
Static Checking of Interrupt-driven Software

Jens Palsberg

Purdue University

CERIAS and Department of Computer Science

www.cs.purdue.edu/people/palsberg

Joint work with Dennis Brylow and Niels Damgaard.
Supported by an NSF CAREER award.

1



Application Domain

Examples:

� Palm Pilots

� Cell phones

� Microcontrollers

Interrupt-driven software!

2



Example Program in Z86 Assembly Language
; Constant Pool (Symbol Table).

; Bit Flags for IMR and IRQ.

IRQ0 .EQU #00000001b

; Bit Flags for external devices

; on Port 0 and Port 3.

DEV2 .EQU #00010000b

; Interrupt Vectors.

.ORG %00h

.WORD #HANDLER ; Device 0

; Main Program Code.

.ORG 0Ch

INIT: ; Initialization section.

0C LD SPL, #0F0h ; Initialize Stack Pointer.

0F LD RP, #10h ; Work in register bank 1.

12 LD P2M, #00h ; Set Port 2 lines to

; all outputs.

15 LD IRQ, #00h ; Clear IRQ.

18 LD IMR, #IRQ0

1B EI ; Enable Interrupt 0.

3



Example Program in Z86 Assembly Language
START: ; Start of main program loop.

1C DJNZ r2, START ; If our counter expires,

1E LD r1, P3 ; send this sensor's reading

20 CALL SEND ; to the output device.

23 JP START

SEND: ; Send Data to Device 2.

26 PUSH IMR ; Remember what IMR was.

DELAY:

28 DI ; Musn't be interrupted

; during pulse.

29 LD P0, #DEV2 ; Select control line

; for Device 2.

2C DJNZ r3, DELAY ; Short delay.

2E CLR P0

30 POP IMR ; Reactivate interrupts.

32 RET

HANDLER: ; Interrupt for Device 0.

33 LD r2, #00h ; Reset counter in main loop.

35 CALL SEND

38 IRET ; Interrupt Handler is done.

.END

4



Our Tool

� Stack-Size Analysis

� Type Checking of Stack Elements

� Interrupt-Latency Analysis

5



Key Question

How much of a Z86-machine state should be represented in a flow-graph
node?

6



One Extreme

A node contains the who Z86-machine state.

Worst case: 2256�8 = 22048 nodes.

7



The Interrupt Mask Register (IMR)

Consists of:

� A master bit (when off, all interrupts are turned off).

� One bit for each of the six interrupts.

8



Key Question

Can modeling just the PC and the IMR lead to a useful programming tool?

9



Flow Graph

INIT:

START:

HANDLER:

0C 00

33 01

0F 00 12 00 15 00 18 00 1B 01 1C 11

111E

20 11!21126!128 110129

2C 01

!3

!2 !135 01 26 01 28 01

?1

?3

?238 01 32 01

2E 01

30 01 ?1 ?232 11 23 11

e e e e

10



Instructions and the corresponding edge labels

instruction format edge label computation step

hvariousi e no change to the stack
PUSH IMR !1 (IMR value) the value of the IMR is

placed on the stack
PUSH hnot IMRi !1 “unk” some value (not the IMR) is

placed on the stack
CALL hlabeli !2 (ret. addr.) procedure call

hinterrupt calli !3 (stat. reg., ret. addr.) implicit interrupt call
POP IMR ?1 the IMR is assigned the value

on the top of the the stack
POP hnot IMRi ?1 “unk” some register (not the IMR) is

assigned the value on top of
the stack

RET ?2 return from procedure call
IRET ?3 return from an interrupt handler.

11



Pushing and Popping

-

6

-

?

m p

n q

e

e

?1!1 (IMR)

POP IMR

12



Assumptions

Only direct manipulation the IMR, IRQ, and SP registers.

IMR: We only allow IMR values to be pushed on the stack, popped from
the stack, or manipulated by any binary operation in which one operand is
a numeric constant, and the other is the IMR.

IRQ: We assume that the IRQ is read only.

SP: We only allow the SP to be manipulated implicitly by stack-specific
instructions or by an initialization instruction.

13



Interrupt-Latency Analysis

HPI = highest-priority interrupt.
H = a predicate which is true of a node n iff

the PC component of n is the start address of
the handler for the HPI.

Red � it is not possible to reach a node in H
Yellow � :(Red_Green)
Green � it is inevitable that computation

will reach a node in H.

Key Observation: If an HPI is pending when computation reaches
a node n, and there is an edge from n to a node in H, then com-
putation will proceed along such an edge.

14



Interrupt-Latency Analysis

UltraGreen � there is an edge to a node in H.
Green � a node in H, or

it is inevitable that computation
will reach an ultragreen node.

In Computation Tree Logic (CTL), we can make the intuition precise by
defining the colors as predicates on nodes:

Red � : EF(H)

Yellow � :(Red_Green)

UltraGreen � EX(H)
Green � H_AF(UltraGreen):

Given a flow graph G and a formula φ in CTL, it can be decided
in O(jGj� jφj) time whether φ is true or false of the nodes in G.

15



Measurements

Building the graph
Program Nodes Edges Time Space
CTurk 1,209 2,316 4.01 s 31.6 MB
GTurk 1,581 3,101 4.20 s 32.2 MB
ZTurk 1,493 2,885 4.12 s 32.1 MB
DRop 1,138 2,043 4.02 s 31.1 MB
Rop 1,217 2,278 4.08 s 31.7 MB
Fan 5,149 17,195 5.13 s 39.3 MB
Serial 394 1,082 3.78 s 31.0 MB
Example 148 222 3.16 s 34.9 MB

16



Measurements

Stack-size analysis
Program Lower Upper Time Space
CTurk 17 18 4.11 s 31.6 MB
GTurk 16 17 4.31 s 32.2 MB
ZTurk 16 17 4.22 s 32.1 MB
DRop 12 14 4.14 s 31.1 MB
Rop 12 14 4.18 s 31.8 MB
Fan 11 N/A N/A N/A
Serial 10 10 3.87 s 31.0 MB
Example 37 37 3.21 s 34.9 MB

The lower bounds were found with a software simulator for Z86 assembly
language that we wrote.

17



Measurements

Interrupt latency analysis of highest priority IRQ
Program Ultragreen Green Ultrayellow Yellow Red Latency
CTurk 43% 51% 34% 49% 0% 260
GTurk 43% 50% 30% 50% 0% 272
ZTurk 42% 50% 30% 50% 0% 276
DRop 15% 19% 60% 81% 0% 312
Rop 15% 19% 58% 81% 0% 312
Fan 56% 67% 24% 33% 0% 310
Serial 43% 79% 14% 21% 0% 326
Example 25% 46% 30% 54% 0% 242

Latencies are given in machine cycles.

One machine cycle is executed in 1 microsecond.

18



Conclusion

� Modeling PC+IMR gives a good stack-size analysis, a good type checker,
and a reasonable interrupt-latency analysis.

� Our tool is one of the first to give an efficient and useful static analysis
of assembly code.

19



And the work continues

� Identification of loop variables, to get rid of yellow nodes.

� Typed assembly language.

� Motorola 68000-family processors.

20


