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Abstract

Data products (macrodata or tabular data and micro-
data or raw data records), are designed to inform public or
business policy, and research or publicinformation. Secur-
ing these products against unauthorized accesses has been
a long-term goal of the database security research com-
munity and the government statistical agencies. Solutions
to this problem require combining several techniques and
mechanisms. Recent advancesin data mining and machine
learning algorithms have, however, increased the security
risks one may incur when releasing data for mining from
outside parties. Issues related to data mining and security
have been recognized and investigated only recently.

This paper, deals with the problem of limiting disclosure
of sensitive rules. In particular, it is attempted to selec-
tively hide some frequent itemsetsfromlarge databaseswith
as little as possible impact on other, non-sensitive frequent
itemsets.  Frequent itemsets are sets of items that appear
in the database “ frequently enough” and identifying them
is usually the first step toward association/correlation rule
or sequential pattern mining. Experimental results are pre-
sented along with some theoretical issues related to this
problem.

1 Introduction

Securing data against unauthorized accesses has been a
long-term goa of the database security research commu-
nity and the government statistical agencies. Solutions to
such a problem require combining several techniques and
mechanisms. In particular, it iswell known that simply re-
stricting access to sensitive data does not ensure full data
protection. It may, for example, be the case that sensitive,
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or “high” dataitems can be inferred from non-sensitive, or
“low” data, through some inference process based on some
knowledge the user has. Such a problem, known as the
“inference problem”, has been widely investigated [9, 5],
and possible solutions have been identified. In general, al
those approaches address the problem of how to prevent dis-
closure of sensitive data through the combination of known
inference rules with non-sensitive data [3]. Examples of
inference rules are deductive rules and functional depen-
dencies. Those approaches, however, do not deal with the
problem of how to prevent the discovery of the inference
rules themselves. In other words, rules are not considered
as sensitive “knowledge”.

Recent advances in data mining techniques and related
applications [6] have, however, increased the security risks
one may incur when releasing data. The main goal of such
techniques is to enable the rapid and efficient discovery of
hidden intensional knowledge from a, possibly very large,
set of dataitems. Theuseof such techniqueswouldtherefore
enableusersto easily acquire, not only knowledgethat could
beused to infer sensitive data, but also sensitive knowledge.
Note that knowledge usually acquired through data min-
ing techniques cannot be considered as absolute. It can be
rather characterized as probabilistic knowledge. However,
even such probabilistic knowledge may provide sensitive
informationto users[3].

Issues related to data mining and security have been rec-
ognized and investigated only recently. So, only a few
approaches have been devised till now. These approaches
are discussed in Section 2. However, thereis still no com-
prehensiveview of thoseissuesand of the possibl e spectrum
of solutions. Thereis, for example, the need of analyzing
specific data mining techniquesin the light of the security
problem which was mentioned previously.

In this paper, a contribution is made towards addressing
such a need in the context of a specific type of knowledge.
Such type of knowledge, known as association rules, con-
sists of a set of statements of the form “90% of air-force



basis having super-secret plane A, aso have helicopters of
typeB”. An association ruleisusually characterized by two
measures, the support and the confidence. In general, al-
gorithms for the discovery of association rules detect only
rules whose support is higher than a minimum threshold
value. We refer to such rules as “significant rules’. The
problem that we deal with in this paper is how to modify a
given database so that the support of a given set of sensitive
rules, mined from the database, decreases below the min-
imum support value. We would like, however, to remark
that our approach is a smple building block that by itself
does not provide a comprehensive solution to the problem
of data mining and security. However, it can be considered
as abasic ingredient of such a comprehensive solution.
Theremainder of thispaper isorganized asfollows. First
we review current approaches addressing data mining and
security. We then present a formulation of our problem and
show that the optimal solution to it is NP-hard. We then
present some heurigtics. Finally, we outline further work.

2 Reated Work

Security and privacy threats arising from the use of data
mining techniques have been first pointed out in an early
paper by O’ Leary [8] and recently in the seminal paper by
Clifton and Marks [4]. The authorsin [4] outline possible
solutions to prevent data mining of significant knowledge,
that include releasing only subsets of the source database,
fuzzyfying the source database, and augmenting the source
database. They aso point out a “research agenda’ that
includes several issues to be investigated. Among those
issues, a relevant one to our approach, is the analysis of
mining algorithms, which gives the criteria that must be
used by thea gorithmin order to decide whether or not rules
are relevant, so that one can prevent the mining of sensitive
rules. The paper of Clifton and Marks, however, does not
analyze any specific data mining technique or algorithm,
whereas this paper deals with a specific technique.

A recent paper by Clifton[3] presents an interesting ap-
proach to the problem of data mining and security. The ap-
proach isbased on rel easing a sampl e of the source database
so that the rules mined from the released sample are not
significant. A main result of the paper isto show how to
determine theright sample size by using lower boundsfrom
pattern recognition. The proposed approach is independent
from any specific data mining technique. The main differ-
ence between such approach and ours is that we am at a
finer tuning of the intensional knowledge to be released. In
other words, our aim ison how to reduce the significance of
agivenrule, or sets of rules, by possibly leaving unatered
thesignificance of theother rules, or by minimally changing
it. By contrast, the approach by Clifton aims at estimating
the error which isintroduced on the significance of therules

by reducing the sample sizes. It isworth noting, however,
that the two approaches can be used together as part of a
comprehensive environment supporting the security admin-
istration.

In addition to work dealing specifically with the issue
of data mining and security, it is aso important to mention
work in the area of security for statistica databases [10].
Such work deals with the problem of limiting disclosure
of individua data items and at the same time ensures that
correct statistics can be derived from the rel eased database.
The main difference between the work on security for sta-
tistical databases and the work presented in this paper, or
more generally inthearea of datamining, isthat in thelatter
two cases, even if individual dataitems are allowed to bedi-
rectly accessed, theintensional knowledgewhich isderived
can be controlled. However, techniques used in statisti-
cal databases, such as data fuzzyfication or data swapping,
could aso be used in the other context.

3 Association Rulesand Sanitization

In this section, the notion of association rulesisprecisely
defined and aformul ation of the problemis given. Itisthen
proven that the problem of finding an optimal sanitization of
the source database is NP-Hard. Thisis done for a number
of (progressively more realistic) notions of what it means
to “sanitize”. The proofs are based on reductions of the
problem addressed in this paper to the Hitting-Set problem.

3.1 TheProblem

The problem of association ruleminingwasinitialy pre-
sented in [1]. The authorsin [2] extended and formalized
theproblemasfollows. LetZ = {i;,4y, ..., i } beaset of
literdls, called items. Let D be a database of transactions,
where eachtransaction 7" isanitemset suchthat 7' C 7. As-
sociated with each transaction is a unique identifier, called
itsTID. A set of items X C 7 iscaled an itemset. A trans-
action T eontains an itemset X, if X C T'. An association
rule is an implication of theform X = Y where X C Z,
YcCcZ,andXNY = @. Therue X = Yholdsin the
set of transactions D with eonfidence c if IJT;T’I > ¢ where
|A] is the number of occurrences of the set of items A4 in
the set of transactions D. Therule X = Y has support s
if % > s where N istheplurality of the transaction set
D.

In this paper we focus on the discovery of large/frequent
itemsets, in order to keep the discussion simple. These
itemsets have greater support than the minimum support
specified. This restriction impliesthat the only way to hide
aruleisby decreasing the support of itscorresponding large
itemset. Exhaustive search of frequent sets is obviously
infeasible for al but smal itemsets: the search space of




potential frequent itemsets increases exponentially with the
number of itemsin thetransactions. A moreefficient method
for the discovery of frequent itemsets can be based on the
following iterative procedure: in each pass the algorithm
starts with a seed set of large itemsets, caled candidate
itemsets. The support of these itemsets is computed during
thepassover thedata. Attheend of thepass, itisdetermined
which of the candidate itemsets are actualy large, and they
become the seed for the next phase. This process continues
until no new large itemsets are found. In the first pass,
the support of individual itemsets is counted in order to be
determined which of them are large.

The specific problem we address can be stated asfollows.
Let D the source database, let R be a set of significant
association rulesthat are mined from D, and let R, beas et
of rulesin R. How can we transform D into a database D'
so that all (or the maximum number of ) rulesin R can still
be mined from D’ but for therulesin Ry,. D’ then becomes
the released database. Therefore, our problemisto reduce
the support of the rulesin R, below the given threshold.
We refer to such a transformation as sanitization of D. In
addition to preserve as much knowledge as possible, the
transformation we seek, should a so be achieved at as much
low cost as possible.

3.2 Optimal Sanitization IsNP-Hard

Let A bethe set of large itemsets that are “good” in the
sense that we do not wish to make them small. Let B be
the set of large itemsets that are “bad”, i.e., we want to
make them small. These two goas can be incompatible,
so the problems we formulate below are based on the no-
tion that we want to make all of B’s itemsets small, while
making as few as possible of A’sitemsets small. We prove
the NP-hardness of three optimization problems based on
thisnotion. The first (caled PROBLEM 1) isredly just a
“warmup” for PROBLEM 2 because itsframework issome-
what unrealistic: It assumes that we can remove support for
the various individual items independently of one another.
Its proof issimple and serves as an easy introductionto the
(more elaborate) reduction needed for proving PROBLEM
2 (whose framework is redlistic — more on thisbelow). Fi-
nally, we prove the NP-hardness of PROBLEM 3 which is
the problem that we focus on this paper. More specifically,
in PROBLEM 3 we can modify a transaction by deleting
some items from it.

PROBLEM 1: Given two sets A and B of subsets of a
finite set J, such that no element of B is a subset of any
element of A and no element of A isasubset of any element
of B, find aset of elements R in J such that every subset in
B contains at least one of those e ements while minimizing
the number of subsets of A that contain elements from R.

Note: The idea is that by removing support from the

itemsin R wemakeall of B’sitemsetssmall, whileaffecting
as few of A’sitemsetsas possible.

The framework considered next (for PROBLEM 2 be-
low) is more redlistic, in that we now weaken the support
for itemsets in B by deleting some transactions from the
database. Of course there are many ways of doing this,
some of which have more impact on A than others. The
goal istodoitinaway that minimizesthisimpact on A.

Note: In our formulation of PROBLEM 2 the notion of
“large” isstated intermsof theactual number of transactions
containing the itemset (rather than as a percentage). There
is no loss of generality in doing so, because the number
of transactions in the database can easily be kept constant;
whenever we del ete a transaction we can keep the total size
of the database constant by replacing the del eted transaction
with another transaction that has no effect on either A or B
(for example the new transaction could contain only items
that have very small support in the database, possibly zero
support, i.e., “new” items). We henceforth call ¢ the thresh-
old for “largeness’, i.e., an itemset is considered large iff
thereare at least ¢ transactions containing it.

PROBLEM 2: We are givenaset J of items, an integer
t, adatabase D of transactions (each of which is a subset
of J), sets A and B each of which contains a collection of
subsets of J (the “itemsets’). Each itemset in A or in B
has support > ¢ in D. The problem isto compute a subset
D’ of D suchthat deleting D’ from D resultsin a database
where every itemset in B has support < ¢, and the number
of itemsetsin A that have support < ¢ is minimized.

PROBLEM 3: Wearegivenaset J of items, an integer ¢,
adatabase D of transactions (each of whichisasubset of J),
sets A and B each of which contains a collection of subsets
of J (the"itemsets’). Eachitemsetin A orin B has support
> tinD. What weareadlowedtodoisat afiner granularity
than in PROBLEM 2: We can now individually modify a
transaction instead of deleting it, by deleting some items
from it. The problem is then to modify some transactions
in D such that in the resulting database every itemset in B
has support < ¢, and the number of itemsetsin A that have
support < ¢ is minimized.

The proofs of the NP-hardness of PROBLEM 1, 2 and
3 are based on reductions from the NP-hard problem of
HITTING SET, which we review next.

HITTING SET (page 222 of the book by Garey and
Johnson on NP-completeness[7]): Given aset C of subsets
of afinite set S, find a smallest subset S’ of S such that
every subset in C contains at least one element in S’. The
problem remains NP-hard even if every subset in C' consists
of no morethan 2 elements of S.

Proposition 1. PROBLEM 1 is NP-hard.

Proof. Given an instance of HITTING SET, hereis how
to create an instance of PROBLEM 1 such that apolynomial
time solutionto thelatter impliesapolynomial timesolution



totheformer. Let S = {1,...,n} for HITTING SET. Then

for PROBLEM 1 hereiswhat A, B, J look like (in terms

of the C' and S of the HITTING SET problem instance):
J=SU{n+1}, (e, J={1,....,n,n+1})

A={{1,n+1},{2,n+1},...,{n,n+ 1}}

B = C, (hence n + 1 does not appear anywherein B)

The R that solves the instance of PROBLEM 1 is equal
tothe S’ that solvestheinstance of HITTING SET. O

Theorem 1. PROBLEM 2 is NP-hard.

Proof. A reduction from HITTING SET. Let S be
{1,...,n}, and C be the collection of subsets of S, for
HITTING SET. To solve HITTING SET one must find a
minimum subset S’ of .S such that every z in C' contains at
least one element of .S’. Without loss of generality, we can
assumethat S does not contain aredundant element, i.e., no
pair i, of elements from S is such that “2 € C contains
" implies“z contains j” (otherwise ¢ is redundant and we
can completely ignore it when solving the problem). Also,
because HITTING SET remains NP-hard if every « in C
consists of no more than two el ements, we assume that this
isthe case. We can aso assume that no = in C' consists of
a single element, because such an element surely has to be
part of S’ (i.e., the problem remains NP-hard if we assume
that C isaset of unordered pairs of elementsof S). We next
explain how the instance of PROBLEM 2 is created. First
we introduce some notation.

We use f(7) to denote the set of items that appear with ¢
inoneor morez in C (including itself), thatis, f(i) = {j :
Jj=ior{i,j} € C}. (Notetha no f(j) properly contains
another f(i) because otherwise: or j is redundant.)

We use ¢(7) to denote f(i) U {n + 1}.

The symbols J,t,A,B,D in what follows are as in the
definition of PROBLEM 2 that was given earlier in this
section. The instance of PROBLEM 2, which can easily be
created in polynomial time, has the following parameters:

J=SU{n+1},(i.e,theitemsael,2,...,n,n+ 1)

t = 2, i.e., two occurrences are needed to be considered
“large”.

A={f(1), f(2),..., f(n)}, (notethat item n+1 appears
nowherein A)

B={2U{n+1}:2€C}

The database D consists of 2n transactions:

D ={f(1),9(1), f(2),9(2),..., f(n),g(n)}.

Observe that each itemset {4, j,n + 1} in B has support
of precisely 2 (fromtransactionsg(:) and g(j). Eachitemset
f(%) in A also has support of precisely 2 (from transactions
£(i) and g ().

A solutionto PROBLEM 2 does not delete an f(i) trans-
action because that would decrease support for itemset f()
in A without decreasing support for any itemset in B (be-
cause the latter contain item n + 1 whereas f(i) does not).
If the solution deletes transaction ¢(#) then:

1. it decreases the support of every itemset of B that con-
tainsi from2to 1, i.e, it makesthat itemset small; this
correspondstoasolutionin HITTING SET that selects
itobein S’.

2. itdecreasesthesupport of itemset f(i) in A from2to1,
i.e., it makestheitemset small; minimizing the number
of times this happens in the solution to PROBLEM 2
corresponds to minimizing the size of S* in HITTING
SET.

The above observationsimply that, from the set of trans-
actions deleted by the solution to PROBLEM 2, we can
obtainthe S’ that solves HITTING SET. |

Theorem 2. PROBLEM 3is NP-hard.

Proof. A reduction from HITTING SET. Let S be
{1,...,n}, and C be the collection of subsets of S, for
HITTING SET. To solve HITTING SET one must find a
minimum subset S’ of S such that every z in C' contains
at least one element of S’. Asin the proof of Theorem 1,
S does not contain a redundant element, and every = in C
consists of two elements. We next explain how the instance
of PROBLEM 3 is created. The symbols J,¢, A, B, D in
what follows are as in the definition of PROBLEM 3 that
we gave earlier.

J=Su{n+1,...,3n}.

That is, the items are {1,2,...,4n}. To improve the
readability of our proof, we use the notation #; for item
n+1, &; foritem2n+14, and $; foritem3n+:,1 < i < n.

As in the proof of PROBLEM 2, we use f(i) to denote
the set of items that appear with i in one or more z in C
(including i itself), that is,

fi)={j:j=ior{ij}eCh

(Notethat no f(j) properly containsanother f(7) because
otherwise: or j isredundant.)

We use ¢(7) to denote f(i) aswell asal #;, &;,and $;
forwhich j € f(7), i.e,

g(i) = fOOU{# 1 j € FOTU{&; 17 € F(O)YU{S$; 1 j € f(D)}.

Forevery z = {i, j} € C weusep(z) to denote the pair
{#;,#; } and we use P to denotetheset of al such pairs, i.e,
P={p(z):zeC}.



For every ¢ = {i,j} € C we use ¢(z) to denote
{#:,#;, &;, &; } and we use ) to denote the set of all such
q(z)'sie, Q= {q(x):zeC}.

For every z = {i,j} € C we use t(z) to denote
{#,#;,&:,&;,%;,$;} and we use T to denote the set of
all sucht(z)'s,i.e, T = {t(z) : z € C}.

The other parameters of the instance of PROBLEM 3,
which can easily be created in polynomia time, are de-
scribed next.

t = 2, i.e., two occurrences are needed to be considered
“large”.

Theset A now consistsof the f(i)’saswell asthep(z)’s,
g(z)'s, and t(z)’'s:

A={f(1),f(2),....,f(n)} UPUQUT.

B ={{i,j,# #} {1,j} € C}.
The database D consists of 2n transactions:

D ={f(1),9(1), f(2),9(2),..., f(n),g(n)}.

Observe that each itemset {i,j,#,#;} in B has sup-
port of precisely 2 (from transactions ¢(7) and ¢(j)). Each
itemset f(7) in A al so has support of precisely 2 (from trans-
actions f(i) and g(4)). Itemsets {#;,#;}, {#,#;, &, &; },
and {#;, #;, &;, &;,$;,$;} in A each have support 2 (from
transactions g(¢) and g(j)).

A solution to PROBLEM 3 does not modify an f(7)
transaction because that would decrease support for itemset
f(%) in A without decreasing support for any itemset in B.
Now suppose the solution modifies a transaction ¢(¢). The
solution surely does not remove a&; or $; from transaction
¢(#) because that would decrease support for itemsets of A
without decreasing support for any itemset in B. We aso
claim that the solution does not decrease support for B by
removing a#; from transaction ¢(7), i.e., that ¢(7) isaways
modified by removing fromititem(s)in{1,...,n}. Tosee
that thisis so, assume to the contrary that ¢(7) was modified
by removing a#; from it (we call thisa“type 1" modifica-
tion). We now show that thisleads to a contradiction.
Comment. Observe that deleting j (where j # ) from
g(i) can always be replaced by deleting i from ¢(i). This
is because, although both have the same effect on A (i.e,
weakening f(¢)), deleting i weakensevery = € Bwherei €
z whereasdeleting j # i weakensonly {7, j, #;,#;} € B.

The deletion of #; from transaction g(7) weakens in A
the (at least three) itemsets p(x), ¢(z), t(z) where j € z.
On the other hand, modifying ¢(#) by removing from it
anitemj € {1,...,n} (a “type 2" modification) rather
than removing a #;, would have the same effect on B but
would wesaken only f(i) in A. Thisimplies that globally

replacing, in the solution, al of the type 1 modifications by
the corresponding type 2 modifications would not make a
differencefor B but would decrease the number of itemsets
of A that are affected, implying that the solution could not
have been optimal.

We henceforth assume that the solution contains only
type 2 modifications to transactions. A type 2 modification
that an item from transaction ¢(i) corresponds to a solution
inHITTING SET that selectsi tobein S’. It aso decreases
the support of itemset f(i) in A from2to 1, i.e., it makesthe
itemset small; minimizing the number of timesthishappens
in the solution to PROBLEM 3 corresponds to minimizing
thesizeof S inHITTING SET.

The above observationsimply that, from the set of trans-
actions modified by the solution to PROBLEM 3, we can
obtainthe S’ that solvesHITTING SET. O

4 Heuristic Approach

In this section, we describe the heuristic approach that
we propose to solve the Optimal Sanitization problem. Be-
forethealgorithmis presented some preliminary definitions
are given and the data structures needed for the algorithm
are described with some examples where necessary. Some
complexity analysis results follow the forma presentation
of the algorithm as well as experimenta results from the
performance evaluation of the proposed heuristic are given.

4.1 Preliminary Definitions

In order to better illustrate how the algorithm works, we
represent al large itemsets in the database in terms of a
graph, referred to as the itemset graph. In the remainder of
the discussion, we use the term “i-itemset”, where i is an
integer, with the meaning of an itemset whose cardinality is
1.

Definition 4.1 (Itemset Graph.) Let SLI be aset of large
itemsets. An ltemset Graph over SL1 isdefined asfollows:
(i) thereisanode for each itemset in SLI; and (ii) thereis
an edge from the node representing itemset i;, to the node
representing itemset ¢;, if 4 C ;.

An itemset graph isthe result of a breadth-first search in
the space of potentialy large itemsets. Each node, except
from the itemset, contains other information that we will
introduce later on. Assuming the existence of a database
like the one shown in Table 1a, then the Figure 1 shows the
graph for the exampl e database for the large itemsets shown
in Table 1b. There is an ordering imposed by the itemset
graphin each large itemset. Thisordering impliesthe level
of alargeitemset in the itemset graph.



Large Itemsets | Support
AB 2

TID | Items AC 3

T1 ABCD AD 2

T2 ABC BC 2

T3 ACD CD 2
ABC 2
ACD 2

@ (b)

Table 1. (a) The example itemset database;
(b) the large itemsets (1-itemsets are not in-
cluded) from the example database along
with their support.

Definition 4.2 (Level of anitemset.) Theleve of an item-
set X isthelength of the path from alarge 1-itemset (reach-
able from X) to X.

Definition 4.3 (Level of an itemset graph.) The level of
an itemset graph G isthelength of the maximum path from
any large 1-itemset to any other largeitemset reachable from
thislarge 1-itemset.

Of particular importancefor thea gorithmistheso-called
“pivotal” itemsets.

Definition 4.4 (Pivotal itemset.) A pivota itemset is a
large k-itemset in the k-th leve of the itemset graph.

This implies that the level of a pivotal itemset and the
number of items in this itemset must be the same. The
pivotal itemset is the itemset that a graph node represents.
The itemsetsinside the curly bracesin theitemset graph are
the additional information maintained in each node.

Thestraight linesin Figure 1 denote dependencies among
the large itemsets in the sense that two connected item-
sets (through one line or a path) are related either by the
“provides support to” or “is supported from” binary rela-
tionships. These binary relationships are formally defined
below.

Definition 4.5 (“Provides support to” relationship.) A
large itemset X provides support to a large itemset YV iff
XcCy.

Definition 4.6 (“1s supported by” relationship.) A large
itemset Y issupported by alargeitemset X iff X C Y.

The shortest path connecting the two itemset has length
1. When the relationships above apply to pivota itemsets
connected by a single line, we use the term “parent” and
“child” to represent them.

The agorithm (as we will see below) performs a greedy
search in the itemset graph. Of major importance in this

T1.{AB,AC, AD} T1:{BC,AC', CD}

, TL: {AB, BC} : , T1:{CD, AD}
AT2{ABAC} B 1T C T2 {BC,AC} :
T3 {AC,, AD} T2 {AB.BG) T3:{AC', CD} T3:{CD, AD}
A TH(ABG e TL(ABG) st gigg)Aco} cpTEACDH  ppTL (ACD)
T2{ABG U T2{ABG) T3 {ACD) T3{ACD} ' T3{ACD}
ABC Tl

Figure 1. The graph of large itemsets.

searchisthe“prime’ and “non-prime” itemset that we define
below.

Definition 4.7 (Primeitemset.) Let X beapivota itemset,
and Y beachildof X. Y isaprimeitemset for X, if Y's
support does not fall under the minimum support threshold
given that X's support is decremented by one. Prime item-
sets are not defined for pivotal itemsets of size equa to the
level of theitemset graph.

Definition 4.8 (Non-prime itemset.) Let X be a pivota
itemset, and Y beachildof X. Y isanon-primeitemset if
itisnot aprimeitemset. Non-primeitemsetsare not defined
for pivotal itemsets of size equal to the level of the itemset

graph.

For each pivotal itemset, the itemset graph maintainsthe
transactionssupporting thisitemset. For each pair of pivotal
itemset and transaction, the itemset graph also maintains a
list with the“prime” and “non-prime” itemsets.

4.2 The Sanitization Heuristic

The heuristic that we propose relies heavily upon the
structure of theitemset graph. The input to the algorithmis
a set of large itemsets that we need to hide. The agorithm
first sortstheseitemsetsbased ontheir support, and thentries
to hide all of them, in an one-by-one fashion. After each
pass, the agorithm keeps track of the newly hidden large
itemsets, and performs a search into the list of remaining
large itemsets that have not yet been hidden. If thereisan
itemset in the list that it becomes hidden after the current
step, the algorithm removes this itemset from the list of
remaining itemsets. Basically, the algorithm goes through
the list of itemsets, and applies a bottom-up followed by a



1. H itenset to be hidden

2. k size of H

3. T set of transactions supporting H

4. while H is not hidden

4a. H' = H

4b. for level k downto 2 do

4ba. H ' = parent of H' with maxi num support

4bb. end-for

4c. Ts = transaction in T supporting H' that
af fects the nmin. nunber of 2-itensets

4d. set H' to 0 in Ts

de. propagate results forward

4f . end-whil e

Figure 2. Sketch of the Building Block of the
Algorithm

top-down traversal of the itemset graph. In each traversal,
the support of the currently scanned large itemset decreases
by one.

Figure 2 illustrates the building block for the proposed
heuristic approach. The agorithm takes as input the large
itemset to be hidden. It then performs a greedy search
through the ancestors of thisitemset, selecting at each level
theparent with the maximum support and setting the sel ected
parent as the new itemset that needs to be hidden (step
4ba). At the end of this process, alarge 1-itemset has been
selected. The agorithm searches through the common list
of transactions that support both the selected 1-itemset and
theinitial large itemset to be hidden in order to identify the
transaction that affects the minimum number of 2-itemsets.
After thistransactionisidentified, thenit deletestheselected
1-itemset from the identified transaction (step 4d). In the
sequel, it propagates the results of this modification to the
graph of large itemsets.

In order to make the presentation simple, weillustrate our
approach through an example. Suppose that we are given
a database like the one shown in Table 1la. Suppose also
that the minimum support of large itemsets (requested by
the user) is66.6% or in absol ute numbers, 2 transactions per
itemset. The number of large itemsets (excluding the ones
with one item) are shown in Table 1b. Our goa isto hide
a specific itemset, also provided as input. Hiding a large
itemset means to decrease its support to adegree that cannot
be considered as a favorable discovery by the competitors.
Deciding upon the specific support threshold to use for rule
hiding, in such a way that the outside parties will not be
able to discover the sensitive rules, is an important issue
that must carefully be considered, but we do not dea with
it at thispoint. For thisreason we assume that we are asked
to lower the support of a given itemset by a certain amount
that is also provided as an input.

Suppose that the itemset ABC' has to be hidden. Sup-

Modifications

T1-A

T1-B

T1-C

T2-A (algorithm selection)
T2-B

T2-C (algorithm selection)

Number of Remaining Large Itemsets

OasdAaAWHAs®

Table 2. Number of remaining large itemsets
for each one of the minimally modification ac-
tions.

pose aso that an itemset is hidden if its support is below 2.
Therefore, the god is to remove the support of thisitemset
from at least one of the transactions that provide support
to this itemset (T1 or T2). As the Table 1b , thereis a
maximum of 6 itemsetsin thiscase that may be maintained.
Also, we should notice that for this algorithm, it does not
matter whether a certain itemset loses support as long as it
is kept above the minimum specified support.

ABC isalarge 3-itemset. Theagorithmfirst looksat all
the subsets of size 2 of ABC'. For each 2-itemset, it checks
the support. For thiscase AB and BC' have support 2 and
AC hassupport 3. Atthisstage, it selectsto concentrate on
that large 2-itemset that will not be affected by modifying
itssupport by one. For thisreason, it will select itemset AC.
In order to decrease the support of ABC' through AC, the
al gorithm can only modify the support of AC' intransactions
T1and T2, but not in T3. Thisisbecause, {71, 72} isthe
intersection of the transactions supporting both A BC' and
AC. From these two transactions, it will select the one
that affects the minimum number of large-itemsets. In our
case, T2 will be sdlected, since its list contains only one
non-primeitemset, as opposed to thetransaction T1, whose
list contain two non-prime itemsets. In order for itemset
AC to lose support from the transaction T2, either A or C
must be turned into a0 in T2. Since the lists of supported
itemsets by the transaction T2 for both A and C' contain the
same number of prime and non-prime itemsets, the item to
be modified can be selected at random.

Table 2 shows the number of remaining large itemsets
after modifying a minimal number of items in the original
database. The semantics of the symbolslistedinthetableis
as follows: TI-J means turn to O in transaction Tl the item
J. Thetablelistsall possible modifications. For each modi-
fication, the table reports the large itemsets remaining after
the modification. Modificationsidentified by our algorithm
are explicitly marked in the table. Fromthe table, it is easy
to see that our algorithmic approach has the best results for
the example at hand.



LT | LT (idden) | LI (Sanit) | LT (Cyclio)
36 1 31 30
36 1 32 30
36 1 31 28
36 1 28 24
36 1 31 28
36 2 31 30
36 2 31 30
36 2 28 24
36 2 28 2

Table 3. Comparison between the number of
large itemsets (LI) remaining after the appli-
cation of the proposed Sanitization heuristic
and the Cyclic algorithm.

4.3 Comparison Results

In order to eval uate the efficiency of the proposed heuris-
tic, we have devel oped another algorithm, which we call it,
the Cyclic agorithm. Just like the Sanitization heuristic,
thisalgorithm starts off with areference to aparticular node
in the itemset graph that needs to be hidden. To see how
thisapproach works, let alargeitemset X be made up of the
items (4;,, ¢j,, - - ., ;&) and let the transactions that support
it be (tg,,t%,, - -, tx,). Inorder to hide X, the algorithm
first tries to hide the large 1-itemset ¢;, from¢;,. Then the
support of X is checked. If it is still above the threshold,
then in the next iteration the large 1-itemset 7;, will be hid-
den from ¢, ands oo n. After k iterations, the algorithm
goes back to trying to hide (i;,) again. After n iterations,
the Cyclic dgorithm selects to hide a large 1-itemset from
transaction ¢, once again. The iterations stop as soon as X
becomes hidden.

Table 3 contains the results of comparing the difference
in the number of remaining large itemsets after applying
both of these algorithmsto various input sets consisting of
10 transactions and 7 items per transaction, for a support
level of 40%.

5 Concluding Remarks

Thework reportedinthispaper can beextended in severa
directionsand much work remainsto be done. We recognize
that there are mainly two major directions that we plan to
concentrate on.

The first one isto investigate different selection criteria
and evaluate their impact on the non-sensitiveset of rules, as
well as to apply various optimizations with respect to both
the time and space complexity of the proposed heuristics.

The second direction, is to investigate the applicability
of these heuristicsto different rule induction schemes, such
as classification rule mining, correlation rule mining, etc.

Along the same lines, we are working on using not only the
support but the confidence of the association rulesin order
to selectively hide a subset of those.

Also, it is important to devise metrics to quantify the
difference between the released database and the original
one. The quantification of such difference may alow the
security administrator to be able to better trade between
security and accuracy.
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