
Disclosure Limitation of Sensitive Rules
�

M
�

. Atallah1 E
�

. Bertino2 A.
�

Elmagarmid3 M
�

. Ibrahim3 V
�

. Verykios4

1CERIAS and Department of Computer Sciences, Purdue University
2Dipartimento di Scienze dell’ Informazione, Universita’ di Milano, Italy

3Department of Computer Sciences, Purdue University
4College of Information Science and Technology, Drexel University

Abstract

Data products (macrodata or tabular data and micro-
dat
�

a or raw data records), are designed to inform public or
bus
�

iness policy, and research or public information. Secur-
i
�
ng these products against unauthorized acces� ses has been

a	 long-term goal of the database security research com-
m
 unity and the government statistical agencies. Solutions
t� o this problem require combining several techniques and
m
 echanisms. Recen� t advances in data mining and machine
l

earning algorithms have, however, increased the security

r� isks one may incur when releasing data for mining from
out� side parties. Issues related to data mining and security
hav
�

e been recognized and investigated only recen� tly.
T
�

his paper, deals with the problem of limiting disclosure
o� f sensitive rules. In particular, it is attempted to selec-
t� ively hide some frequent itemsets from large databases with
as	 little as possible impact on other, non-sensitive frequent
i
�
temsets. Frequent itemsets are sets of items that appear

in
�

the database “frequently enough” and identifying them
is
�

usually the first step toward association/correlation rule
or� sequential pattern mining. Experimental results are pre-
s� ented along with some theoretical issues related to this
pr� oblem.

1 Introduction

S
�

ecuring data against unauthorized accesses has been a
l
�
ong-term goal of the database security research commu-

ni� ty and the government statistical agencies. Solutions to
s� uch a problem require combining several techniques and
m� echanisms. In particular, it is well known that simply re-
s� tricting access to sensitiv

�
e data does not ensure full data

p� rotection. It may, for example, be the case that sensitive,
�
P
�

ortions of this work were supported by sponsors of the Center for
Education and Research in Information Assurance and Security.

or� “high” data items can be inferred from non-sensitive, or
“low” data, through some inference process based on some
know
�

ledge the user has. Such a problem, known as the
“inference problem”, has been widely investigated [9, 5],
a� nd possible solutions have been identified. In general, all
t

hose approaches address the problem of how to prevent dis-

c! losure of sensitive data through the combination of known
inference rules with non-sensitive data [3]. Examples of
inference rules are deductive rules and functional depen-
de
"

ncies. Those approaches, however, do not deal with the
probl� em of how to prevent the discovery of the inference
rules themselves. In other words, rules are not considered
a� s sensitive “knowledge”.

R
#

ecent advances in data mining techniques and related
ap� plications [6] have, however, increased the security risks
one� may incur when releasing data. The main goal of such
t

echniques is to enable the rapid and efficient discovery of

hi
$

dden intensional knowledge from a, possibly very large,
s� et of data items. The use of such techniques would therefore
e% nable users to easily acquire, not only knowledge that could
be
&

used to infer sensitive data, but also sensitive knowledge.
N
'

ote that knowledge usually acquired through data min-
i
�
ng techniques cannot be considered as absolute. It can be

rather characterized as probabilistic knowledge. However,
e% ven such probabilistic knowledge may provide sensitive
information to users [3].

Issues related to data mining and security have been rec-
ogni� zed and investigated only recen% tly. So, only a few
a� pproaches have been devised till now. These approaches
a� re discussed in Section 2. However, there is still no com-
pre� hensive view of those issues and of the possible spectrum
of� solutions. There is, for example, the need of analyzing
s� pecific data mining techniques in the light of the security
probl� em which was mentioned previously.

In
(

this paper, a contribution is made towards addressing
s� uch a need in the context of a specific type of knowledge.
S
�

uch type of knowledge, known as association rules, con-
s� ists of a set of statements of the form “90% of air-force

b
&

asis having super-secret plane A, also have helicopters of
t

ype B”. An association rule is usually characterized by two

m� easures, the support and the confidence. In general, al-
gori) thms for the discovery of association rules detect only
rul* es whose support is higher than a minimum threshold
v+ alue. We refer to such rules as “significant rules”. The
probl� em that we deal with in this paper is how to modify a
give) n database so that the support of a given set of sensitive
rul* es, mined from the database, decreases below the min-
i
�
mum support value. We would like, however, to remark

th

at our approach is a simple building block that by itself
doe
"

s not provide a comprehensive solution to the problem
o� f data mining and security. However, it can be considered
a� s a basic ingredient of such a comprehensive solution.

Th
,

e remainder of this paper is organized as follows. First
w- e review current approaches addressing data mining and
s� ecurity. We then present a formulation of our problem and
s� how that the optimal solution to it is NP-hard. We then
p� resent some heuristics. Finally, we outline further work.

2 Related Work

S
�

ecurity and privacy threats arising from the use of data
mining techniques have been first pointed out in an early
p� aper by O’ Leary [8] and recently in the seminal paper by
Clif
.

ton and Marks [4]. The authors in [4] outline possible
s� olutions to prevent data mining of significant knowledge,
t

hat include releasing only subsets of the source database,

fuz
/

zyfying the source database, and augmenting the source
da
"

tabase. They also point out a “research agenda” that
i
�
ncludes several issues to be investigated. Among those

i
�
ssues, a relevant one to our approach, is the analysis of

m� ining algorithms, which gives the criteria that must be
us0 ed by the algorithm in order to decide whether or not rules
a� re relevant, so that one can prevent the mining of sensitive
rul* es. The paper of Clifton and Marks, however, does not
a� nalyze any specific data mining technique or algorithm,
w- hereas this paper deals with a specific technique.

A
1

recent paper by Clifton [3] presents an interesting ap-
proa� ch to the problem of data mining and security. The ap-
proa� ch is based on releasing a sample of the source database
s� o that the rules mined from the released sample are not
s� ignificant. A main result of the paper is to show how to
de
"

termine the right sample size by using lower bounds from
pa� ttern recognition. The proposed approach is independent
from any specific data mining technique. The main differ-
en% ce between such approach and ours is that we aim at a
fi
2

ner tuning of the intensional knowledge to be released. In
ot� her words, our aim is on how to reduce the significance of
a� given rule, or sets of rules, by possibly leaving unaltered
t

he significance of the other rules, or by minimally changing

it.
�

By contrast, the approach by Clifton aims at estimating
t

he error which is introduced on the significance of the rules

by
&

reducing the sample sizes. It is worth noting, however,
t

hat the two approaches can be used together as part of a

c! omprehensive environment supporting the security admin-
is
�

tration.
I
(
n addition to work dealing specifically with the issue

of� data mining and security, it is also important to mention
w- ork in the area of security for statistical databases [10].
S
�

uch work deals with the problem of limiting disclosure
of� individual data items and at the same time ensures that
co! rrect statistics can be derived from the released database.
Th
,

e main difference between the work on security for sta-
t

istical databases and the work presented in this paper, or

more generally in the area of data mining, is that in the latter
t

wo cases, even if individual data items are allowed to be di-

rectly accessed, the intensional knowledge which is derived
c! an be controlled. However, techniques used in statisti-
cal! databases, such as data fuzzyfication or data swapping,
c! ould also be used in the other context.

3
3

Association Rules and Sanitization

I
(
n this section, the notion of association rules is precisely

de
"

fined and a formulation of the problem is given. It is then
prove� n that the problem of finding an optimal sanitization of
t

he source database is NP-Hard. This is done for a number

of� (progressively more realistic) notions of what it means
t

o “sanitize”. The proofs are based on reductions of the

p� roblem addressed in this paper to the Hitting-Set problem.

3.
4

1 The Problem

The problem of association rule mining was initiallypre-
s� ented in [1]. The authors in [2] extended and formalized
t

he problem as follows: Let 57698;: 1 <>= 2?A@CBCBDBFEFGIHKJ be

&
a set of

literals, called items. Let L b
&

e a database of transactions,
w- here each transaction M is an itemset such that NPORQ . As-
s� ociated with each transaction is a unique identifier, called
its
�

TID. A set of items SUTRV is
�

called an ite
�

mset. A trans-
a� ction W c� ontains an� itemset X , iY f Z\[^] . An a	 ssociation
ru� le is

�
an implication of the form _a`cb wh- ere dfehg ,Yi\jlk
, aY nd monqpsrut . The rule vfwyx hol

$
ds in the

s� et of transactions z w- ith c� onfidence { if
�P| }�~����� ���s�h� wh- ere� ���

is the number of occurrences of the set of items � in
t

he set of transactions � . The rule �a�f� has s� upport �

if � �������� ��� wh- ere � is the plurality of the transaction set�
.
In this paper we focus on the discovery of large/frequent

ite
�

msets, in order to keep the discussion simple. These
i
�
temsets have greater support than the minimum support

s� pecified. This restriction implies that the only way to hide
a� rule is by decreasing the support of its corresponding large
i
�
temset. Exhaustive search of frequent sets is obviously

infeasible for all but small itemsets: the search space of

2

pot� ential frequent itemsets increases exponentially with the
num� ber of items in the transactions. A more efficient method
for
/

the discovery of frequent itemsets can be based on the
f
/
ollowing iterative procedure: in each pass the algorithm

s� tarts with a s� eed s� et of large itemsets, called c� andidate
i
�
temsets. The support of these itemsets is computed during

t

he pass over the data. At the end of the pass, it is determined

w- hich of the candidate itemsets are actually large, and they
be
&

come the seed for the next phase. This process continues
unt0 il no new large itemsets are found. In the first pass,
t

he support of individual itemsets is counted in order to be

d
"

etermined which of them are large.
The specific problem we address can be stated as follows.

Let � t

he source database, let be

&
a set of significant

as� sociation rules that are mined from ¡ , aY nd let ¢¤£ b
&

eas et
of� rules in ¥ . How can we transform ¦ into a database §©̈
s� o that all (or the maximum number of) rules in ª c! an still
be
&

mined from «©¬ but
&

for the rules in ­¤® . ¯©° t hen becomes
th

e r� eleased database. Therefore, our problem is to reduce
t

he support of the rules in ±¤² be

&
low the given threshold.

W
³

e refer to such a transformation as s� anitization of�o´ . In
a� ddition to preserve as much knowledge as possible, the
t

ransformation we seek, should also be achieved at as much

l
�
ow cost as possible.

3.
4

2 Optimal Sanitization Is NP-Hard

Let µ be
&

the set of large itemsets that are “good” in the
s� ense that we do not wish to make them small. Let ¶ be

&
t

he set of large itemsets that are “bad”, i.e., we want to

make them small. These two goals can be incompatible,
s� o the problems we formulate below are based on the no-
tio

n that we want to make all of · ’s itemsets small, while
m� aking as few as possible of ¸ ’s itemsets small. We prove
t

he NP-hardness of three optimization problems based on

th

is notion. The first (called PROBLEM 1) is really just a
“warmup” for PROBLEM 2 because its framework is some-
w- hat unrealistic: It assumes that we can remove support for
t

he various individual items independently of one another.

It
(

s proof is simple and serves as an easy introduction to the
(m
¹

ore elaborate) reduction needed for proving PROBLEM
2
º

(whose framework is realistic – more on this below). Fi-
nally, we prove the NP-hardness of PROBLEM 3 which is
t

he problem that we focus on this paper. More specifically,

in PROBLEM 3 we can modify a transaction by deleting
s� ome items from it.

PR
»

OBLEM 1: Given two sets ¼ an� d ½ of� subsets of a
fi
2

nite set ¾ ,Y such that no element of ¿ is a subset of any
el% ement of À a� nd no element of Á is a subset of any element
of�ÃÂ ,Y find a set of elements Ä in Å s� uch that every subset inÆ

c! ontains at least one of those elements while minimizing
t

he number of subsets of Ç t

hat contain elements from È .

No
É

te: The idea is that by removing support from the

items in Ê we- make all of Ë ’s itemsets small, while affecting
as� few of Ì ’s itemsets as possible.

T
,

he framework considered next (for PROBLEM 2 be-
l
�
ow) is more realistic, in that we now weaken the support

f
/
or itemsets in Í by

&
deleting some transactions from the

da
"

tabase. Of course there are many ways of doing this,
s� ome of which have more impact on Î t

han others. The

g) oal is to do it in a way that minimizes this impact on Ï .
No
É

te: In
(

our formulation of PROBLEM 2 the notion of
“large” is stated in terms of the actual number of transactions
co! ntaining the itemset (rather than as a percentage). There
is no loss of generality in doing so, becau% se the number
o� f transactions in the database can easily be kept constant;
w- henever we delete a transaction we can keep the total size
o� f the database constant by replacing the deleted transaction
w- ith another transaction that has no effect on either Ð or�ÒÑ
(
¹
for example the new transaction could contain only items

t

hat have very small support in the database, possibly zero

s� upport, i.e., “new” items). We henceforth call Ó t

he thresh-

o� ld for “largeness”, i.e., an itemset is considered large iff
t

here are at least Ô t

ransactions containing it.

PROBLEM 2: We are given a set Õ of� items, an integerÖ
,Y a database × o� f transactions (each of which is a subset

of�ÙØ),
Ú

sets Û an� d Ü each% of which contains a collection of
s� ubsets of Ý (

¹
the “itemsets”). Each itemset in Þ or� in ß

ha
$

s support àhá in
�ãâ

. The problem is to compute a subsetä©å
of�Òæ s� uch that deleting ç©è from

/ é
r* esults in a database

w- here every itemset in ê ha
$

s support ëíì ,Y and the number
o� f itemsets in î t

hat have support ï7ð i

�
s minimized.

P
»

ROBLEM 3: We are given a set ñ of� items, an integer ò ,Y
a� database ó o� f transactions (each of which is a subset of ô),

Ú
se� ts õ an� d ö each% of which contains a collection of subsets
of�Ò÷ (

¹
the “itemsets”). Each itemset in ø or� in ù has supportú7û

in ü . What we are allowed to do is at a finer granularity
t

han in PROBLEM 2: We can now individually modify a

tr

ansaction instead of deleting it, by deleting some items
f
/
rom it. The problem is then to modify some transactions

in
�Ãý

s� uch that in the resulting database every itemset in þ
ha
$

s support ÿ�� ,Y and the number of itemsets in � t

hat have

s� upport ��� i
�
s minimized.

T
,

he proofs of the NP-hardness of PROBLEM 1, 2 and
3
�

are based on reductions from the NP-hard problem of
HIT
�

TING SET, which we review next.
HITTING SET (page 222 of the book by Garey and

J
�
ohnson on NP-completeness [7]): Given a set 	 of� subsets

of� a finite set
 ,Y find a smallest subset �
� of��� s� uch that
ev% ery subset in � co! ntains at least one element in �
� . The
p� roblem remains NP-hard even if every subset in � c! onsists
of� no more than 2 elements of � .

Proposition 1. PROBLEM 1 is NP-hard.
P
�

roof. G
�

iven an instance of HITTING SET, here is how
t

o create an instance of PROBLEM 1 such that a polynomial

t

ime solution to the latter implies a polynomial time solution

3
�

to

the former. Let ����� 1 �������! #"
$ for HITTING SET. Then
for
/

PROBLEM 1 here is what % ,Y
& ,Y(' look like (in terms
of� the) an� d * o� f the HITTING SET problem instance):+-,/.10325476

1 8 , (Y i.e., 9-:<; 1 =�>�>�>@?#A(B@CED 1 F)Ú

G/H<IJI
1 K#LEM 1 NPORQ 2 S@TVU 1 WYX�Z[Z\Z\]_^�`(a#bdc 1 eJe

f<g/h
,Y (hence ikj 1 does not appear anywhere in l)

Ú
The m th

at solves the instance of PROBLEM 1 is equal

to

the n
o th

at solves the instance of HITTING SET. p
Th
q

eorem 1. PRO
r

BLEM 2 is NP-hard.
P
�

roof. A
1

reduction from HITTING SET. Let s be
&

t
1 u�v�v�v!w#x
y , aY nd z b

&
e the collection of subsets of { , fY or

H
�

ITTING SET. To solve HITTING SET one must find a
m� inimum subset |
} of��~ s� uch that every � in � c! ontains at
l
�
east one element of �
� . Without loss of generality, we can

a� ssume that � doe
"

s not contain a redundant element, i.e., no
pa� ir � ,Y�� o� f elements from � is

�
such that “ ���/� c! ontains�

” implies “ � c! ontains � ” (otherwise � i
�
s redundant and we

c! an completely ignore it when solving the problem). Also,
b
&

ecause HITTING SET remains NP-hard if every � in �
c! onsists of no more than two elements, we assume that this
is the case. We can also assume that no � in � c! onsists of
a� single element, because such an element surely has to be
pa� rt of �
� (

¹
i.e., the problem remains NP-hard if we assume

th

at � i
�
s a set of unordered pairs of elements of �).

Ú
We next

e% xplain how the instance of PROBLEM 2 is created. First
w- e introduce some notation.

We
³

use ������� to

denote the set of items that appear with �
in one or more in ¡ (i

¹
ncluding ¢ itself), that is, £�¤�¥�¦¨§�©Rª :«­¬<®

or�°¯²±´³¶µP·E¸º¹7» . (Note that no ¼�½¿¾ÁÀ prope� rly contains
a� nother ÂÄÃÆÅÈÇ b

&
ecause otherwise É or��Ê is redundant.)

We
³

use ËÍÌ�Î�Ï t

o denote Ð�Ñ�Ò�Ó(Ô1Õ²Ök× 1 Ø .

T
,

he symbols Ù ,Y�Ú ,YÜÛ ,Y\Ý ,Y\Þ in what follows are as in the
d
"

efinition of PROBLEM 2 that was given earlier in this
s� ection. The instance of PROBLEM 2, which can easily be
c! reated in polynomial time, has the following parameters:ß-à/á1â3ã5ä7å

1 æ ,Y (i.e., the items are 1 ç 2 è�é�é�é´ê@ë(ì#íEî 1)ïñð
2
º

, i.e., two occurrences are needed to be considered
“large”.ò/ó<ô²õÄö

1 ÷_ø#ù�ú 2 ûRü�ý[ý\ý\þ@ÿ�������� ,Y (note that item n+1 appears
nowhere in �)

Ú

�
	���
��������
1 � : �������

The database � c! onsists of 2 t

ransactions:

!#"%$�&('
1)+*-,/. 1 021�3�4 2º6527986: 2º6;+<>=?=>=+@BA(CED�F+G-H/IEJ�K�LNM

O
O

bserve that each itemset P�Q-RTSVUBW�X 1 Y in
�
Z

ha
$

s support
of� precisely 2 (from transactions [/\E]_^ an� d `/acbVd . Each itemsete�f�gih

in
�kj

a� lso has support of precisely 2 (from transactionsl�m�nio
an� d p/qEr_s).Ú

A solution to PROBLEM 2 does not delete an t�u�viw tr

ans-
act� ion because that would decrease support0 for itemset x�y�zi{
in | w- ithout decreasing support for any itemset in } (be

¹
-

c! ause the latter contain item ~�� 1 whereas �����i� doe
"

s not).
I
(
f the solution deletes transaction �/�E�_� th

en:

1. it decreases the support of every itemset of B that con-
ta

ins i from 2 to 1, i.e., it makes that itemset small; this
c! orresponds to a solution in HITTING SET that selects�

to

be in ��� .
2.
º

it decreases the support of itemset �����i� in � from 2 to 1,
i.
�

e., it makes the itemset small; minimizing the number
o� f times this happens in the solution to PROBLEM 2
c! orresponds to minimizing the size of ��� i

�
n HITTING

SE
�

T.

T
,

he above observations imply that, from the set of trans-
a� ctions deleted by the solution to PROBLEM 2, we can
obt� ain the ��� th

at solves HITTING SET. �

Theorem 2. PROBLEM 3 is NP-hard.
P
�

roof. A
1

reduction from HITTING SET. Let � be
&�

1 �>�?�>�9�B��� , aY nd � b
&

e the collection of subsets of � , fY or
H
�

ITTING SET. To solve HITTING SET one must find a
m� inimum subset �¡ of�£¢ s� uch that every ¤ in

�¦¥
c! ontains

at� least one element of §�¨ . As in the proof of Theorem 1,©
doe
"

s not contain a redundant element, and every ª in «
c! onsists of two elements. We next explain how the instance
of� PROBLEM 3 is created. The symbols ¬6­T®>¯-°²±�³µ´�¶ in
w- hat follows are as in the definition of PROBLEM 3 that
w- e gave earlier.

·¹¸»º½¼¿¾�À�Á
1 Â?Ã?Ã>Ã�Ä 3�6Å�ÆÈÇ

That is, the items are É 1 Ê 2 Ë>Ì?Ì?Ì�Í 4 Î�Ï . To improve the
readability of our proof, we use the notation # Ð for itemÑÓÒ�Ô , &YÖÕ for item 2 ×ÙØ�Ú , aY nd $ Û for item 3 ÜÙÝ�Þ , 1Yàßâáäãæå .

As in the proof of PROBLEM 2, we use ç�è�éiê t

o denote

th

e set of items that appear with ë in one or more ì in í
(i
¹

ncluding î itself), that is,

ï(ðEñ_òôó
õ+ö
: ÷�øúù or�üû�ý9þ�ÿ��������	�

(N
¹

ote that no
���
�� prope� rly contains another ������� b
&

ecause
ot� herwise � or��� is redundant.)

We
³

use ����� � t

o denote !�"�#�$ as� well as all #% , &Y'& ,aY nd $(

for
/

which)�*,+�-�.�/ ,Y i.e.,

0�1�2 35476�8�9�:<;>= #
?A@

: B�C,D�E�F�GIHAJ>K &
LNM

: O�P,Q�R�S�TIUAV>W $
XZY

: []\�^`_�a bdc	e
Fo
f

r every gihkjAl<mon�prq�s we- use t�u�vxw t

o denote the pairy

#
z|{<}

#
zZ~��

an� d we use � t

o denote the set of all such pairs, i.e.,�����������x�

: ���,��� .

4

For every ����������������� we- use �¡�¢x£ t

o denote¤

# ¥�¦ #§	¨ &Lª©<«
&
L­¬|®

an� d we use ¯ t

o denote the set of all such°�±�²x³ ’s, i.e., 7́µk¶A·�̧�¹xº : »½¼�¾�¿ .

Fo
f

r every ÀÂÁÄÃAÅ<ÆoÇ�ÈÊÉÌË we- use ÍÏÎ�ÐÒÑ t

o denoteÓ

# Ô�Õ #Ö	× &LªØ<Ù
&
L­ÚÜÛ

$
X|Ý<Þ

$
XZßAà

an� d we use á t

o denote the set of

al� l such âÏã�äxå ’s, i.e., æèç7éëêÏì�íxî : ï�ð�ñ�ò .
T
,

he other parameters of the instance of PROBLEM 3,
w- hich can easily be created in polynomial time, are de-
sc� ribed next.óõô

2
º

, i.e., two occurrences are needed to be considered
“large”.

The set ö now consists of the ÷�ø�ù�ú ’s as well as the û�ü�ýxþ ’s,ÿ������ ’s, and ����	�
 ’s:

�
�������
1 ������� 2º������ � ��!#"�$�%�&('*),+.-,/103254

6�7
898�:<;>=9?
@<A #B�C : DFEHGJILKNMPORQLS

Th
,

e database T c! onsists of 2 U t

ransactions:

VXWZYF[�\
1]�^<_a` 1 b�c�d�e 2 f�gHh�i 2 j�k�l l�l�m#n�o�p�q�r<sat�u�v�wLx

O
O

bserve that each itemset yFzH{J|9} #zL~<� #z���� in
���

ha
$

s sup-
port� of precisely 2 (from transactions �a����� an� d �����9�)Ú . Each
ite
�

mset ���J��� in
���

a� lso has support of precisely 2 (from trans-
a� ctions ���J��� an� d �a�����).Ú Itemsets � # �<� # �¡ ,Y£¢ # ¤#¥ #¦�§ &L©¨�ª

&
L¬«�­

,Y
an� d ® # ¯#° #±�² &L©³�´

&
L¬µL¶

$
XL·<¸

$
X�¹�º

in » each% have support0 2 (from
t

ransactions ¼�½J¾�¿ an� d ÀaÁ�Â9Ã).Ú

A solution to PROBLEM 3 does not modify an Ä�ÅJÆ�Ç
t

ransaction because that would decrease support0 for itemsetÈ�ÉJÊ�Ë

in Ì w- ithout decreasing support for any itemset in Í .
N
'

ow suppose the solution modifies a transaction Î�Ï�Ð�Ñ . The
s� olution surely does not remove a &Ò or� $Ó from transactionÔ�Õ�Ö�× b

&
ecause that would decrease support0 for itemsets of Ø

w- ithout decreasing support for any itemset in Ù . We also
c! laim that the solution does not decrease support for Ú by

&
re* moving a #Û from

/
transaction Ü�Ý�Þ�ß ,Y i.e., that à�á�â�ã is

�
always

m� odified by removing from it item(s) in ä 1 å�æ æ�æHç#è£é . To see
th

at this is so, assume to the contrary that ê�ëJì�í w- as modified
by
&

removing a #î from
/

it (we call this a “type 1” modifica-
t

ion). We now show that this leads to a contradiction.

Comment. O
O

bserve that deleting ï (whe
¹

re ðXñòôó)Ú fromõ�ö�÷�ø can! always be replaced by deleting ù from úaû�ü�ý . This
is because, although both have the same effect on þ (

¹
i.e.,

w- eakening ÿ������)Ú , deleting � w- eakens ever� y �	��
 wh- ere ��
� w- hereas deleting ������ w- eakens only ��������� # �� #!#"%$'& .
Th
,

e deletion of #(from
/

transaction)+*�,�- w- eakens in .
t

he (at least three) itemsets /�02143 ,Y�576�8:9 ,Y4;=<�>:? wh- ere @�ACB .

O
O

n the other hand, modifying D+E�F�G by
&

removing from it
a� n item HJILK 1 MONPNONRQTSVU (a

¹
“type 2” modification) rather

t

han removing a #W ,Y would have the same effect on X but

&
w- ould weaken only Y[Z2\^] in _ . This implies that globally

replacing, in the solution, all of the type 1 modifications by
t

he corresponding type 2 modifications would not make a

d
"

ifference for ` but
&

would decrease the number of itemsets
of�ba th

at are affected, implying that the solution could not

ha
$

ve been optimal.
W
³

e henceforth assume that the solution contains only
t

ype 2 modifications to transactions. A type 2 modification

th

at an item from transaction c+d�e�f c! orresponds to a solution
i
�
n HITTING SET that selects g to

be in hVi . It also decreases

t

he support of itemset j�k�l�m in

�on
f
/
rom 2 to 1, i.e., it makes the

itemset small; minimizing the number of times this happens
in the solution to PROBLEM 3 corresponds to minimizing
th

e size of pVq in HITTING SET.
T
,

he above observations imply that, from the set of trans-
a� ctions modified by the solution to PROBLEM 3, we can
obt� ain the rVs th

at solves HITTING SET. t

4 Heuristic Approach

I
(
n this section, we describe the heuristic approach that

w- e propose to solve the Optimal Sanitization problem. Be-
f
/
ore the algorithm is presented some preliminary definitions

ar� e given and the data structures needed for the algorithm
ar� e described with some examples where necessary. Some
c! omplexity analysis results follow the formal presentation
of� the algorithm as well as experimental results from the
pe� rformance evaluation of the proposed heuristic are given.

4.1 Preliminary Definitions

I
(
n order to better illustrate how the algorithm works, we

r* epresent all large itemsets in the database in terms of a
gra) ph, referred to as the i

�
temset graph. In the remainder of

t

he discussion, we use the term “ u -itemset”, where v is an

integer, with the meaning of an itemset whose cardinality isw
.

Definition 4.1 (
¹
Itemset Graph.) L

Ú
et x�y{z be

&
a set of large

itemsets. An Itemset Graph over |�}{~ is defined as follows:
(i
¹

) there is a node for each% itemset in ���{� ; and (ii) there is
a� n edge from the node representing itemset �^� t

o the node

representing itemset ��� , iY f �^������� .
An itemset graph is the result of a breadth-first search in

t

he space of potentially large itemsets. Each node, except

from the itemset, contains other information that we will
i
�
ntroduce later on. Assuming the existence of a database

l
�
ike the one shown in Table 1a, then the Figure 1 shows the

gra) ph for the example database for the large itemsets shown
i
�
n Table 1b. There is an ordering imposed by the itemset

g) raph in each large itemset. This ordering implies the level
o� f a large itemset in the itemset graph.

5
�

TI
�

D Ite
�

ms
T1 ABCD
T2 ABC
T3
�

ACD
�

Large Itemsets Support
AB
�

2
AC
�

3
AD 2
BC 2
CD 2
ABC
�

2
ACD 2

(a) (b)

T
�
able 1. (a) The example itemset database;

(b
�

) the large itemsets (1-itemsets are not in-
cl� uded) from the example database along
with their support.

Definition 4.2 (
¹
Level of an itemset.)

Ú
The level of an item-

se� t � is the length of the path from a large 1-itemset (reach-
a� ble from �) t

Ú
o � .

D
�

efinition 4.3 (
¹
Le
�

vel of an itemset graph.)
Ú

The level of
an� itemset graph � i

�
s the length of the maximum path from

an� y large 1-itemset to any other large itemset reachable from
th

is large 1-itemset.

O
O

f particular importance for the algorithm is the so-called
“pivotal” itemsets.

Definition 4.4 (
¹
Pivotal itemset.)

Ú
A pivotal itemset is a

large � -itemset in the � -th level of the itemset graph.

T
,

his implies that the level of a pivotal itemset and the
n� umber of items in this itemset must be the same. The
pi� votal itemset is the itemset that a graph node represents.
Th
,

e itemsets inside the curly braces in the itemset graph are
t

he additional information maintained in each node.

The straight lines in Figure 1 denote dependencies among
t

he large itemsets in the sense that two connected item-

s� ets (through one line or a path) are related either by the
“provides support to” or “is supported from” binary rela-
t

ionships. These binary relationships are formally defined

be
&

low.

Definition 4.5 (
¹
“Provides support to” relationship.) A

Ú
large itemset � provi� des support to a large itemset � iff ¢¡C£

.

D
�

efinition 4.6 (
¹
“Is supported by” relationship.) A

Ú
large

ite
�

mset ¤ i
�
s supported by a large itemset ¥ if

�
f ¦¨§ª© .

T
,

he shortest path connecting the two itemset has length
1. When the relationships above apply to pivotal itemsets
co! nnected by a single line, we use the term “parent” and
“child” to represent them.

Th
,

e algorithm (as we will see below) performs a greedy
s� earch in the itemset graph. Of major importance in this

AB
« T1: {ABC}
¬
T2: {ABC}
¬

T1: {AB, AC’, AD}
T2: {AB, AC’}
¬
T3: {AC’, AD}
¬

T1: {BC, AC’, CD}
¬
T2: {BC, AC’}
T3: {AC’, CD}

BC T1: {ABC}
T2: {ABC}

T1: {ABC, ACD}
T2: {ABC}
¬
T3: {ACD}
¬AC T1: {ACD}

T3: {ACD}

ABC
«

ACD

B C
­

A
« T1: {AB, BC}

¬
T2: {AB, BC}

D

CD
­ AD

«

T1
T2

T1
¬
T3

T1: {CD, AD}
T3: {CD, AD}
¬

T1: {ACD}
¬
T3: {ACD}
¬

Figure 1. The graph of large itemsets.

s� earch is the “prime” and “non-prime” itemset that we define
be
&

low.

Definition 4.7 (
¹
Prime itemset.) L

Ú
et ® be

&
a pivotal itemset,

an� d ¯ be
&

a child of ° . ± is a prime itemset for ² , iY f ³ ’s
s� upport does not fall under the minimum support threshold
gi) ven that ´ ’s support is decremented by one. Prime item-
s� ets are not defined for pivotal itemsets of size equal to the
l
�
evel of the itemset graph.

Definition 4.8 (
¹
No
µ

n-prime itemset.) L
Ú

et ¶ be
&

a pivotal
ite
�

mset, and · be
&

a child of ¸ . ¹ is a non-prime itemset if
i
�
t is not a prime itemset. Non-prime itemsets are not defined

for
/

pivotal itemsets of size equal to the level of the itemset
gra) ph.

For each pivotal itemset, the itemset graph maintains the
t

ransactions supporting this itemset. For each% pair of pivotal

itemset and transaction, the itemset graph also maintains a
list with the “prime” and “non-prime” itemsets.

4.2 The Sanitization Heuristic

T
,

he heuristic that we propose relies heavily upon the
s� tructure of the itemset graph. The input to the algorithm is
a� set of large itemsets that we need to hide. The algorithm
first sorts these itemsets based on their support, and then tries
t

o hide all of them, in an one-by-one fashion. After each

pa� ss, the algorithm keeps track of the newly hidden large
i
�
temsets, and performs a search into the list of remaining

l
�
arge itemsets that have not yet been hidden. If there is an

ite
�

mset in the list that it becomes hidden after the current
s� tep, the algorithm removes this itemset from the list of
re* maining itemsets. Basically, the algorithm goes through
th

e list of itemsets, and applies a bottom-up followed by a

6
º

1. HI = itemset to be hidden
2. k = size of HI
3. T = set of transactions supporting HI
4. while HI is not hidden
4a. HI’ = HI
4b. for level k downto 2 do
4ba. HI’ = parent of HI’ with maximum support
4bb. end-for
4c. Ts = transaction in T supporting HI’ that

affects the min. number of 2-itemsets
4d. set HI’ to 0 in Ts
4e. propagate results forward
4f. end-while

Figure 2. Sketch of the Building Block of the
A
»

lgorithm

t

op-down traversal of the itemset graph. In each traversal,

t

he support of the currently scanned large itemset decreases

by
&

one.
F
f

igure 2 illustrates the building block for the proposed
he
$

uristic approach. The algorithm takes as input the large
i
�
temset to be hidden. It then performs a greedy search

t

hrough the ancestors of this itemset, selecting at each% level

the

parent with the maximum support and setting the selected
p� arent as the new itemset that needs to be hidden (step
4ba). At the end of this process, a large 1-itemset has been
s� elected. The algorithm searches through the common list
of� transactions that support both the selected 1-itemset and
th

e initial large itemset to be hidden in order to identify the
t

ransaction that affects the minimum number of 2-itemsets.

A
1

fter this transaction is identified, then it deletes the selected
1-itemset from the identified transaction (step 4d). In the
s� equel, it propagates the results of this modification to the
g) raph of large itemsets.

I
(
n order to make the presentation simple, we illustrate our

a� pproach through an example. Suppose that we are given
a� database like the one shown in Table 1a. Suppose also
t

hat the minimum support of large itemsets (requested by

th

e user) is 66 ¼ 6%
º

or in absolute numbers, 2 transactions per
i
�
temset. The number of large itemsets (excluding the ones

w- ith one item) are shown in Table 1b. Our goal is to hide
a� specific itemset, also provided as input. Hiding a large
itemset means to decrease its support to a degree that cannot
b
&

e considered as a favorable discovery by the competitors.
Deciding upon the specific support threshold to use for rule
hi
$

ding, in such a way that the outside parties will not be
a� ble to discover the sensitive rules, is an important issue
t

hat must carefully be considered, but we do not deal with

it
�

at this point. For this reason we assume that we are asked
t

o lower the support of a given itemset by a certain amount

t

hat is also provided as an input.

S
�

uppose that the itemset ½¿¾ÁÀ has to be hidden. Sup-

Modifications N
Â

umber of Remaining Large Itemsets
T1
�

-A 3
T1
�

-B 4
Ã

T1-C 3
T2-A (algorithm selection) 5
T2
�

-B 4
Ã

T2
�

-C (algorithm selection) 5

Table 2. Number of remaining large itemsets
f
Ä
or each one of the minimally modification ac-

t
Å
ions.

pos� e also that an itemset is hidden if its support is below 2.
T
,

herefore, the goal is to remove the support of this itemset
from
/

at least one of the transactions that provide support
to

this itemset (T1 or T2). As the Table 1b , there is a
m� aximum of 6 itemsets in this case that may be maintained.
A
1

lso, we should notice that for this algorithm, it does not
m� atter whether a certain itemset loses support as long as it
i
�
s kept above the minimum specified support.

Æ¿ÇÁÈ
is a large 3-itemset. The algorithm first looks at all

t

he subsets of size 2 of É%ÊÁË . For each 2-itemset, it checks

t

he support. For this case Ì¿Í an� d ÎÁÏ have support 2 andÐ¿Ñ

ha
$

s support 3. At this stage, it selects to concentrate on
th

at large 2-itemset that will not be affected by modifying
i
�
ts support by one. For this reason, it will select itemset Ò¿Ó .

In
(

order to decrease the support of Ô¿ÕÁÖ t

hrough ×%Ø , tY he

a� lgorithm can only modify the support of Ù¿Ú in
�

transactions
T1 and T2, but not in T3. This is because, ÛPÜ 1 Ý�Þ 2 ß is the
intersection of the transactions supporting both à¿áÁâ an� dã¿ä

. From these two transactions, it will select the one
t

hat affects the minimum number of large-itemsets. In our

cas! e, T2 will be selected, since its list contains only one
non-pri� me itemset, as opposed to the transaction T1, whose
l
�
ist contain two non-prime itemsets. In order for itemsetå¿æ

t

o lose support from the transaction T2, either ç or�Lè

must be turned into a 0 in T2. Since the lists of supported
ite
�

msets by the transaction T2 for both é an� d ê c! ontain the
s� ame number of prime and non-prime itemsets, the item to
be
&

modified can be selected at random.

Table 2 shows the number of remaining large itemsets
a� fter modifying a minimal number of items in the original
da
"

tabase. The semantics of the symbols listed in the table is
a� s follows: TI-J means turn to 0 in transaction TI the item
J
ë
. The table lists all possible modifications. For each modi-

fi
2

cation, the table reports the large itemsets remaining after
t

he modification. Modifications identified by our algorithm

a� re explicitly marked in the table. From the table, it is easy
t

o see that our algorithmic approach has the best results for

t

he example at hand.

7
ì

LI LI (hidden) LI (Sanit.) LI (Cyclic)
36 1 31 30
36 1 32 30
36 1 31 28
36 1 28 24
36 1 31 28
36 2 31 30
36 2 31 30
36 2 28 24
36 2 28 22

T
�
able 3. Comparison between the number of

large itemsets (LI) remaining after the appli-
c� ation of the proposed Sanitization heuristic
aí nd the Cyclic algorithm.

4.
î

3 Comparison Results

In order to evaluate the efficiency of the proposed heuris-
tic

, we have developed another algorithm, which we call it,
th

e Cyclic algorithm. Just like the Sanitization heuristic,
t

his algorithm starts off with a reference to a particular node

i
�
n the itemset graph that needs to be hidden. To see how

th

is approach works, let a large itemset ï be
&

made up of the
ite
�

ms ð2ñ�ò 1 óõô�ö 2 ÷OøPøOøTùõú�ûPüOý a� nd let the transactions that support
it
�

be þ ÿ � 1 � ��� 2 ���	�	��
 ���	
�� . In order to hide � ,Y the algorithm
fi
2

rst tries to hide the large 1-itemset ��� 1 from ��� 1 . Then the
s� upport of � is checked. If it is still above the threshold,
th

en in the next iteration the large 1-itemset ��� 2 w- ill be hid-
de
"

n from ��� 2 a� nds oo n. After � i
�
terations, the algorithm

goe) s back to trying to hide ���� 1 ! ag� ain. After " ite
�

rations,
th

e Cyclic algorithm selects to hide a large 1-itemset from
tr

ansaction #�$ 1 onc� e again. The iterations stop as soon as %
be
&

comes hidden.
T
,

able 3 contains the results of comparing the difference
i
�
n the number of remaining large itemsets after applying

bot
&

h of these algorithms to various input sets consisting of
10 transactions and 7 items per transaction, for a support
l
�
evel of 40%.

5 Concluding Remarks

The work reported in this paper can be extended in several
di
"

rections and much work remains to be done. We recognize
th

at there are mainly two major directions that we plan to
co! ncentrate on.

The first one is to investigate different selection criteria
a� nd evaluate their impact on the non-sensitive set of rules, as
w- ell as to apply various optimizations with respect to both
t

he time and space complexity of the proposed heuristics.

T
,

he second direction, is to investigate the applicability
of� these heuristics to different rule induction schemes, such
a� s classification rule mining, correlation rule mining, etc.

Along the same lines, we are working on using not only the
s� upport but the confidence of the association rules in order
to

selectively hide a subset of those.
A
1

lso, it is important to devise metrics to quantify the
d
"

ifference between the released database and the original
one� . The quantification of such difference may allow the
s� ecurity administrator to be able to better trade between
s� ecurity and accuracy.

Acknowledgments

The work of Elisa Bertino was carried out when she was
vis+ iting Purdue University in summer 1999. The authors
w- ould like to acknowledge the contributionsmade by Yü0 cel
S
�

aygin.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Associ-
ation Rules between Sets of Items in Large Databases. In
Proceedings of the ACM-SIGMOD Conference on Manage-
ment of Data, pages 207–216, Washington, DC, 1993.

[2] R. Agrawal, H. Mannila, R. Srinkant, H. Toivonen, and
A. I. Verkamo. Fast Discovery of Association Rules. In
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy,editors, Advances in Knowledge Discovery and Data
Mining, pages 307–328. AAAI Press/MIT Press, Menlo
Park, CA, 1996.

[3] C. Clifton. Protecting Against data Mining through Sam-
ples. In Proceedings of 13th IFIP WG11.3 Conference on
D
&

atabase Security,' Seattle, Washington, 1999. To appear.
[4] C. Clifton and D. Marks. Security and Privacy Implications

of Data Mining. In Proceedings of the 1996 ACM Workshop
on Data Mining and Knowledge Discovery, 1996.

[5] H. Delugach and T. H. Hinke. Wizard: A Database Infer-
ence Analysis and Detection System. IEEE Transactions on
Knowledge and Data Engineering,' 6(1):56–66, 1996.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From
Data Mining to Knowledge Discovery: An Overview. In
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy,editors, Advances

(
in Knowledge Discovery and Data

Mining, pages 1–34. AAAI Press/MIT Press, 1996.
[7] M. R. Garey and D. S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness. W) . H.
Freeman, 1979.

[8] D. E. O. Leary. Knowledge Discovery as a Threat to Database
Security. In G. Piatetsky-Shapiro and W. J. Frawley, editors,
Knowledge Discovery in Databases,' pages 507–516. AAAI
Press/MIT Press, Menlo Park, CA, 1991.

[9] D. Marks. Inference in MLS Systems. I
*
EEE Transactions

on Knowledge and Data Engineering, 6(1), 1996.
[10] A. Nabil and J. Wortmann. Security-Control Methods for

Statistical Databases. A
(

CM Computing Surveys, 21(4):515–
556, 1989.

8
+

