
MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 10, No. 1, Winter 2008, pp. 108–125
issn 1523-4614 �eissn 1526-5498 �08 �1001 �0108

informs ®

doi 10.1287/msom.1070.0167
©2008 INFORMS

An Approach to Securely Identifying Beneficial
Collaboration in Decentralized Logistics Systems

Chris Clifton
Department of Computer Science, Purdue University, West Lafayette, Indiana 47907,

clifton@cs.purdue.edu

Ananth Iyer
Krannert School of Management, Purdue University, West Lafayette, Indiana 47907,

aiyer@mgmt.purdue.edu

Richard Cho
Faculty of Business, University of New Brunswick Saint John, Saint John,

New Brunswick Canada, E2L 4L5, rcho@unbsj.ca

Wei Jiang
Department of Computer Science, Purdue University, West Lafayette, Indiana 47907,

wjiang@cs.purdue.edu

Murat Kantarcıoğlu
Department of Computer Science, The University of Texas at Dallas, Richardson,

Texas 75083, muratk@utdallas.edu

Jaideep Vaidya
Management Science and Information Systems Department, Rutgers University, Newark,

New Jersey 07102, jsvaidya@rbs.rutgers.edu

The problem of sharing manufacturing, inventory, or capacity to improve performance is applicable in many
decentralized operational contexts. However, the solution of such problems commonly requires an interme-

diary or a broker to manage information security concerns of individual participants. Our goal is to examine
use of cryptographic techniques to attain the same result without the use of a broker. To illustrate this approach,
we focus on a problem faced by independent trucking companies that have separate pick-up and delivery tasks
and wish to identify potential efficiency-enhancing task swaps while limiting the information they must reveal
to identify these swaps. We present an algorithm that finds opportunities to swap loads without revealing any
information except the loads swapped, along with proofs of the security of the protocol. We also show that it
is incentive compatible for each company to correctly follow the protocol as well as provide their true data.
We apply this algorithm to an empirical data set from a large transportation company and present results that
suggest significant opportunities to improve efficiency through Pareto improving swaps. This paper thus uses
cryptographic arguments in an operations management problem context to show how an algorithm can be
proven incentive compatible as well as demonstrate the potential value of its use on an empirical data set.

Key words : collaboration; routing; cryptography; space-filling curve; incentive compatible; algorithm
History : Received: January 9, 2004; accepted: December 10, 2006. Published online in Articles in Advance
December 11, 2007.

1. Introduction
Coordination of decisions and sharing capacity across
independent decision makers can provide signifi-
cant cost reductions in many operations management
problem contexts. In decentralized environments,
there are numerous instances where individual com-
panies would like to swap tasks or loads to gain

operational efficiencies. Keskinocak and Tayur (2001)
suggest that e-marketplaces can play the role of
central coordinators. They suggest, for example, a
marketplace where customers post orders for paper
products and manufacturers offer capacity that is
shared across multiple orders to generate efficiency.
They also describe an example where independent

108



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 109

manufacturers who have production capability for
a variety of products with associated setups swap
customer demands to reduce setups. Another exam-
ple discussed involves intermediaries that provide
consolidation and capacity trading opportunities for
shippers and carriers. Similarly, Kalagnanam et al.
(2000) describe a problem faced by steel companies
that have to deal with surplus inventories of steel
coils with specific properties. They provide an opti-
mization model that can be solved by a coordinator
who attempts to optimally allocate the surplus inven-
tory. Keskinocak and Tayur (2001) identify that a key
requirement for an intermediary is that it would have
to be an independent, trustworthy entity who would
keep all information confidential and who would cre-
ate benefits that are equitably distributed.
The examples above suggest that one reason for the

use of a broker or a marketplace is that it prevents
disclosure of proprietary information across competi-
tors. However, this information must still be revealed
to the broker for coordination to occur. In addition,
the broker will need to cover his costs by charging
a margin, the data collected by the broker have to
be secured from leakage, and the broker’s incentives
have to be aligned with individual company goals. In
many contexts, independent companies are reluctant
to share proprietary information, unless it is abso-
lutely necessary, to protect their customer base. How-
ever, companies do realize that some sharing of data
may be necessary to compensate for market fragmen-
tation. In such contexts, it would be ideal to devise a
system where all of the data are available for use but
only data that are absolutely required for coordination
are shared.
The cryptographic community has shown that a

trusted third party is not required—it is possible to
compute functions without disclosing private data to
any party (Yao 1986, Goldreich et al. 1987). The result
is that no party learns more than they would if a bro-
ker arranged the transactions, and no broker is required.
Our goal is to apply state-of-the-art techniques from
data encryption to logistics problems to automate the
task performed by the broker. Companies learn no
more than with an honest broker. However, the bro-
ker is eliminated. In fact, for the specific problem and
solution given in this paper, we prove that no party
learns more than the minimum needed to accomplish

the desired efficiency gains. The benefit to shipping
companies and shippers is the ability to reduce collab-
oration costs and improve the efficiency of the overall
system.
One reason for this research is that we believe that

an examination of operations problems with their spe-
cific contexts can provide opportunities for the devel-
opment of algorithms that exploit problem struc-
ture. In addition, by focusing on algorithms that are
embedded in commercial codes, we suggest that there
is potential for rapid practical adoption. Finally, there
are conceptual issues regarding data leakage versus
efficiency that we suggest as a rich research area, both
in operations management as well as in the computer
security research community.

1.1. A Specific Problem Context—The Trucking
Industry

To provide a complete treatment of our approach, we
examine a specific problem context involving truck
routing. Truck transport is a $462 billion industry in
the United States (Wilson and Delaney 2003). How-
ever, the industry is extremely fragmented, with the
largest company accounting for less than 5% of the
market. The main source of inefficiency in this indus-
try is the “deadhead” miles, or miles driven empty.
The primary reason for this inefficiency is the spatial
nature of this industry; i.e., for a truck to pick up a
load, it has to physically be at that location. When the
truck is done, it ends up at the physical drop-off point
and may have to travel to a new location to be useful.
Intuitively, if transport companies swap some of their
loads, there is the potential for Pareto improving sav-
ings (i.e., neither company faces a higher cost and at
least one company faces a lower cost).
However, attempts to collaborate and thus swap

loads to get more efficient routes are often discouraged
by a desire of individual companies to “share only if
beneficial.” In addition, legal restrictions dealing with
antitrust issues frown on information sharing and
collaboration that can be potentially anticompetitive.
However, antitrust considerations do permit compet-
ing firms to engage in limited information sharing and
collaboration that is clearly efficiency enhancing. As
reported in the Wall Street Journal (Bandler 2003, p. 1),

It is permissible for carriers to cooperate in certain
ways. For instance, if two of them both carry chem-
icals for a given producer on the same route, they



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
110 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

may pool their capacity for the purpose of operational
efficiency � � � � But cooperating to divide up markets or
to affect prices would clearly fall outside these permit-
ted arrangements.

If transport companies resort to using a broker to
swap loads, the first step is for each company to inde-
pendently identify loads it would like to swap. These
potential loads are provided to a broker who now sees
all available loads. As a result, parties will only make
things available that they view as likely to be picked
up in a swap. The key difference in our approach is
that all available loads are provided by all companies.
The algorithm is executed in a distributed manner by
each company and at no time are the data entrusted
to a third party. In addition, the secure protocols used
in the algorithm guarantee that no information other
than the swapped loads that improve efficiency are
revealed to each company, and all such efficiency-
improving swaps are made. This results in both lower
information disclosure and higher efficiency than a
traditional broker-mediated model.
Why would companies want such an approach?

One motivation comes from the transport companies
themselves as part of their desire to protect pro-
prietary information while achieving maximum effi-
ciency. However, another motivation may come from
shippers who could demand such a protocol be used
by their associated carriers to ensure that efficiency is
enhanced while preventing any collusion by carriers
regarding data that are not explicitly required to be
shared and that may reduce competitiveness of the
carrier market.
Thus, in this paper:
1. We provide an algorithm that ensures that shar-

ing takes place only if each company sees its costs
reduced and that the sharing scheme ensures that all
potential players can engage to identify cost-reducing
swaps, while ensuring no information is shared other
than what can be concluded from the final swapped
points.
2. We prove incentive compatibility of the associ-

ated algorithm by demonstrating that honesty on the
part of the collaborators is ensured by guaranteeing
that either it can be detected that one participant is
cheating (and thus gets thrown out of future collabo-
rations) or that the cheating is not incentive compati-
ble; i.e., the cheater is worse off.

3. We show that the algorithm, implemented in
a decentralized manner, affords the globally optimal
split of loads for a specific setting.
4. We apply the algorithm proposed to an empiri-

cal data set from a transportation company that pro-
vided us with 11 weeks of pick-up and delivery data.
Although the algorithm proposed is a heuristic in the
context of vehicle routing, it uses the state-of-the-art
techniques in data encryption and secure multiparty
computation techniques that guarantee that the secu-
rity requirements are met. The empirical data suggest
the delivered value of the algorithm. Empirical results
suggest that the potential to reduce costs is over 15%
based on application of the algorithm.
This paper thus provides an application of crypto-

graphic techniques as an enabler of operational effi-
ciency in a decentralized ownership environment. We
also suggest the associated methodological issues as a
potentially fruitful area of research in operations man-
agement. In addition, several combinatorial problems
can be solved by using the space-filling curve as a
heuristic. For such problem contexts, our paper pro-
vides a template to generate secure implementations.
The next section gives a formal treatment of the

algorithm, along with proofs, showing that it achieves
a one-dimensionally optimal result, that nothing is
disclosed, that is not obvious from the result, and
that cheating is not incentive compatible; i.e., it is
detrimental to the cheater. In §2.5, we show that the
algorithm can be securely used among multiple par-
ties. In §3, we provide results when this approach is
applied to a set of real shipping transactions. In the
appendix, we provide notation and formal proofs of
the theorems in the text.

2. Problem Description
Formally, the general problem is as follows. We have
N independent transport companies with company i
having mi points (corresponding to mi unit loads)
located in a two-dimensional plane that must be
served by a truck. The goal is to identify a sequence
of enquiries and swaps between pairs of companies
that results in: (1) a set of points that when swapped
between the companies guarantees that no company
is worse off, (2) a situation where no information is
shared other than what can be concluded from the



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 111

final swapped points, (3) a situation where the algo-
rithm is polynomial in running time, and (4) a situ-
ation where any cheating by either party during the
execution of the algorithm is either detected by the
other party or results in a less efficient solution for
the dishonest party, thus providing the incentive to
truthfully follow the algorithm.

2.1. Using Space-Filling Curves
We first map the points in the initial two-dimensional
problem to one dimension using a space-filling curve.
Figure 1(a) shows the existing routes through the
points served by each of the two transport companies.
Figures 1(b) and 1(c) show a mapping of the points,
via a Hilbert space-filling curve, to one dimension. The
use of a space-filling curve to develop heuristics for
combinatorial problems is described in Bartholdi and
Platzman (1988). Bartholdi and Platzman (1988) show
that this results in the following properties: (a) 25%
worse than optimal worst-case performance for planar
traveling salesman problems (Bartholdi and Platzman
1982), (b) solutions within one second that have a
gap of less than 34% more than the best approach
for large problems using two months of computing
time (see Bartholdi 2006), and (c) reported implemen-
tation in logistics packages such as the ARC/Info
Geographical Information System, the CAPS logistics
toolkit of Baan Systems, and other commercial sys-
tems managing two-dimensional data (see Bartholdi
2006).1 Also, because the space-filling curve is a one-
to-one mapping from two dimensions to one dimen-
sion, points identified for swap in one dimension
provide a unique pointer to the corresponding origi-
nal point location in two dimensions.
Why map to one dimension? In general, the vehi-

cle routing problem is an NP-hard optimization prob-
lem, even without worrying about privacy or security
or both. Although proper choice of heuristics may
give good solutions directly on the two-dimensional
problem, choosing those heuristics requires an under-
standing of the characteristics of the data—and shar-
ing this information violates goal 2. However, in
one dimension the optimal solution is tractable: The
search for the best solution requires a logarithmic
number of steps.

1 Note that our approach will be to incorporate the encryption pro-
cesses within this heuristic.

Figure 1 Execution of OROD Protocol Between Two Parties

21 15

85 9 12

76 10 11

34 14 13

16

15131197531

(a)

(b)

(c)

(d)

2.2. A Swap Algorithm
The goal of the algorithm is to identify points that
can be swapped between two parties, whose loca-
tions are on a line, that results in (a) both parties



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
112 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

decreasing their costs and (b) finding the maximum
number of swaps that will optimize the total distance
traveled. Note that in one dimension, given the num-
ber of points to swap, the specific points that will
guarantee the lowest cost are apparent, i.e., swap the
farthest points for each location. We begin with the
assumption that each party has selected an end point.
This choice may be influenced by their current hub
locations—a natural approach would be to draw a
space-filling curve with endpoints at the hubs. A list
of symbols and notation is provided in Appendix A.1.
Let the kth extreme point Extreme_POS�X�dx� k�

refer to the kth farthest point from the endpoint dx
in the points X. Given a number of points k, the par-
ties compare their kth extreme points. If the locations
do not cross, k is a lower bound on the number of
points to swap to decrease costs and the parties try 2k.
Once the locations cross, k is an upper bound, and
the search continues between the upper and lower
bounds until the optimal number of points to swap
is found. A formal statement of the algorithm is pro-
vided as Algorithm 1. (Note that Aggarwal et al. 2004
present a protocol for securely computing the kth-
ranked element among multiple parties. The problem
is different, as we do not know k in advance; the dis-
tinctions are further discussed in Appendix B.4.)

Algorithm 1. One-Dimensional Relative Out-
lier Detection (OROD)
Require: S1, O1,
1: lbound← 0
2: ubound←�
3: i← 1
4: {Lines 5 through 13 determines the maximals
size of i}

5: while (ubound− lbound> 1) do
6: if Extreme_POS�S1� l� i� > Extreme_POS�O1� r� i�

{Defined in Appendix A.2} then
7: lbound← i

8: else
9: ubound← i

10: end if
11: i←min�i ∗ 2� ��lbound+ubound�/2��
12: end while
13: return i

2.2.1. Illustration of OROD Execution. We now
provide an example to illustrate the algorithm. Let

© and 
 be two parties, with original routes shown
in Figure 1(a). Figures 1(b) and 1(c) present a space
transformation process via a Hilbert curve. Let ©
start from the left end and 
 start from the right end.
We now show the execution of the algorithm from
©’s point of view.
Initially, lbound← 0, ubound←�, and i← 1. Since

the difference between lbound and ubound is greater
than 1, the execution enters the while loop. Extreme_
POS�©� left�1� returns 15, which is greater than the
index returned from Extreme_POS�
� right�1� = 1,
so lbound ← 1 and i ← 2. In the next iteration,
Extreme_POS�©� left�2� = 13 is still greater Extreme_
POS�
� right�2� = 3, so lbound ← 2 and i ← 4.
Extreme_POS�©� left�4� = 6 < Extreme_POS�
� right�
4� = 9, so ubound← 4 and i ← 3. Extreme_POS�©�
left�3� = 11 > Extreme_POS�
� right�3� = 4, so
lbound ← 3 and i ← 3. Since ubound− lbound = 1,
the execution exits with 3 as the number of points
to be swapped. Thus © swaps its (least-desired)
points in locations 11, 13, and 15 for 
’s points in
1, 3, and 4. The line is thus partitioned into two
parts, each assigned to one end. Given the one-to-one
mapping preserved by the space-filling curve, the
corresponding three swapped points can be identified
in the original two dimensions. The resulting tours
are shown in Figure 1(d).

Theorem 1. The OROD algorithm terminates with the
optimal number of points swapped; i.e., after swapping,
there are no two points that could be swapped to give a
lower tour length.

Proof. See Appendix C. �

2.3. Secure Execution
We next focus on secure execution of the algorithm
OROD. The goal in this section is to ensure that
no “excess” information is revealed by either party,
other than what can be deduced from the final swaps.
Because Algorithm 1 only exchanges information in
step 6, we want to perform the comparison of the
Extreme_POS functions from both parties without dis-
closing anything except the comparison result. As we
shall show, the comparison results at each step can
be deduced from the final swaps, so the result of the
comparison does not disclose excess information.
The idea of the secure version of the algorithm is to

provide a mechanism to check whether it is okay to



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 113

Figure 2 Example of Execution, Iteration 1

16
≤

15
≤

14
>

13
>

12
>

11
>

10
>

9
>

8
>

7
>

6
>

5
>

4
>

3
>

2
>

1
>i = 1

lbound = 0, ubound = ∞

swap a certain number of points, without either side
learning anything except whether that many points
will be a beneficial swap; i.e., parties do not learn
where the points are.2

To demonstrate this, we start with the view in Fig-
ure 1(c), so the reader (but not 
) can see both sides.
© builds a set of boxes, each containing either > or ≤.
The boxes correspond to positions on a line, and a box
entry at a specific position has a > if © will benefit
from swapping the given number of points (indicated
by i) if every one it receives is at or to the left of
that position. Figure 2 shows the values of the boxes
for checking if swapping a single point is okay. If ©
receives points to the left of position 15, it benefits
(since it gives up a point at 15). However, if it were to
receive a point at position 15 or 16, it would be better
not to swap. If it were to swap one point, 
 would
give up its point at position 1. It therefore opens the
box at position 1 (its leftmost point)—since this is >,
© (and 
) will gain from swapping one point.
This process is repeated to find the right number of

points to swap. Figure 3 shows the test for i = 2; 

looks at position 3 (where its second extreme point is
located) and finds it okay to swap two points. Figure 4
shows i = 4; looking at position 9, 
 finds that four
points given by © would include at least one to the
left of this point, so it is not a beneficial swap. All
that is now left is testing a swap of three points—this
is shown in Figure 5. Since this is okay (>), and four
points does not work, the final result is to swap three
points.
The key to the security of the process is that ©

does not know which box 
 opens, and 
 only learns
the value in one box. (This is accomplished through a
cryptographic protocol described in §2.3.1.) Thus, the
only thing learned from the protocol is the value “>”.

2 We describe this using direct oblivious transfer; however, the actual
implementation would use a secure comparison approach with
constant complexity (Yao 1986) rather than the linear complexity of
the method described.

Figure 3 Example of Execution, Iteration 2

16
≤

15
≤

14
≤

13
≤

12
>

11
>

10
>

9
>

8
>

7
>

6
>

5
>

4
>

3
>

2
>

1
>i = 2

lbound = 1, ubound = ∞

For this example, secure implementation implies
that as the final result (Figure 1(d)) shows 
 swap-
ping three points, knowing the final result, both par-
ties could conclude that swapping one point is okay.
Although they have learned something new at this
point, © and 
 learned nothing from this protocol
that they would not have learned from giving all of
their data to an honest broker (proved later). This is
accomplished without the need for an honest broker.
For example, from what 
 sees during the execution
of the protocol (the shaded boxes only), 
 knows that
© has fewer than four points to the right of posi-
tion 9, and at least three to the right of position 4.
But these would be obvious even with an honest bro-
ker: 
 learns of the ©s at 11, 13, and 15 from the
swap, and knows that there cannot be another © to
the right of 9 or it would have been swapped as well.
Thus, the algorithm ensures that sharing of beneficial
information is identified by © and 
 with no other
information being revealed in the process.
How do we verify secure execution of OROD for-

mally? Section 2.3.1 provides details.

2.3.1. Securely Opening the Box. We now de-
scribe an approach to make sure that only one of the
n electronic “boxes” offered by © (in the algorithm
OROD) is opened by 
, and that © cannot learn
which box is opened. The cryptography community
refers to this problem as 1-out-of-n oblivious transfer;
it has been the subject of extensive research. Here,
we will describe a simple 1-out-of-n oblivious transfer
(OT N1 ) protocol from Naor and Pinkas (1999, 2001).
For simplicity, we first describe 1-out-of-2 oblivious

transfer (OT 21 ). In this problem, © has two electronic
boxes (labeled 0 and 1); 
 wants to open the box �
(� = 0 or 1) without revealing to © which box was
opened. In the following protocol, let � be the index
of the box that 
 wants to open, and let B0 and B1

Figure 4 Example of Execution, Iteration 3

16
≤

15
≤

14
≤

13
≤

12
≤

11
≤

10
≤

9
≤

8
≤

7
≤

6
≤

5
>

4
>

3
>

2
>

1
>i = 4

lbound = 2, ubound = ∞



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
114 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

Figure 5 Example of Execution, Iteration 4

16
≤

15
≤

14
≤

13
≤

12
≤

11
≤

10
>

9
>

8
>

7
>

6
>

5
>

4
>

3
>

2
>

1
>i = 3

lbound = 2, ubound = 4

be the contents of boxes 0 and 1, respectively. (For
simplicity, we show the contents as a single bit; B0
and B1 take values 0 or 1.)
The protocol is described below:
1. © generates and publishes three numbers:
C: a random number between 1� � � � � p− 1,
p: a large prime number, and
g: the generator of p’s multiplicative group; i.e.,

every number between 1 and p− 1 can be written as
gkmodp for some k between 1� � � � � p− 1.
2. 
 picks a random number k between 1� � � � � p−1,

sets P� = gkmodp and P1−� = �C/P��= C ∗ P−1
� modp,

where P−1
� is the multiplicative inverse of P� (i.e. P−1

� ∗
P� = 1modp), and sends P0 to ©.
3. © finds P1 by evaluating C/P0 modp, creates

E0 = �gr0 modp�M0 = �H��P0�
r0 modp� ⊕ B0��, E1 =

�gr1 modp�M1 = �H��P1�
r1 modp�⊕ B1��, by randomly

choosing r0� r1 between 1� � � � � p− 1, and sends E0, E1
to 
. Note that E0, E1 are both pairs of numbers. The
hash function H is described in Appendix B.2.
4. 
 computes

T� =H��P��r� modp�=H��gr� �kmodp�
and gets B� by computing T�⊕M� . It cannot compute
the other value due to the cryptographic assumptions
outlined in Appendix B.2.
In the above protocol the choice of 
 (�) is not

revealed because all © receives is either gkmodp or
C/gkmodp, where k is chosen randomly. Since opera-
tions are done in modp, both gkmodp or C/gkmodp
values are uniformly distributed between 0� � � � � p− 1.
Therefore, © does not see anything more than a
random number. 
 learns nothing by receiving the
random C or (because of the random oracle hash
function) from inspecting E0 or E1.
Although 
 can decrypt E� to obtain the final

result, by the original Diffie-Hellman assumption
(Diffie and Hellman 1976; see Appendix B.2) it can-
not decrypt the other box. If 
 could decrypt both E0
and E1, it would mean that it would know an effi-
cient way to find �P1−��r1−� = gk

′r1−� modp. (Note that
the preceding value is needed to open the other box.)

Given P1−� = gk′modp (since g is a generator we can
write P1−� = gk

′modp for some k′) and gr1−� modp,
this violates the Diffie-Hellman assumption.
To clarify the above protocol, we give a simple

example.3

Example 1. Let the shared hash function H be
H�0�= 1, H�1�= 0, H�2�= 1, H�3�= 1, H�4�= 0.
1. © has B0 = 1, B1 = 0; it also generates and pub-

lishes three numbers: C = 4, p= 5, and g = 2 (note that
20 = 1mod5, 21 = 2mod5, 22 = 4mod5, 23 = 3mod5).
2. 
 wants to learn the value of B0 (� = 0). 
 picks

a random number k= 3 and sets P0 = 23 = 8= 3mod5
and P1 = �C/P0�= 4/3= 4 ∗ 2= 8= 3mod5 (note that
P0

−1 = 2 is the multiplicative inverse of P0 = 3 taken
mod5; P0 ∗ P−1

0 = 3 ∗ 2= 1mod5). 
 sends P0 to ©.
3. © independently calculates P1 by evaluating

4/P0 = 4 ∗ 2= 3mod5, and randomly choosing r0 = 4,
r1 = 3, calculates gr0 = 24 = 16= 1mod5, gr1 = 23 = 8=
3mod5, �P0�r0 = 34 = 81 = 1mod5, �P1�r1 = 33 = 27 =
2mod5, M0 =H�1�⊕ B0 = 0⊕ 1= 1, and M1 =H�2�⊕
B1 = 1⊕ 0 = 0. © sets E0 = �1�1� and E1 = �3�1�, and
sends E0, E1 to 
.
4. 
 computes

T0 = H��P0�
r0 mod5�=H��34�modp�

= H�81mod5�=H�1�= 0
and gets B0 by computing T0⊕M0 = 0⊕ 1= 1.
Thus 
 gets to know the contents of the box 0

(equal to 1), whereas© does not know which box was
opened by 
. This shows the secure 1-out-of-2 obliv-
ious transfer. The approach above can be extended
to deal with 1-out-of-n oblivious transfer. We provide
details in Appendix B.3.

2.4. Formal Statements Regarding Security of
the Algorithm

Formally, we divide the security into two parts. First,
if each company follows the protocol correctly, we
show that the algorithm is secure. This satisfies the
semihonest definition of secure multiparty computa-
tion. Second, we show that each company benefits by
following the protocol correctly; i.e., individual com-
pany participation by following the protocol is incen-
tive compatible.

3 We would like to stress that 1,024-bit or larger p and C values
would be used in practice for secure applications.



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 115

A secure implementation requires us to prove that
nothing is learned by either party during the execu-
tion except what can be deduced from the final points
swapped. To prove this, we show that it is possible
to build a “simulator” that uses only the final results
and the data known by each individual party to iden-
tify the result of the comparison. The proof requires
verification that the results at each step can indeed
be deduced from the result. The logic that follows is
that no new information is revealed at each step of
the execution of the algorithm. This provides a formal
proof of security of the algorithm if each party were
to follow the protocol provided.

Theorem 2. Algorithm 1 is secure under the semihon-
est definition of secure multiparty computation.

Proof. See Appendix D. �

The theorem above formally establishes that the
OROD algorithm results in a secure implementation.
The secure multiparty computation literature also

provides techniques secure against malicious parties;
i.e., parties that deviate from the protocol can be
detected. However, even with security against mali-
cious parties one can “cheat” by faking one’s input
and running the protocol honestly. We thus focus on
the concept of incentive compatibility; i.e., we prove
that it is in each party’s self-interest to follow the pro-
tocol and provide the correct input. In other words,
trying to learn more is discouraged by the fact that the
party is worse off or is detected as cheating. (Similar
issues were explored in Dodis et al. 2000, who sug-
gest that finding problems where incentive compat-
ibility simplifies protocols is an interesting research
area; this is discussed further in Appendix E.) For-
mally, we have to show that it is incentive compatible
for each party to follow the protocol. Note that we
will assume that if a party does not benefit from vio-
lating the protocol, it will follow the protocol.

Theorem 3. The OROD protocol is incentive compati-
ble; i.e., any failure to correctly follow the protocol results
in the dishonest party being worse off, or leaves the result
unaffected and gives no additional information to the dis-
honest party.

Proof. See Appendix E. �

2.5. Execution of OROD Among Multiple Parties
Define the optimal result from the execution of OROD
among multiple parties to be the perfect partition-
ing among all parties’ one-dimensional data sets. In
other words, any two parties’ ranges of their one-
dimensional data sets are disjoint. This results in the
minimal global tour (in one dimension).
We note one problem: It is not possible to draw

a space-filling curve such that every party’s depot is
uniquely at the opposite end of the line from every
other party. The result is that a globally optimal parti-
tioning may not be optimal (or even an improvement)
for every party; we lose the incentive compatibility in
Theorem 3. However, if we assign a total ordering to
the parties and use this to determine which end of
the line they get in any pairwise operation, repeated
execution does converge to a minimum global tour.

Theorem 4. Execution of OROD among k parties
eventually reaches optimal: k partitions (where k≥ 2).
Proof. See Appendix C. �

However, this multiple party execution of OROD
is not secure under the definitions of secure multi-
party computation; i.e., parties may see intermediate
results (swapped points) that eventually are passed
to another party. To be secure, each party should
see only those points that it starts with and that it
ends with.
On the other hand, with one additional constraint

we can utilize the two-party OROD protocol as a sub-
routine to build a secure multiparty protocol. The con-
straint is that once a party has received a swapped
point, it can never swap it again.
Constraint MP: Whenever OROD is executed

between any two parties, the points swapped between
them should be removed from consideration for their
subsequent execution with other parties. Informally,
this constraint says that a subcontractor may not fur-
ther subcontract the work he received as part of a
swap. This constraint guarantees that contracts with
the shipping company are transferred to a known
(and approved) carrier. We thus assume that the MP
constraint reflects the fact that only the original car-
rier can subcontract—this information is passed along
to the shipper for payment. No one other than the
original carrier or the first subcontracted carrier will



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
116 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

be paid by the shipper or be permitted to handle the
shipment.
To ensure that parties follow the MP constraint, we

introduce a mechanism that allows violation to be
detected. The basic idea is to have every party provide
a hash function of their input values at the beginning
of the protocol. The procedure to create an appro-
priate hash function, and its properties are shown in
the appendix. After receiving a point, its hash can be
checked to see if it comes from the correct source.
The formal details of the process are provided in the
appendix.
Note that two malicious parties (including the final

recipient) could collude to ignore the MP constraint.
This corresponds to swapping points after the com-
pletion of the OROD protocol among multiple parties
and could not be prevented by the protocol. However,
real-world incentives protect against this, as described
earlier. A shipper contracts with a particular trans-
porter; if this transporter subcontracts to another (the
result of a swap), this information will be commu-
nicated to the shipper. If a third party shows up to
collect the load (the result of a malicious swap), the
shipper would obviously be concerned. (Would you
trust your valuable shipment to whoever tries to come
collect it?)

Theorem 5. Executing OROD among multiple parties
is secure provided that constraint MP is satisfied.

We do not provide a formal proof of this theo-
rem because it follows the same steps as Theorem 2.
According to Theorem 2, a single execution of OROD
is secure. In addition, because constraint MP must be
satisfied, no swapped points are considered for the
subsequent executions, and all intermediate swapped
points are part of the final result. Therefore, each
party’s view during the execution of OROD among
multiple parties can be simulated by the party’s input
and output, following the same steps as in the proof
of Theorem 2.
Also note that securely executing OROD among

multiple parties merely requires that each party exe-
cutes OROD with the other parties once, provided
that each execution of OROD satisfies constraint MP.
The reasoning follows: Suppose party i has already
executed OROD once with all other parties, and
assume that i executes OROD with party j (where

i �= j) for a second time. Because constraint MP is
satisfied, no points would be considered during this
second execution between i and j except their orig-
inal points. Based on Theorem 1, the first execution
of OROD between i and j creates two perfect parti-
tions of their original points. In other words, if some
of their original points were swapped after the second
execution of OROD, these points would have been
swapped after the first execution. Consequently, when
constraint MP is guaranteed, any subsequent execu-
tion of OROD between i and j after the first execution
does nothing.

2.6. Related Issues
The multiparty OROD with MP4 may not produce
an optimal solution in the one-dimensional space.
Although Theorem 5 shows that no information is
disclosed except the points swapped, do the points
swapped in multiparty OROD with MP reveal more
information than an optimal solution would?

Claim 1. Multiparty OROD with MP does not always
leak more information than an optimal one-dimensional
secure solution.

Proof. From Theorem 5, all that is disclosed is the
points swapped.
Figure 6(a) provides three sets of shippers, whose

points are identified as ©, 
, and �. As the example
shows, these parties can have different numbers of
points available to swap, but because swaps are one
for one, their capacity constraints are satisfied after
the swaps are completed. Assume that in the original
OROD (with no MP constraint), we first have © (on
the left) swapping with 
 (on the right). The effect
is to swap the triangle in location 6 for the circle in
position 10. Next consider swaps between © (on the
left) swapping with � (on the right). The result is that
the circle, now in position 6, is swapped with square
in position 4. Finally, consider � (on the left) swap-
ping with 
 (on the right). The result is to swap the
square, in position 12, for the triangle, in position 10.
We would thus have a final set of positions with the
circles in positions 2, 3, and 4, the squares in positions
6 and 10, and the triangles in positions 12, 13, and 14.
This solution is shown in Figure 6(b).

4 For simplicity, the term “multiparty OROD (with MP)” means
execution of OROD among multiple parties with the constraint MP.



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 117

Figure 6 Execution of OROD Protocol Among Three Parties

1 3 5 7 9 11 13 15

1

2 3

1 3 5 7 9 11 13 15

1 3 5 7 9 11 13 15

1 3 5 7 9 11 13 15

(a)

(b)

(c)

(d)

Note that under the MP constraint, we only have
one swap that happens, i.e., the first step where© (on
the left) swapping with 
 (on the right). The effect is
to swap the triangle in location 6 for the circle in posi-
tion 10. Next consider swaps between © (on the left)
swapping with � (on the right). After this step, the
next two steps result in no swaps, given the MP con-
straint. This is shown in Figures 6(c) and 6(d). Thus
Figure 6 presents a situation where the number of
points swapped under an optimal solution �4� > the
number under multiparty OROD with MP (2).
We see that multiparty OROD may reveal less

information, as part of the solution, than a broker-
generated solution. In addition, knowing that a solu-
tion is optimal reveals a different kind of information.
Given the points it receives, a party can learn inter-
vals within which there are no other parties’ points:
• IR∗

i
(IRi ): regions where there are no other parties’

points (R∗
i and Ri are sets of points party i receives

from an optimal solution and solution computed from
the multiparty OROD with MP, respectively).
Refer to Figure 6(b). From this optimal solution,

© learns IR∗
© : between locations 2 and 4, there are

no other parties’ points. On the other hand, from the
solution in Figure 6(d), © learns IR© : Between loca-
tions 2 and 6, there are no other 
 points. IR© cannot
convey any certain information regarding � points
because © is not allowed to swap the previously
swapped point (at location 6) with one of the � points
at location 4. Depending on the execution ordering,
multiparty OROD may or may not produce an opti-
mal solution. As a result, IR© always contains less

certain information than IR∗
© . From this point of view,

we can conclude that a solution computed by mul-
tiparty OROD with MP does not always leak more
information than an optimal solution. �

3. Experimental Analysis
In this section, we present results obtained when the
algorithms described in this paper were applied to an
empirical data set provided by a trucking company,
representing LTL (less than truckload) loads during
the first quarter of 2003. The purpose was to observe
the empirical effect of running the algorithm on a data
set where we have (a) individual points in two dimen-
sions, and (b) pick-up and drop-off pairs associated
with each shipment. The data set contains 81,842 data
points (including both pick-up and delivery points)
spanning 11 weeks. One issue in the data set is that
in the actual problem, what we have to swap is loads,
i.e., pick-up and delivery pairs, whereas the algorithm
picks points to swap. Thus the results of the empirical
tests provide an indication of the performance of the
algorithm under more realistic problem conditions.
When the algorithms were executed for two com-

panies, we randomly assigned some pick-up points
to company A and the rest to company B. Based on
the assigned pick-up points, each pick-up and deliv-
ery pair for each week was assigned to company A
or B. Within a given weekly data set, we considered
a single truck completing all pickups and then all
deliveries. Actual distance being dependent on the
starting point of each company, we used the leftmost
pick-up point in one dimension as the starting point
of company A and the rightmost point for company B.
Before swapping any points, we obtained a preswap
tour length (in two dimensions) of the pickup and
delivery for each company by using the 2-opt algo-
rithm (Lin and Kernighan 1973). We also used the
same optimization method to calculate the tour length
after swapping.
We considered three swapping methods for our

analysis. One is pair swapping (PS), where we swap
only if both pick-up and delivery points are beyond a
certain point. Another is average swapping (AS), where
companies swap data based on the average of pick-up
and delivery points. As the number of delivery points
is more than three times the number of pick-up points
in the data set, we also consider delivery swapping



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
118 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

Figure 7 Savings in Total Distance

–5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11
Week

%
 S

av
in

g
s 

(%
)

PS
AS
DS

(DS) based on the delivery point. Figure 7 gives the
savings in total tour length by week. Although none
of our swapping method guarantees positive savings,
the average savings in total distance are 0�6% for PS,
5�7% for AS, and 17�8% for DS. The results thus show
that DS performs best in our empirical test. The main
reason for this result is that the major distance driven
in our data set is the trip to delivery points from pri-
mary pick-up locations, as there are more deliveries
than pickups. This long tour has the most opportunity
for improvement.
Figure 8 gives the savings by party—again it is

clear that destination swapping, by optimizing the
longer tour, gives the best results. It also shows an
interesting real-life situation. Because pairs are being
swapped, rather than individual points, it is possible
that the tour length increases. The optimality result
of Theorem 1 holds for a single tour but becomes a

Figure 8 Savings in Individual Distance

–20

–10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11
Week

%
 S

av
in

g
s 

(%
)

PS (A)
AS (A)

DS (A)
PS (B)

AS (B)
DS (B)

heuristic when both pickup and destination must be
swapped. However, it is an effective heuristic: In these
data, destination swapping always gives a global ben-
efit and almost always benefits both parties.

3.1. Empirical Results of Multiparty Collaboration
We also evaluated the secure multiparty protocol of
§2.5 on the data set. The experiments were conducted
under two different settings: execution among three
parties and execution among five parties. Because
of the constraint MP, different execution orderings
may produce different results. Therefore, under each
assignments of the data (a trial), we tried multiple
execution orderings. This was repated for three tri-
als. We present the best case, the worst case, and the
average savings (in %) across all possible orderings
for each trial.
Data for all experiments presented here come from

the 1,470 pick-up and delivery pairs in the first week
of the data set. Each party is given the same number
of pick-up/delivery pairs. Based on the superior two-
party performance of the DS strategy, we chose that
as the heuristic.

3.1.1. Empirically Measured Savings with Three
Companies. In this section, we consider the case
when the weekly data was split (randomly) across
three companies for a single trial. As described ear-
lier, there are six possible sequences of two party
algorithm executions, which are represented by the
possible permutations of the ordering of three com-
panies, i.e.,

!�C1 C2�� �C1 C3�� �C2 C3�"�

!�C1 C2�� �C2 C3�� �C1 C3�"�

!�C1 C3�� �C1 C2�� �C2 C3�"�

!�C1 C3�� �C2 C3�� �C1 C2�"�

!�C2 C3�� �C1 C2�� �C1 C3�"� and

!�C2 C3�� �C1 C3�� �C1 C2�"�

In the description above, (C1 C2) denotes the execu-
tion of the two-party protocol between C1 and C2
with constraint MP being satisfied. The secure multi-
party algorithm was executed for all six of these pos-
sible sequences. This was repeated for three trials.
Table 1 shows statistics for each trial and provides

the maximum, minimum, and average savings for



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 119

Table 1 Percentage Savings by Company and Trial for Swap Among Three Companies

Trial 1 (%) Trial 2 (%) Trial 3 (%)
Overall

Min Max Avg Min Max Avg Min Max Avg average (%)

C1 16�48 35.00 24.02 23.09 31�91 26�16 15�52 23.22 19�20 23�12
C2 9�85 27.11 16.48 −6.35 8�69 1�22 1�98 14.40 8�54 8�75
C3 24�40 29.45 24.40 27.65 31�09 27�65 31�49 35.62 31�49 27�85

each of the three companies (C1, C2, and C3) across
the six possible execution orderings. For some exe-
cution orderings and initial data assignments, a com-
pany may not see benefits in the original problem
context (e.g., see the minimum % change for C2 in
Trial 2). But, in most cases, on average, every com-
pany observes cost reductions varying from 8.7% to
27.9%.

3.1.2. Empirically Measured Savings with Five
Companies. We ran the same experiment with five
companies. Thus, we divided the data randomly into
five equal subsets, one for each company. Because each
company tries to swap with every other company, we
have

S = !�C1 C2�� �C1 C3�� �C1 C4�� �C1 C5�� �C2 C3��

�C2 C4�� �C2 C5�� �C3 C4�� �C3 C5�� �C4 C5�"�

i.e., 10 possible pairwise swaps. Because of the num-
ber (10!) of possible orderings of these swaps, we ran-
domly chose 10 orderings for each of the three trials.
The following stepswere executed for each trial:
• Randomly partition the weekly data set into five

data subsets (one per company).
• Execute the secure multiparty protocol 10 times,

each time randomly choosing the ordering to run.
(a random permutation of all elements in S.)
• Record statistics of each of the 10 random execu-

tion orderings.

Table 2 Percentage Savings by Company and Trial for Swap Among Five Companies

Trial 1 (%) Trial 2 (%) Trial 3 (%)
Overall

Min Max Avg Min Max Avg Min Max Avg average (%)

C1 4�59 19�50 15�75 18�50 30�59 24�63 13�30 26�09 18�82 19�73
C2 6�70 26�77 16�77 0�66 20�53 12�27 −13�89 14�39 −0�13 9�64
C3 −8�87 28�78 5�58 3�08 26�59 15�23 −4�35 22�52 8�59 9�80
C4 4�35 34�60 15�41 −14�57 14�67 −4�11 0�00 36�96 15�85 9�05
C5 27�83 44�90 33�17 7�43 35�46 27�39 25�77 36�43 31�34 30�63

The above steps were repeated three times (trials).
Table 2 provides, for each company, and for each trial,
the minimum, maximum, and average savings across
the 10 executions. The table shows that the aver-
age savings vary from 9.05% to 30.63%. As observed
earlier, there are cases where companies do not see
improvements for a particular sequence of order-
ings. Note that the algorithms we described always
guarantee savings in the space-filling curve mapped
dimension. The results show that the gap between
the space-filling curve and its link to the pick-up and
delivery travel distance in the two-dimensional prob-
lem context may result in an increase in travel dis-
tance in the original travel metric in some cases.

4. Conclusion and Future Work
We have described an algorithm that enables inde-
pendent companies to identify opportunities for col-
laboration without sharing unnecessary data. The
theoretical analysis shows that the algorithm ensures
that no information can be inferred except that from
the shared data, and that truth telling is incentive
compatible. In addition, application of the algorithm
to an empirical data set indicates a substantial poten-
tial impact. Papers such as Dodis et al. (2000) in the
cryptography literature state that the creation of pro-
tocols where it is incentive compatible to correctly
follow the protocol and truthfully provide the data
poses interesting theoretical challenges. Our paper



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
120 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

provides an example of an algorithm designed for
an operations management problem context. We sug-
gest that exploration of applied operations manage-
ment problem contexts can provide a rich source of
research problems as well as potential for practical
applications.
The specific problem described in this paper is a

step toward a greater integration of data encryption
techniques and theory to problems in operations
management. Another example is given by Atallah
et al. (2003), who address capacity allocation and
auctions—a supplier-consumer interaction rather than
the peer-to-peer interaction presented in this paper.
An interesting open research question concerns the
potential trade-off between the use of a heuristic
approach to problem solving that admits a tight secu-
rity property versus a closer-to-optimal algorithm that
permits data leakage. We leave such exploration to
future research.
Another area for research is applying the concept of

incentive compatibility to secure multiparty computa-
tions. Current secure multiparty computation models
do not take the reward structure of the parties into
account, leading to interesting results where the most
secure model (malicious model) may not provide the
needed security in practice. Integrating this concept
into evaluation of an algorithm, as in Appendix E,
leads to new opportunities for practical application of
secure collaborative computation.

Acknowledgments
The authors thank Reha Uzsoy for contributions made to
the formulation of this problem in initial discussions of the
work. This work was supported by a grant from the Purdue
University’s e-Enterprise Center at Discovery Park.

Appendix A. Algorithm Details

Appendix A.1. Notations
Sk = !sk1� sk2� � � � � skm", a set of m k-dimensional points,
Ok = !ok1� ok2� � � � � okn", a set of n k-dimensional points,
SF ≡A space filling curve,
'a� b)≡ The range of SF .

Appendix A.2. Formal Definitions of Extreme Points
Definition 1 (Extreme Points with Respect to X

and dx).
• X is a set of points, dx is a direction (i.e., left or right)

related to X;
• An extreme point is a point in X that is the farthest

away from dx, and

• ith extreme point is a point in X that is the ith furthest
away from dx.

Definition 2 (Extreme_POS�X�dx� i�).
• X is a set of points, dx is a direction (i.e., left or right),

and i is an integer;
• The function returns the position of the ith extreme

points with respect to X and dx, and
• If i > �X�, the function returns a position beyond the

range limits (e.g., −�, +�) in the direction dx.
Formally, Extreme_POS�X�dx� i� is:
Reorder X in ascending order according to position
if dx = right then
Return the position of ith item of X (+� if i > �X�)

else
Return the position of the ��X� + 1− i�th item
of X (−� if i > �X�)

end if.

Appendix B. Secure Multiparty Computation
Substantial work has been done on secure multiparty com-
putation. The key result is that a wide class of computations
can be done securely under reasonable assumptions. Any
function that can be represented by a polynomial circuit in
terms of the number of input bits can be evaluated in rea-
sonable time. We give a brief overview of this work, concen-
trating on material that is used in the paper. The definitions
given here are from Goldreich (2004a). For simplicity, we
concentrate on the two-party case. Extending the definitions
to the multiparty case is straightforward.

Appendix B.1. Definition of Secure Multiparty
Computation
The basic idea behind showing that a protocol is secure
is that no party can learn more than in a “trusted bro-
ker” model, where all parties give their input to the broker,
and the broker computes and returns the result. The prob-
lem with the trusted broker model is that the broker learns
everything. A secure multiparty computation (SMC) accom-
plishes this without a broker learning anything.
The problem is that in the trusted broker model, the only

information a party receives is the final result. However, in
a real computation, more information must be exchanged
(for example, the results of the Extreme_POS comparison).
The goal is to prove that the information exchanged does
not reveal anything other than what can be inferred from
the final results.
The security of an algorithm is proved as follows: If a

party, given its own input and the final result, can simulate
the information received during an actual execution of the
protocol, then it has not learned anything from the proto-
col. The proof of Theorem 2 demonstrates such a proof by
simulation.
Note that the values chosen by the simulator may not be

the same as the values seen during any particular execution
of the protocol. What matters is that over many executions



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 121

of the protocol on the same inputs, the distribution of values
seen (which varies based on the parties’ choice of random
numbers, such as encryption keys) is the same as the one
generated by simulation.
Formal definitions for secure multiparty computation,

and the proof that the simulation argument in fact guaran-
tees security equivalent to the “trusted broker” model, can
be found in Goldreich (2004a).
In summary, a secure multiparty protocol will not reveal

more information to a particular party than the informa-
tion that can be induced by looking at that party’s in- and
output.

Appendix B.2. Cryptographic Definitions
Security of the oblivious transfer relies on certain functions
being infeasible to compute and the ability to simulate val-
ues seen during the protocol by choosing a random number.
Two key assumptions used are given below.

Computational Diffie-Hellman Assumption (Diffie and
Hellman 1976). Assume that p is a very large prime num-
ber and g is the generator of its multiplicative group
(i.e., every number between 1� � � � � p − 1 can be written as
gkmodp for some k between 1� � � � � p − 1). The computa-
tional Diffie-Hellman assumption states that given gamodp
and gbmodp (note that a and b are not given), there is no
efficient way to compute gabmodp.

Random Oracle Assumption. In the construction of the
protocol, we will use a cryptographic hash function H . We
assume that this function is known to all parties (e.g., SHA
(NIS 1995)), and it maps its input to what appears to be (is
computationally indistinguishable from) a random output.
The computationally indistinguishability of the output of
commonly used cryptographic hash functions from a ran-
dom output is not formally provable (yet) but is a common
assumption in the cryptography literature.
The computational Diffie-Hellman assumption is the

basis for the Diffie-Hellman key exchange protocol, and it
is similar to the assumptions relied on by other public-key
cryptosystems. The random oracle assumption is also relied
on by many cryptosystems (Goldreich 2004b). If either does
not hold, many commonly used encryption schemes could
be broken.

Appendix B.3. 1-Out-of-n Oblivious Transfer
We now provide an approach to extend the 1-out-of-2 pro-
tocol to generate a 1-out-of-n protocol. The basic idea is that
the values in the boxes are masked using an exclusive or
with logn bits. Each bit is an encrypted value, with two
keys for each bit. One key is used if that bit in the binary
representation of the desired box number is 0, the other if
it is 1. Encryption requires two inputs, the key and value,
to be encrypted; for cryptographic reasons, the value being
encrypted must be different for each box but known to both
parties—the box number itself meets this criteria.

© sends the value EBi (exclusive or of encryptions and
contents) for every box to 
. To recover the key, 
 chooses
a 0 or 1 as the value it will be able to recover for each bit
(corresponding to the binary representation of the desired
box number). Each bit of the key is transferred using 1-out-
of-2 oblivious transfer; 
 will only be able to recover the
key where all the bits match the actual box to be opened,
and this will only correctly decrypt the desired box num-
ber. For any other box, the result of at least one bit would
appear random (because of trying to get the “wrong” bit
using 1-out-of-2 oblivious transfer for that bit).
We show this protocol for 16 boxes (four bits); assume

that© has B1� � � � �B16, and 
 wants to learn B7. We also use
an encryption function E (e.g., DES (NIS 1988)) as the hash
function H meeting the random oracle assumption; as will
be seen below, we need to invert the hash as part of this
protocol.
1. © generates four key pairs

�K01�K
1
1 �� �K02�K

1
2 �� �K03�K

1
3 �� �K04�K

1
4 ��

where each K�'j)j is a randomly chosen key for E. For 1 ≤
i ≤ 16, with binary representation ��'1)��'2)��'3)��'4)�,
© creates EBi = Bi⊕EK�'1)1

�i�⊕E
K
�'2)
2
�i�⊕E

K
�'3)
3
�i�⊕E

K
�'4)
4
�i�.

2. © sends all EBi to 
.
3. Because 7 (the box number 
 wants to open) has

binary representation 0111, using four executions of OT 21 , 

learns K01 , K

1
2 , K

1
3 , K

1
4 .

4. 
 retrieves B7 by calculating EB7 ⊕ EK01
�7�⊕ EK13

�7�⊕
EK13

�7�⊕EK14 �7�.
It can easily be proven that if the encryption scheme

and OT 21 are secure, then the above algorithm is secure.
Because it only retrieves one key from each pair, 
 accu-
rately decrypts at most one message.
For simplicity of presentation, we have shown a construc-

tion that scales linearly (because © sends the encrypted
value of every box). However, there are known logarithmic
time protocols for secure comparison that can be used for
step 6 of Algorithm 1; for details, see Yao (1986), Goldreich
(2004a), or Ioannidis and Grama (2003).

Appendix B.4. Related Work: kth-Ranked Element
Aggarwal et al. (2004) present a protocol for securely com-
puting the kth-ranked element among lists held by multiple
parties. A special case of our problem, in which the number
of points of each party is known to all, can be solved by
computing the kth-ranked element. Knowing the number of
points held by (in particular) the party at the “low” end of
the line gives the value to use for k; their protocol would
give the location of this kth element. This location would
partition the line; the parties would then know to swap
points to the right (left) of that location to get the optimal
solution (see Lemma 3.1).
We do not make the assumption that the number of

points held by each party is public; we limit the informa-
tion disclosed to only the swapped points. Without sharing



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
122 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

knowledge of the number of points belonging to at least
one party, finding the kth element will not solve the prob-
lem. Although it would be possible to use the kth-ranked
element protocol iteratively to find the appropriate number
of points to swap, this would require revealing the location
of the k + 1st (nonswapped) point. Thus, their protocol is
not suitable for our application.

Appendix C. Proof of Correctness

Theorem 1. The OROD algorithm terminates with the opti-
mal number of points swapped; i.e., after swapping, there are no
two points that could be swapped to give a lower tour length.

Proof. First, note that partitioning the line gives the low-
est tour length: With the line partitioned, neither party
needs to drive past the partition, and any swap would
require that each party drives past the partition, extend-
ing the tour length (this is shown in Lemma 3.1). A simple
inductive proof demonstrates that the process terminates
with the number of swaps required to achieve this optimal
(in one dimension) result.
First, note that it is easy to see that lbound ≤ i ≤ ubound

always holds.
We will show that the following always hold.
1. Swapping fewer than lbound points does not partition

the line, and
2. Swapping ubound or more points does not partition

the line.
First, they are trivially true initially (since we cannot swap
a negative number or � points).
If Extreme_POS�S� l� i� > Extreme_POS�O� r� i�, then

swapping fewer than i points will not partition the line
(since at least the ith points would still be on the wrong
side of the partion). In this case, lbound gets set to i, which
does not violate 1. Since ubound is unchanged, 2 still holds.
If Extreme_POS�S� l� i�≤ Extreme_POS�O� l� i�, then swap-

ping i or more points will not partition the line, since the ith
points are on the wrong side of the partition. In this case,
ubound gets set to i, which does not violate 2, and since
lbound is unchanged, 1 continues to hold.
If ubound − lbound = 1, then by 1 and 2, exactly lbound

points must be exchanged. Since at this point i= ��lbound+
lbound+1�/2� = lbound, the result is exactly the number that
must be exchanged to partition the line.
All that remains is to show that the algorithm does ter-

minate. Although ubound=�, i doubles and at some point
must exceed the number of points on the wrong side of the
partition (since the number of points is finite). At this point,
ubound gets set to a finite number. As long as ubound −
lbound> 1, lbound< ��lbound+ lbound+ 1�/2�< ubound, and
lbound< i ∗ 2, forcing i to be set such that lbound < i <
ubound. Since at the next iteration, either lbound or ubound
is set to i, either lbound increases or ubound decreases.
Since the values are integral, a finite number of iterations
are possible before lbound+ 1 ≥ ubound, and the algorithm
terminates. �

The number of iterations can be verified to be logarithmic
in the number of points swapped.

Theorem 4. Execution of OROD among k parties eventually
reaches optimal: k partitions (where k≥ 2).

Proof. This is proven through strong induction on the
number of parties.
Base case: k= 2. True from Theorem 1.
Inductive step: Let integer t > 2, and assume the claim is

true for all k < t. We need to prove that the claim is true
when k= t.
Let k = t − 1. From the induction hypothesis, the exe-

cution among the k parties creates k partitions. Then let
another party (say l) join the k parties and i be any party
among the k parties or k partitions. Leave i out and execute
the protocol among the remaining k−1 parties plus l. Then
we have a new set of k partitions.
Considering i with the other parties, if the protocol is

executed between i and any one of the parties whose data
set range does not overlap that of i, the protocol does noth-
ing. Let p be the number of parties whose data set ranges
do overlap that of i.
If p < k, the execution of the protocol among these p

parties plus i eventually leads to a set of disjoint parti-
tions. These partitions, plus the previously disjoint parti-
tions with i, form k+ 1 disjoint partitions.
If p = k, during the execution between p and either the

leftmost or rightmost party, the partition of the leftmost
or the rightmost party will shrink. Because there are a
finite number of points for each party, the number of times
the partition can shrink is finite. Therefore, eventually, no
party’s partition overlaps with that of the leftmost or the
rightmost party. The execution among the rest of the par-
ties will lead to k partitions. Adding the partition of either
the leftmost or the rightmost party, we have k+ 1 disjoint
partitions. As a result, the claim is true when k= t.
Because the base case and inductive step are true, the

claim is true for all k≥ 2. �

Appendix D. Proof of Security

Theorem 2. Algorithm (1) is secure under the semihonest
definition of secure multiparty computation.

Proof. Communication occurs only at line 6. To prove
the protocol is secure, we only need to show that given the
information received at the end, the intermediate compari-
son results can be simulated. (The comparison is computed
in a secure manner as described in §2.3.1, so it reveals noth-
ing but the comparison result.)
Algorithm 2 gives the simulator for line 6 for the party

at the left end of the line, S1.
Algorithm 2. Simulator for OROD Protocol

Require: S1, n
1: i← 1
2: lbound← 0



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 123

3: ubound←�
4: while (i �= n) do
5: if i < n then
6: Known. Extreme_POS�S1� l� i� >

Extreme_POS�O1� r� i�
7: lbound← i

8: i← i ∗ 2
9: else
10: Known. Extreme_POS�S1� l� i� <

Extreme_POS�O1� r� i�
11: ubound← i

12: i←��lbound+ubound�/2�
13: end if
14: end while

The simulator works as follows: let n be the number of
points to swap and i be an integer. If i is less than n, S1

knows i has yet to be maximal, and the protocol will dou-
ble the size of i. On the other hand, if i is greater than n,
S1 knows i is too big to be maximal, and the protocol will
decrease the size of i to a value that is in the middle of its
upper and lower bounds. If i is the same as n, the protocol
terminates.
From the simulator, it is obvious that the shared results

from the protocol, plus a party’s input, are sufficient to pre-
cisely simulate each execution of the protocol. Therefore,
because the simulation process and execution of the proto-
col are computationally indistinguishable, the OROD pro-
tocol is secure. �

Appendix E. Proof of Honesty
Cryptographic approaches and game-theoretic solutions are
complementary to each other. Specifically, Dodis et al. (2000)
explicitly demonstrate how cryptographic approaches can
be used to solve game-theoretic problems by showing how
to construct a two-player game that achieves the same pay-
offs as a mediated two-player game (mediated by an “hon-
est broker”). We have shown how this approach can be used
to solve a practical problem, and now prove that the payoff
for this problem guarantees incentive compatibility.
There are two levels at which incentive compatibility can

be shown. The first is to show that it is incentive compati-
ble to provide the correct data for the algorithm. This is the
traditional definition used in economics. The second is to
show that it is optimal for each party to correctly follow the
protocol; i.e., any attempt to gain more information by devi-
ating from (compromising the security of) the protocol is
self-defeating or will result in discovery by the other party.
This is related to the distinction between “semihonest” and
“malicious” in secure multiparty computation definitions.
A protocol that does not meet the first level (giving incorrect
data) is vulnerable even if it meets the standard of security
against malicious parties. A protocol that meets the second
form of incentive compatibility need not be secure against

malicious parties; it will be in the party’s best interest to fol-
low the protocol, and the semihonest security ensures that
no excess information is disclosed. We will show that our
protocol meets the first type (correct data), and with the
exception of the secure comparison (for which we describe
protocols secure against a malicious party), our protocol
also meets the second. Thus we ensure both correct results
and prevent disclosure of information by ensuring that it
is in a party’s best interest to follow the protocol with cor-
rect data.
We first assume that the space-filling curve heuristic is

jointly agreed on by all parties because it is already built
into several available mechanisms for vehicle routing. It
is possible that the heuristic may cause an optimal one-
dimensional result to be nonoptimal and possibly not ben-
eficial for all parties in two dimensions. For one party to
know that the heuristic is “bad” for a particular data set
requires a knowledge of the other party’s data; we assume
that parties do not know each other’s information. By the
same argument, a party would not be able to manipulate
the choice of heuristic to its advantage.
We now show that cheating in the protocol results in a

nonoptimal one-dimensional solution and that such a solu-
tion is in neither party’s best interest. We start with the
following lemma.

Lemma 3.1. If both parties swap an equal number of points,
each will achieve the greatest benefit if the points swapped parti-
tion the line.

Proof. Formally, the cost for a party P , Cost�P� is
{Let S represent the list of points owned by P }.
Reorder S in ascending order according to position
Cost= �Position�S�S��−Position�Sd��.

Let C be the dishonest party and H be the honest party.
Let Co be C’s points before executing the protocol, Ct be C’s
points after a correct execution of the protocol, and Cc be C’s
points after a false execution. H has the corresponding sets
as well. Note that �Ct� = �Cc� = �Co�, since an equal number
of points are given up and received.
Let Ct�C� be the farthest point for C in the true set and

Cc�C� be the farthest in the false set. Assume Position�Cc�C�� <
Position�Ct�C��. Since Ct�C� �∈ Cc , Ct�C� ∈ Hc . Since �Hc� = �Ht�,
∃X ∈Ht −Hc , and since no points are lost, X ∈Cc .
Since the line is partioned in a true execution (Theo-

rem 3), Position�Ct�C�� < Position�Ht�H ��. But this gives

Position�Cc�C�� < Position�Ct�C�� < Position�Ht�H ��≤X�
This gives a contradiction: Position�Cc�C�� cannot be the far-
thest point for C. �

Theorem 3. The OROD protocol is incentive compatible; i.e.,
any failure to correctly follow the protocol results in the dishonest
party being worse off, or leaves the result unaffected and gives no
additional information to the dishonest party.



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
124 Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS

Proof. Theorem 1 shows that the algorithm produces a
partition. A partition is optimal for both parties: If a dishon-
est party gets a point on the wrong side of the partition, it
must travel beyond the partition, extending its tour length.
We will show that any cheating leads the cost (defined as
above) to increase, thus producing an incentive for honesty.
First, note that a dishonest party cannot “invent” false

points to swap. If a dishonest party tries to give away a
point that does not really exist, the cheating will be detected
when the honest party goes to pick up the nonexistent load.
Contractual obligations can enforce disincentives to such
cheating. The same holds true for giving up fewer or more
points than agreed on by the algorithm.
This leaves two avenues for dishonest behavior:
• Cause the algorithm to arrive at the wrong value, and
• Give away different points than those determined by

the algorithm.
From Lemma 3.1, we have shown that any cheating that

causes points to be swapped other than those swapped in a
correct execution of the algorithm will be disadvantageous
to the dishonest party.
Any cheating in the comparison at step 6 of Algorithm 1

does not reveal any information to C. At most, C can cause
the comparison to give the wrong result. Looking at the
proof of Theorem 1, we see that at any point, the correct
number of items to swap S lies in the range lbound ≤ S <
ubound. Suppose the correct comparison result is >; then
we are supposed to set lbound← i, so we know S ≥ i. If
C causes the comparison result to be wrong (≤), it would
instead set ubound← i. However, since ubound can never
increase, and S ≥ i, the result of the algorithm will not be the
true result. An analogous construction works with lbound.
Therefore, any dishonesty in the execution of the algorithm
either causes both parties to come to the wrong answer, or
if C behaves incorrectly in another step, to come to different
answers. As discussed before, if C and the honest party
give up a different number of points, C will be detected
to have cheated and contractual disincentives would apply.
By Lemma 3.1, swapping the wrong number of points is
disadvantageous.
The second possibility is that a dishonest party comes to

the correct number to swap, but gives up the wrong points.
Assume a point X is kept that should have been swapped.
The same approach used in Lemma 3.1 can be used to show
that position�X� > position�Ct�C��, increasing the cost for the
cheating party.
Thus, any cheating either increases the cost for the dis-

honest party, or is discovered and provable by the honest
party. Honesty is thus incentive compatible. �

Note that the proof is only for one dimension. It is
thus possible that parties may not be better off in two di-
mensions. This only happens when the space-filling curve
would be a poor heuristic for two-dimensional optimiza-
tion, which we expect to be rare (Bartholdi and Platzman
1982). Although we have assumed no prior information

regarding the location of loads of other parties, there may
be cases where prior information, about other parties load
locations, may permit individual parties to infer more from
the swaps. The corresponding adjustments in the algorithm
and proofs of incentive compatibility are left for future
work.

Appendix F. Proof of Hash Function Claim
Formally, let h be an unkeyed hash function with the fol-

lowing properties (Menezes et al. 1996):
1. Ease of computation: Given h and an input x, h�x� is

easy to compute.
2. Preimage resistance: For essentially all prespecified out-

puts, it is computationally infeasible to find any input,
which hashes to that output, i.e., to find any preimage x′

such that h�x′� = y when given any y for which a corre-
sponding input is not known.
3. Second-preimage resistance: It is computationally infea-

sible to find any second input that has the same output as
any specified input, i.e., given x, to find a second-preimage
x′ �= x such that h�x�= h�x′�.
4. Collision resistance: It is computationally infeasible to

find any two distinct inputs x, x′ which hash to the same
output, i.e., such that h�x�= h�x′�.
Let m be the maximum number of candidate points a

party may have, and k the number of parties. Let Ci be the
candidate set of party i. Denote Hi = !h�ci�"� ∀ ci ∈ Ci. (For-
mally, ci is a unique identifier, such as a tracking number,
for the shipment.) We also pad Hi with hashes of “fake”
identifiers such that �Hi� = k ·m (the reason will be appar-
ent later). (By 2 above, the hashes of fake identifiers will be
indistinguishable from those of real identifiers.) Before exe-
cuting the OROD protocol with the MP constraint among
the k parties, party i broadcast Hi to the other parties.
Suppose party i and party j execute the OROD proto-

col. On receiving the swapped points from party j , party i
computes the hash values of the identifiers of these points
and searches through Hj to see if the received values are
valid (contained in Hj ). If these values are not valid, party i
can conclude that party j is not executing the protocol cor-
rectly and abort the protocol. Simultaneously, party j can
perform the same task to see if party i has behaved mali-
ciously. Each party then generates an h�c� for each of the
points it gave, pads this set with “fake” hashes from Hi (Hj )
to create a set 2i (2j ) of m hashes, and broadcasts the set. All
parties remove those values in 2i (2j ) from the correspond-
ing original Hi (Hj ) to ensure the points are not swapped
when party i (j) executes the protocol with them. Note that
the two parties will perform this check so that they can be
sure multiple shippers will not attempt to pick up the same
shipment, as per the MP constraint described earlier.
Collision resistance ensures that points from party i will

appear only in the set Hi. (Second-preimage resistance
ensures this holds even if a party j gets to see Hi before
sending its own set.) This guarantees that a party can only



Clifton et al.: Approach to Securely Identifying Beneficial Collaboration
Manufacturing & Service Operations Management 10(1), pp. 108–125, © 2008 INFORMS 125

swap its own points; giving away a point received from
another party will be detected. Preimage resistance and
second-preimage resistance of the hash, combined with the
fixed size k ·m of the received Hi, ensure that the hash does
not disclose information. If party j receives Hi in the pro-
tocol, it could simulate Hi by hashing the identifiers of the
points actually received from i and padding to size k · m
with values drawn randomly from the domain of the hash,
allowing proof that nothing is disclosed by Hi (the same
argument holds for each 2i received after each party swaps).
As stated in §2.5, with the MP constraint, each party only
needs to execute OROD with the other parties once. Thus,
the number of “fake” hash values in Hi is sufficient to pad
each 2i for k− 1 rounds if needed.

References
Aggarwal, G., N. Mishra, B. Pinkas. 2004. Secure computation of the

kth-ranked element. Proc. IACR Eurocrypt �EUROCRYPT04�,
Interlaken, Switzerland, 40–55.

Atallah, M. J., H. G. Elmongui, V. Deshpande, L. B. Schwarz. 2003.
Secure supply-chain protocols. IEEE Internat. Conf. E-Commerce.
Newport Beach, CA, 293–302. http://doi.ieeecomputersociety.
org/10.1109/COEC.2003.1210264.

Bandler, J. 2003. How seagoing chemical Haulers may have tried to
divide market. Wall Street J. (February 20) A1.

Bartholdi III, J. J. 2006. Some combinatorial applications of
spacefilling curves. http://www2.isye.gatech.edu/~jjb/mow/
mow.html.

Bartholdi III, J. J., L. K. Platzman. 1982. An O�NlogN� planar trav-
elling salesman heuristic based on spacefilling curves. Oper.
Res. Lett. 1(4) 121–125.

Bartholdi III, J. J., L. K. Platzman. 1988. Heuristics based on space-
filling curves for combinatorial problems in Euclidean space.
Management Sci. 34(3) 157–160.

Diffie, W., M. Hellman. 1976. New directions in cryptography. IEEE
Trans. Inform. Theory IT-22(6) 644–654.

Dodis, Y., S. Halevi, T. Rabin. 2000. A cryptographic solution to a
game theoretic problem. Advances in Cryptology–CRYPTO 2000.
Springer-Verlag, Berlin, Germany.

Goldreich, O. 2004a. General cryptographic protocols. The Founda-
tions of Cryptography, Vol. 2. Cambridge University Press, New
York.

Goldreich, O. 2004b. Encryption schemes. The Foundations of Cryp-
tography, Vol. 2. Cambridge University Press, New York.

Goldreich, O., S. Micali, A. Wigderson. 1987. How to play any men-
tal game—A completeness theorem for protocols with honest
majority. 19th ACM Sympos. Theory Comput. ACM Press, New
York, 218–229.

Ioannidis, I., A. Grama. 2003. An efficient protocol for Yao’s million-
aires’ problem. Proc. Hawaii Internat. Conf. System Sci. �HICSS-
36�, Waikoloa Village, HI, 205–210.

Kalagnanam, J., M. Trumbo, H. S. Lee. 2000. The surplus inven-
tory matching problem in the process industry. Oper. Res. 48(4)
505–516.

Keskinocak, P., S. Tayur. 2001. Quantitative analysis for Internet-
enabled supply chains. Interfaces 31(2) 70–89.

Lin, S., B. W. Kernighan. 1973. An effective heuristic algorithm for
the traveling-salesman problem. Oper. Res. 21(2) 498–516.

Menezes, A. J., P. C. van Oorschot, S. A. Vanstone. 1996. Handbook
of Applied Cryptography. CRC Press, Boca Raton, FL.

Naor, M., B. Pinkas. 1999. Oblivious transfer and polynomial eval-
uation. Proc. Thirty-First Annual ACM Sympos. Theory Comput.
ACM Press, Atlanta, GA, 245–254.

Naor, M., B. Pinkas. 2001. Efficient oblivious transfer protocols.
Proc. SODA 2001 �SIAM Sympos. Discrete Algorithms�, Washing-
ton, D.C.

NIS. 1988. Data encryption standard (DES). Technical Report FIPS
PUB 46-2, National Institutes of Standards and Technology,
Gaithersburg, MD. http://www.itl.nist.gov/fipspubs/fip46-2.
htm.

NIS. 1995. Secure hash standard. Technical Report FIPS PUB 180-1,
National Institutes of Standards and Technology, Gaithersburg,
MD. http://www.itl.nist.gov/fipspubs/fip180-1.htm.

Wilson, R., R. V. Delaney. 2003. 14th Annual State of Logistics
Report©: The case for reconfiguration. National Press Club,
Washington, D.C. http://www.uwa.com/supply_a_005.pdf.

Yao, A. C. 1986. How to generate and exchange secrets. Proc. 27th
IEEE Sympos. Foundations Comput. Sci. IEEE Computer Society
Press, Los Alamitos, CA, 162–167.


