrypted data [27]. The problem is that Alice

has a database, and she has to store the database in a server controlled by Bob; how could Alice query her

database without letting Bob know the contents of the database or the query? This problem is different from

the PIR problem because Alice now knows all the inputs in this problem, whereas in the PIR problem Alice

does not know Bob’s input. Here we primarily focus on extending the problem to also cover approximate

6



pattern matching.

There is much work on other types of secure multi-party computation problems, such as threshold cryp-

tography [8], private bidding [5] and secret-ballot elections [4]. Although they are different from our prob-

lems, we believe that the techniques they use are also useful in solving our problems.

Multi-party protocols use a rich body of tools and sub-protocols, some of which were developed for

particular applications, while others were developed for general cryptographic settings. These include zero-

knowledge proofs, probabilistic encryption, oblivious transfer, various distributed commitment schemes

[25], computing with shares of a secret [26], and instance hiding schemes [7, 1].

3 Framework

3.1 Models

Remote database access has many variants. In some e-commerce models, Bob’s database is private while in

some other models, it is public. In the latter case, there is no requirement to keep the database secret from

Alice; however, the privacy of Alice’s query still needs to be preserved. In other e-commerce models, Bob

hosts Alice’s (encrypted/disguised) database while supporting queries from Alice and other customers, in

which case Bob should know neither the database nor the queries.

Private Database
Bob’s

BobAlice
query

reply

Public Database

Alice Bob
query

reply

(c) SSO Model

Private Database
Alice’s

BobAlice
query

reply

(d) SSCO Model

Private Database
Alice’s

BobAlice

Carl

outsourcing

query

reply
pay for

the service

(a) PIM Model (b) PIMPD Model

Figure 1: Models

From the various ways that remote database access is conducted, we distinguish four different e-commerce

models, all of which require customers’ privacy:

� PIM: Private Information Matching Model (Figure 1.a)

� PIMPD: Private Information Matching from Public Database Model (Figure 1.b).

� SSO: Secure Storage Outsourcing Model (Figure 1.c).

7



� SSCO: Secure Storage and Computing Outsourcing Model (Figure 1.d).

For the sake of convenience, we will useMatch() to represent the pattern matching function, which

includes both exact pattern matching and approximate pattern matching.

Private Information Matching Problem (PIM)

Alice has a stringx, and Bob has a database of stringsT = ft1; : : : ; tNg; Alice wants to know the result of

Match(x; T ). Because of the privacy concern, Alice does not want Bob to know the queryx or the result;

Bob does not want Alice to know any string in the database except for what can be derived from the reply.

Furthermore, Bob wants to make money from providing such a service, therefore Alice should not be able

to conduct the querying by herself; in other words, every time Alice wants to perform such a query, she has

to contact Bob, otherwise she cannot get the correct answer.

Private Information Matching from Public Database Problem (PIMPD)

Bob has a database of stringsT = ft1; : : : ; tNg, whose contents are public knowledge. Alice has a queryx,

and she wants to know the result ofMatch(x; T ). However, because of the privacy concern, Alice does not

want to disclose her queryx to Bob.

This problem is different from the PIM problem: in the PIM problem, Bob does not allow Alice to know

any information about the database except for what can be derived from the reply. In the PIMPD problem,

since the database contains only public knowledge, there is no need to prevent Bob from letting Alice know

more about the contents of the database than the strict answer to her query (although Bob’s doing so may

result in unnecessary communication).

Secure Storage Outsourcing Problem (SSO)

Alice has a database of stringsT = ft1; : : : ; tNg, but she does not have enough storage for the large

database, so she outsources her database (suitably disguised–more on this later) to Bob, who provides

enough storage for Alice. Furthermore, from time to time, Alice needs to query her database and retrieves

the information that matches her query, i.e., Alice wants to knowMatch(x; T ) for her queryx. For the sake

of privacy, Alice wants to keep the contents of both the database and the query secret from Bob.

Secure Storage and Computing Outsourcing Problem (SSCO)

The SSCO problem is an extension of the SSO problem. While the database is exclusively queried by Alice

only in the SSO problem, in the SSCO model the database will also be queried by other clients of Alice.

More specifically, in the SSCO model, Alice outsources her database to Bob, and she wants the database to

be available to anyone who is willing to pay her for the database access service. When a client accesses the

database, neither Alice nor Bob should know the contents of the query. Moreover, Alice wants to charge the

8



clients for each query they have submitted, so the client should not be able to get the correct query result if

Alice is not aware of the query’s existence.

Since Bob can pretend to be a client, the solutions of the SSCO problem should be secure even if Bob

can collude against Alice with any client. However, the SSO problem does not have such a concern because

the only client is Alice herself.

3.2 Formalized Problems

For each model, there is a family of problems. We will use the following notations to represents each specific

problem:

� M /Exact: Exact Pattern Matching problem in modelM .

� M /Approx: Approximate Pattern Matching problem in modelM .

– M /Approx/f : use
Pn

k=1 f(ak; bk) metrics to measure the distance between two strings, where

f is a general function.

– M /Approx/Æ: use
Pn

k=1 Æ(ak; bk) metrics to measure the distance between two strings, whereÆ

is the Kronecker symbol:Æ(x; y) = 0 if and only ifx = y and 1 otherwise.

– M /Approx/Abs: use
Pn

k=1 jak � bkj metrics to measure the distance between two strings.

– M /Approx/Squ: use
Pn

k=1(ak � bk)
2 metrics to measure the distance between two strings.

– M /Approx/Edit:

� M /Approx/Edit/String: use the string editing criterion to measure the distance between two

strings.

� M /Approx/Edit/Tree: use the tree editing criterion to measure the distance between two

trees.

TheM /Exact problem has been studied extensively in certain model, such as PIM and SSO, but the

M /Approx problem has not. Our results deal mostly with theM /Approx problem.

4 Our Results

4.1 PIM/Approx

Except for the research on the general secure multi-party computation problem, this specific problem has

not been studied in the literature. Unless otherwise specified, we assume alphabet used in the following

solution to be predefined and its size to be finite. This assumption is quite reasonable in many situations;

for instance, DNA sequences use a fixed alphabet of four symbols. Under this assumption, we can solve the

9



PIM/Approx/f problem. However, because the way to calculateedit distancecannot be represented in the

form
Pn

k=1 f(ak; bk), the PIM/Approx/Edit problem is not a special case of the PIM/Approx/f problem. We

also have a solution for PIM/Approx/Edit/String problem, but because of its complexity and space limitation,

we will leave the solution to the journal version of this paper.

In some other situations, the above finite alphabet assumption does not apply. For instance, fingerprint,

image and voice patterns use real numbers instead of characters from a known finite alphabet. The above-

mentioned solution for the PIM/Approx/f problem cannot be used anymore, however by exploiting the

mathematical property of
Pn

i=1(ai�bi)
2, we have come up with a solution for the PIM/Approx/Squ problem

for infinite alphabet after introducing anuntrustedthird party who does not know the inputs from either of

the two parties and learns nothing about them (or about the query, or the answer to it). We also have a

solution to the PIM/Approx/Abs problem using a Monte Carlo technique. All of these are given below.

4.1.1 PIM/Approx/Squ Protocol

Suppose that Bob has a databaseT = ft1; :::; tNg, and assume the length of each element isn; Alice wants

to know theti 2 T that most closely matches a queryx = x1:::xn based on the PIM/Approx/Squ metrics.

The requirement is that Bob should not knowx or the result, and Alice should not be able to learn more

information than the reply from Bob.

We propose a protocol to compute the matching score using a untrusted third party, Ursula. Our assump-

tion here is that Ursula cannot conspire with either Alice or Bob. However, the third party is not considered

as trusted; therefore, Ursula should not be able to deduce eitherx or T , or the final matching scores. This

protocol works for both finite and infinite alphabet.

Let ~x = (�2x1; :::;�2xn; 1; RA; 1), whereRA is a random number generated by Alice; for eachti =

yi;1:::yi;n, let ~zi = (yi;1; :::; yi;n;
Pn

k=1 y
2

i;k � Ri; 1; Ri), whereRA andRi are random numbers. Observe

that:

nX
k=1

(xk � yi;k)
2 = ~x � ~zTi + (

nX
k=1

x2k �RA):

Since(
Pn

k=1 x
2

k � RA) is a constant, we can use~x � ~zTi instead of
Pn

k=1(xk � yi;k)
2 to find the closest

match. After we get the closest match, Alice can calculate the actual score because she knows both
Pn

k=1 x
2

k

andRA.

Protocol

1. Alice generates a random numberRA, and constructs the vector~x = (�2x1; :::;�2xn; 1; RA; 1).

2. Alice generates an(n+ 3)� (n+ 3) matrixM , where

10



M =

0
@ ~x

R

1
A

whereR is a matrix of size(n+ 2)� (n+ 3), each element of which is a random number.

3. Alice generates a random invertible matrixQ of size(n + 3) � (n + 3). We will use vector~qk to

represents thekth row ofQ�1.

4. Alice sends the result ofQ �M to to Bob.

5. Alice sends~q1 to Ursula.

6. For eachti 2 T , repeat the next two sub-steps, in whichti = yi;1:::yi;n.

(a) Bob constructs~zi = (yi;1; :::; yi;n;
Pn

k=1 y
2

i;k � Ri; 1; Ri), and calculates(QM)~zTi , then sends

the result to Ursula.

(b) Ursula calculatesvi = ~q1 � (QM~zTi ) = ~x � ~zTi .

7. Ursula computesscore0 = minNi=1 vi, and sends the resultscore0 to Alice.

8. Alice computesscore = score0 +
Pn

k=1 x
2

k �RA, which is the closest match betweenx and the any

ti 2 T .

The purpose ofRA is to prevent Ursula from knowing the actual score, and the purpose ofQ andR is

to disguise the queryx. Alice does not need to putx in the first row ofM , instead, she can put it in any row

of M , and then sends to Ursula the corresponding row ofQ�1; only Alice knows which row ofM is vector

x. The communication cost of the above protocol isO(n2 �N).

4.1.2 PIM/Approx/Abs Protocol

First, we will present a Monte Carlo technique for Alice and Bob to calculatejxk � ykj, and then use it as

a building block to compute
Pn

k=1 jxk � ykj. The protocol involves an untrusted third party, Ursula, who

learns nothing exceptjxk � ykj + Rk, whereRk is a random number unknown to her. The protocol works

for both finite and infinite alphabet. Assume that0 < xk � U and0 < yk � U for some numberU . The

protocol for jxk � ykj is (in what followsW is a parameter that affects the accuracy of the estimate, and

counter = 0 initially):

1. Alice generates a random numberRk, and then generatesW � Rk random numbers uniformly over

(0::U ].

11



2. Alice randomly replaces half of theseW �Rk numbers with their negative values.

3. Alice insertsRk zeroes into random positions of theseW �Rk numbers, resulting in a sequenceS of

W numbers.

4. Alice then sendsS to Bob.

5. For each numbers from S, if s = 0, Alice sends 1 to Ursula; ifs > 0, Alice sends 1 to Ursula if

jsj � xk, sends 0 otherwise; ifs < 0, Alice sends 0 to Ursula ifjsj � xk, sends 1 otherwise.

6. For each numbers from S, if s = 0, Bob sends 0 to Ursula; ifs > 0, Bob sends 1 to Ursula if

jsj � yk, sends 0 otherwise; ifs < 0, Bob sends 0 to Ursula ifjsj � yk, sends 1 otherwise.

7. Ursula increasescounter by 1 if the values she receives from Alice and Bob are different.

8. Ursula computesscore = counter � U
W

, which is shown earlier to be an unbiased estimate ofjxk �

ykj+Rk �
U
W

.

Because ofRk, Ursula does not know the actual distance betweenxk andyk, and because of the neg-

ative numbers among thoseW random numbers, Ursula can not figure out whetherxk > yk or xk < yk.

Therefore Ursula knows nothing aboutxk andyk.

Now, let us see how to use the above protocol to compute
Pn

k=1 jxk � yi;kj, wherex = x1:::xn and

ti = yi;1:::yi;n:

1. Alice generates a random numberR.

2. For eachti 2 T , supposeti = yi;1:::yi;n and repeat the next three sub-steps:

(a) counter = 0.

(b) For eachk = 1; :::; n, Alice, Bob and Ursula use the above protocol to computejxk � yi;kj.

The random numbersRi;1; :::; Ri;n used in the above protocol are generated by Alice, such that
Pn

k=1Ri;k = R.

(c) Ursula computesscorei = counter � U
W

, which is an unbiased estimate of
Pn

k=1 jxk � yi;kj +
Pn

k=1Ri;k �
U
W

=
Pn

k=1 jxk � yi;kj +R � U
W

.

3. Ursula computesscore0 = minNi=1 scorei, and sendsscore0 to Alice.

4. Alice computesscore = score0 �R � U
W

and gets the closest match betweenx and anyti 2 T .

The communication complexity isO(n �W � N). The analysis of the variance will given in the full

version of this paper.

12



4.1.3 PIM/Approx/f protocol

If the alphabet is predefined and its size is finite, we can solve a general problem–computingf(xk; yk).

However, we cannot directly use this protocoln times to compute
Pn

k=1 f(xk; yk) because that would reveal

each individual result off(xk; yk). We will present the protocol for computingf(xk; yk) here, and then in

the following sub-section, we will discuss how to use it as a building block to compute
Pn

k=1 f(xk; yk)

without revealing any individualf(xk; yk).

Suppose Alice has an inputxk; Bob has an inputyk; Alice wants to know the result off(xk; yk) without

revealingxk and the result to Bob, and Bob does not want to reveal itsyk to Alice. If Alice can deriveyk

from f(xk; yk), that is beyond the scope of this problem. We present a solution to this problem. Later we

will use this solution as a building block to construct solutions to other problems.

f -function Protocol

We assume the encryption methods used below are commutative.

1. Bob computesf(�i; yk) for each�i 2 X, whereX is the finite (known) alphabet. Letm be the size

of X.

2. Bob chooses a secret keyk, computesEk(f(�i; yk)) for each�i 2 X, and sends to Alice them

results.

3. Alice chooses one fromEk(f(�i; yk)), i = 1 : : : m, such that�i = xk. This can be done because

Bob sent them encrypted results in order.

4. Alice chooses a secret keyk0, computesEk0(Ek(f(xk; yk))), and sends it back to Bob.

5. Because of the commutative properties ofEk0 andEk,Ek0(Ek(f(xk; yk))) is equivalent toEk(Ek0(f(xk; yk))),

which could be decrypted toEk0(f(xk; yk)) by Bob. Bob sends the resultEk0(f(xk; yk)) to Alice.

6. Alice getsf(xk; yk) by decryptingEk0(f(xk; yk)).

The technique used above is similar to the standard oblivious transfer protocol; it protects the privacy of

the inputs from both parties without introducing a third-party. The communication cost isO(m), wherem

is the size of the alphabet.

PIM/Approx/f Protocol

First, let us see how to securely compute
Pn

k=1 f(xk; yk). As we discussed above, we cannot run the

abovef -function protocoln times to get
Pn

k=1 f(xk; yk). In the following protocol, we will use a disguise

technique to hide each individual result off(xk; yk).

13



For eachti = yi;1:::yi;n, and for eachk = 1; :::; n, let fi;k(xk; yi;k) = f(xk; yi;k) + Ri;k, whereRi;k is

a random number, the following protocol shows how A and B calculate
Pn

k=1 f(xk � yi;k):

1. Bob generates a random numberR then sendsR to Alice.

2. For eachti = yi;1; :::; yi;n, repeat the next five sub-steps:

(a) Bob constructsfi;k(xk; yi;k) = f(xk; yi;k) + Ri;k for k = 1; :::; n, whereRi;1; :::; Ri;n aren

random numbers.

(b) Alice and Bob use thef -function protocol to computefi;k(xk; yi;k), for eachk = 1; :::; n.

(c) Alice sends
Pn

k=1 fi;k(xk; yi;k) to Ursula.

(d) Bob sends
Pn

k=1Ri;k �R to Ursula.

(e) Ursula computesscorei =
Pn

k=1 fi;k(xk; yi;k)� (
Pn

k=1Ri;k �R) =
Pn

k=1 f(xk; yi;k) +R.

3. Ursula computesscore0 = minNi=1 scorei, and sendsscore0 to Alice.

4. Alice computescore = score0 � R, thus getting the actual distance betweenx and the closestti in

the databaseT .

Although Alice knows each individualfi;k(xk; yi;k), she does not know the actual value off(xk; yi;k)

because ofRi;k. Similarly, because ofR, Ursula does not know the actual score of the closest match. The

communication cost of the protocol isO(m � n �N), wherem is the size of the alphabet,n is the length of

each pattern, andN is the size of the database. In many cases,m is quite small. For instance,m is four in

DNA databases.

Becausejxk�ykj, (xk�yk)
2 andÆ(xk; yk) functions are special cases off(xk; yk), PIM/Approx/(Abs,

Squ,Æ) problems can all be solved using the above protocol.

4.2 PIMPD/Approx

The only difference between the PIM model and the PIMPD model is that, in the latter, Bob does not need

to keep the database secret from Alice. Therefore, All solutions in the PIM model can be applied to the

PIMPD model as well. Whether the “public” feature of the database can result in more efficient solutions is

an interesting question. Although we do not yet have an answer to it, we observed the following:

Theorem 1. There is no secure two-party non-interactive solution for the PIMPD/Approx problem.

Proof. A two-party non-interactive protocol means Bob, by himself, is able to find the item in the database

that has minimal distance from the query.

Assume there is a two-party non-interactive protocolA which solves any of the PIMPD/Approx prob-

lems, in another words, given an encrypted/disguised form (q0) of a queryq, and the databaseT that Bob

14



knows, Bob can find the item in the database that has minimal distance fromq as follows. We useA(T; q0)

to represent the algorithm on inputT andq0.

Since Bob can use any database he wants, he can use a database like this:T0 = f“axxxxxx”, “bxxxxxx”,

..., “zxxxxxx”g, supposing that the alphabet is a set from ’a’ to ’z’. After applyingA(T0; q0), Bob will get

one that has the minimal distance fromq. For instance, if “mxxxxxx” is the result, Bob knows that ’m’ is the

first character inq. SinceA is a non-interactive protocol, Bob can reuse it on another database constructed

for the purpose of exposing the second character inq; he can keep doing this and figure out the rest of the

characters inq.

Therefore, if such a protocol existed, the queryq would not be kept secret from Bob.

The theorem does not rule out the existence of an efficient interactive protocol or a multi-party protocol.

4.3 SSO/Approx

In this model, Bob is a service provider who provides storage and database query services to Alice. Accord-

ing to Alice’s privacy requirement, Bob should know nothing about the database that he stores for Alice, nor

should he know the query. So Bob has to conduct a database query based on the encrypted or disguised data

of Alice.

The requirement that Bob should not know the query result, as in the PIM and PIMPD problem, is not

needed anymore in the SSO problem. The reason is that Bob does not know the contents of the database, he

does not even know what the database is for, so knowing whether Alice’s query is in the database does not

disclose any secret information to Bob.

Intuitively, it can look like that the SSO/Approx problem might be more difficult than the PIM/Approx

problem because Bob at least knows the contents of the database in the PIM/Approx problem whereas he

knows nothing about the database in the SSO/Approx problem. But knowing the contents of the database

has a disadvantage, in that Bob cannot know an intermediate result because he knows one of the inputs (the

database); if he also knows an intermediate result, he might be able to figure out the other input (query) of

the computation. However, in the SSO/Approx problem, Bob knows nothing about the database, so it is safe

for him to know intermediate results without exposing the query information.

Whether Bob can know intermediate results is a critical issue to reduce the communication complexity.

If he knows intermediate results to some extent, he can conduct the comparison operation to find the minimal

or maximal score; otherwise, he has to turn to Alice in order to find the minimal or maximal score, which

results in high communication cost in the PIM problem.

The SSO/Approx problem is similar to secure outsourcing of scientific computations problems studied

by Atallah et al. [3]. The difference is that in secure outsourcing problems, inputs are provided by Alice

every time a computation is conducted in Bob’s side; therefore, Alice can encrypt/disguise the inputs differ-

ently in different rounds of the computation. However, in the SSO problem, one of the inputs (the database)

15



is encrypted/disguised only once, and this same input is used in all rounds of computations; this makes the

problem more difficult.

So far, we have a solution only for SSO/Approx/Squ problem. The solution works for both infinite and

finite alphabet.

4.3.1 SSO/Approx/Squ Protocol

Suppose that Alice wants to outsource her databaseT = ft1; :::; tNg to Bob, and wants to know if query

stringx = x1:::xn matches any patternti in the databaseT .

The straightforward solution would be to let Bob send the whole database back to Alice, and let Alice

conduct the query by herself. Although this solution satisfies the privacy requirement, much better com-

munication complexity can be achieved. Another intuitive question would be whether Bob can conduct the

matching independently after Alice sends him the relevant information about the query. If the answer is

true, Bob should be able to find the itemti that has the closest match to the queryx. In another words, if

ti = y1:::yn andscorei =
Pn

k=1(xk � yk)
2, then Bob should be able to find the minimum value ofscorei.

However, because of the privacy requirement, Bob is not allowed to know the actual queryx, nor is he

allowed to know the content of the database, so how does he compute the distancescorei betweenx and

each of the elementti in the database?

The idea behind our solution is based on the fact that~x �~zT = (~xQ�1) � (Q~zT ), whereQ is an invertible

matrix. Alice can storeQ~zT instead of~zT at Bob’s site, and keepsQ secret from Bob. She will send~xQ�1

to Bob each time she wants to send a queryx; therefore Bob can compute~x � ~zT without even knowing~x

and~z. If we can use~x � ~zT to represent the
Pn

k=1(xk � yk)
2, we can make it possible for Bob to conduct

the approximate pattern matching.

For eachti = yi;1:::yi;n in the databaseT , let~ti = (
Pn

k=1 y
2

i;k + R � Ri; yi;1; :::; yi;n; 1; Ri), and let

~x = (1;�2x1; :::;�2xn; RA; 1), whereR,RA andRi are random numbers. We will have~x �~tTi =
Pn

k=1 y
2

i;k

�2
Pn

k=1 xkyi;k +R+RA, and thereforescorei =
Pn

k=1(xk�yi;k)
2 = ~x �~tTi +(

Pn
k=1 x

2

k�R�RA). Since

(
Pn

k=1 x
2

k � R � RA) is a constant, it does not affect the final result if we only want to find theti that

produces the minimumscorei. Therefore, Bob can use~x �~tTi to compute the closest match.

Before outsourcing the database to Bob, Alice randomly chooses a secret(n + 3) � (n+ 3) invertible

matrixQ, and computes~zi = Q~tTi , then sendsT 0 = f~z1; :::; ~zNg to Bob.

Protocol

1. For any query stringx = x1:::xn, Alice generates a random numberRA, and constructs a vector

~x = (1;�2x1; :::;�2xn; RA; 1), then sends~xQ�1 to Bob.

2. Bob computesscore0i = ~x � ~zTi , for i = 1; :::; N .

3. Bob computesminNi=1 score
0

i, and gets the correspondingi.

16



4. Bob returns~zi to Alice.

5. Alice computesQ�1~zi and getsti, which is the closest match of her query.

Because Alice and Bob are involved in only one round of communication, the communication cost is

O(n), which is optimal because that is how long the answer is.

Notice that we have introduced random numbersR, RA, Ri for i = 1:::N . The purpose ofR is to

prevent Bob from knowing the actual distance betweenx and the items in the database; the purpose of

RA is to prevent Bob from knowing the relationship between two different queries; the purpose ofRi is to

prevent Bob from knowing the relationship among items in the database. WithoutRi, two similar items in

the databaseT would still be similar to each other in the disguised databaseT0; adding a different random

number to each different item will make this similarity disappear.

4.4 SSCO/Approx

This model poses more challenges than the SSO model becase Bob could now collude against Alice with

a client, or he can even become a client. Therefore, one of the threats would be whether Bob is able to

compromise the privacy of the database by conducting a small number of queries and deriving the way the

database is encrypted or disguised. A secure protocol should resist this type of active attack. We have an

solution for the SSCO/Approx/Squ problem that works for both infinite and finite alphabet.

4.4.1 SSCO/Approx/Squ protocol

One of the difference between the SSCO/Approx problem and the SSO/Approx problem is who sends the

query. In the SSO/Approx/Squ protocol, Alice transforms the queryx to a vector~xQ�1, and sends the

vector to Bob; in the SSCO/Approx/Squ protocol, the client Carl will send the query. Because Carl does

not knowQ, he cannot construct~xQ�1 by himself. If Carl can get the result of~xQ�1 securely, namely

without disclosing~x to Alice and without knowingQ of course, we will have a solution. BecauseQ�1 =

(~qT
1
; :::; ~qTm), computing~xQ�1 securely is basically a task of computing~x � ~qTk for k = 1::m, which can be

solved using the same technique as that used in solving PIM/Approx/Squ problem.

Therefore, by modifying step 2 of the SSO/Approx/Squ protocol slightly, and also by using a form of

“R� � (score+RA)”, instead of the form of “score+RA” as is used in SSO/Approx/Squ protocol, we have

a SSCO/Approx/Squ protocol as the following:

Let T = ft1; :::; tNg be the database Alice wants to outsource to Bob, and assume the length of

each element isn. Alice generatesN random numbersR1; :::; RN . For eachti = yi;1; :::; yi;n, let ~ti =

(
Pn

k=1 y
2

i;k+R�Ri; yi;1; :::; yi;n; 1; 1; Ri); let ~zi = Q~tTi , whereQ is a randomly generated(n+4)�(n+4)

matrix.

In what follows, we assume that Alice outsourced the databaseT0 = f~z1; :::; ~zNg to Bob.

17



Protocol

1. Whenever a client Carl wants to to conduct a search on queryx = x1:::xn, he generates a random

numberRC .

2. Alice generates random numbersRA andR�.

3. Carl and Alice jointly compute~q = R�~xQ
�1, where~x = (1;�2x1; :::;�2xn; RC ; RA; 1). The

computation does not reveal Alice’s secretQ, RA or R� to Carl, nor does it reveal Carl’s private

queryx orRC to Alice.

4. Carl then sends the vector~q to Bob.

5. Bob computesscorei = ~q � ~zTi = R�(
Pn

k=1 y
2

i;k � 2
Pn

k=1 xkyi;k +RC +RA)

6. Bob returns to Alicescore0 = minNi=1 scorei.

7. Alice computesscore00 = score0

R�
�RA =

Pn
k=1 y

2

i;k � 2
Pn

k=1 xkyi;k +RC and sends it to Carl.

8. Carl computesscore = score00 +
Pn

k=1 x
2

k �RC and gets the final score.

Because ofRC , Alice cannot figure out the actual score for this query, and because ofRA andR�, Carl

cannot figure out the actual score between his query and other items in the database (except for the matched

one) even if Carl can collude with Bob. The communication cost of the protocol isO(n2), most of which is

contributed by the computation ofR�~xQ�1 in step 3.

5 Conclusion and Future Work

We have developed four models for secure remote database access, and presented a class of problems and

solutions for these models. For some problems, such as SSO/Approx/Squ and SSCO/Approx/Squ problems,

our solutions are practical, and they only needO(n) andO(n2) communication cost, respectively; while for

PIM/Approx and PIMPD/Approx problems, our results are still at the theoretical stage because of their high

communication cost. Improving the communication cost for those solutions is one avenue for future work;

another avenue is the non-sequential pattern matching: the pattern matching problems that we have dis-

cussed only involve patterns of simple sequential structure; in many applications, patterns have a branching

structure, such as a tree or a DAG. TheM /Approx/Edit/Tree problem in our model is one of the examples.

Developing a secure protocol to deal with this type of query is a challenging problem.

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation: a protocol based on hiding information from an oracle”.
Journal of Cryptology, 2:1–12, 1990.

18



[2] A. Apostolico and Z. Galil, editors.Pattern Matching Algorithms. Oxford University Press, 1997.

[3] M. Atallah and J. Rice. Secure outsourcing of scientific computations. Technical Report COAST TR 98-15,
Department of Computer Science, Purdue University, 1998.

[4] J. Benaloh and M. Yung. Distributing the power of a government to enhance the privacy of voters. InProceedings
of the fifth annual ACM symposium on Principles of distributed computing, pages 52–62, Calgary, Alta, Canada,
August 11 - 13 1986.

[5] C. Cachin. Efficient private bidding and auctions with an oblivious third party. InProceedings of the 6th ACM
conference on Computer and communications security, pages 120–127, Singapore, November 1-4 1999.

[6] B. Chor and N. Gilboa. Computationally private information retrieval (extended abstract). InProceedings of the
twenty-ninth annual ACM symposium on Theory of computing, El Paso, TX USA, May 4-6 1997.

[7] M. Abadi, J. Feigenbaum and J. Kilian. On hiding information from an oracle.Journal of Computer and System
Sciences, 39:21–50, 1989.

[8] P. Gemmell. An introduction to threshold cryptography. InCryptoBytes, volume 2. RSA Laboratories, 1997.

[9] B. Chor, N. Gilboa and M. Naor. Private information retrieval by keywords. Technical Report TR CS0917,
Department of Computer Science, Technion, 1997.

[10] O. Goldreich. Secure multi-party computation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded/publichtml/foc.html, 1998.

[11] P. F. Syverson, D. M. Goldschlag and M. G. Reed. Anonymous connections and onion routing. InProceedings
of 1997 IEEE Symposium on Security and Privacy, Oakland, California, USA, May 5-7 1997.

[12] S. Goldwasser. Multi-party computations: Past and present. InProceedings of the sixteenth annual ACM sym-
posium on Principles of distributed computing, Santa Barbara, CA USA, August 21-24 1997.

[13] Y. Gertner, S. Goldwasser and T. Malkin. A random server model for private information retrieval. In2nd
International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM ’98),
1998.

[14] R. Gonzalezi and R. Woods.Digital Image Processing. Addison-Wesley, Reading, MA, 1992.

[15] D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and Comutational Biology. Cam-
bridge University Press, 1997.

[16] G. Di-Crescenzo, Y. Ishai and R. Ostrovsky. Universal service-providers for database private information re-
trieval. InProceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing, September
21 1998.

[17] Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic private information retrieval (ex-
tended abstract). InProceedings of the thirty-first annual ACM symposium on Theory of computing, Atlanta, GA
USA, May 1-4 1999.

[18] A. Jain.Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ, 1989.

[19] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information retrieval. InProceedings of IEEE
Symposium on Foundations of Computer Science, Milwaukee, WI USA, October 23-25 1995.

[20] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private information
retrieval. InProceedings of the 38th annual IEEE computer society conference on Foundation of Computer
Science, Miami Beach, Florida USA, October 20-22 1997.

[21] Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting data privacy in private information retrieval
schemes. InProceedings of the thirtieth annual ACM symposium on Theory of computing, Dallas, TX USA,
May 24-26 1998.

19



[22] C. Cachin, S. Micali and M. Stadler. Computationally private information retrieval with polylogarithmic com-
munication. Advances in Cryptology: EUROCRYPT ’99, Lecture Notes in Computer Science, 1592:402–414,
1999.

[23] O. Goldreich, S. Micali and A. Wigderson. How to play any mental game. InProceedings of the 19th annual
ACM symposium on Theory of computing, pages 218–229, 1987.

[24] M. K. Reiter and A. D. Rubin. Crowds: anonymity for web transaction.ACM Transactions on Information and
System Security, 1(1):Pages 66–92, 1998.

[25] B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons, Inc.,
1996.

[26] A. Shamir. How to share a secret.Communication of the ACM, 22(11):612–613, 1979.

[27] D. Song, D. Wagner and A. Perrig. Practical techniques for searches on encrypted data. InProceedings of 2000
IEEE Symposium on Security and Privacy, Oakland, California, USA, May 14-17 2000.

[28] A. Yao. Protocols for secure computations. InProceedings of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, 1982.

20


	CERIAS Tech Report 2002.pdf
	Wenliang Du, Mikhail J. Atallah




