
MIT Lincoln Laboratory
1

RKC 11/00

Detecting Computer Attackers:
Recognizing Patterns of

Malicious, Stealthy Behavior

Robert K. Cunningham
Richard P. Lippmann, Nick A. Plante,

Seth E. Webster, Harry M. Wolfson, Marc A. Zissman

MIT Lincoln Laboratory

Presentation to
CERIAS

29 Nov 2000
This work was sponsored by the Department of the Air Force under contract F19628-00-C-0002. Opinions, interpretations, conclusions,
and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force.

MIT Lincoln Laboratory
2

RKC 11/00

MIT Lincoln Laboratory

• Federally-funded research and
development center (FFRDC)

• Major research areas:
electronics, control,
communications, radar

• About 2200 MIT employees,
including 1100 technical staff
(scientists/engineers)

• Technical staff: 50% Ph.D.,
25% M.S., 25% B.S.

• Sponsors: 80% DoD, 15% FAA,
5% other

• Budget: Roughly $325M, about
30% of MIT’s budget

• Web site: www.ll.mit.edu

MIT Lincoln Laboratory
3

RKC 11/00

Information Systems Technology Group

• 60% Information Assurance Technology
– Intrusion Detection R&D for wired and wireless networks
– Security Tools Accuracy Evaluations
– Distributed Simulation Systems

• 40% Speech and Language Technology
– Speaker/Language Identification
– Language translation
– Inter-lingual information extraction

• Personnel: 33 Technical Staff
– 3 Group Leaders
– 5 Senior Staff
– 24 Associate/Assistant or regular staff
– 2 Paid Consultants
– 4 Students

MIT Lincoln Laboratory
4

RKC 11/00

Outline

• Motivation
• Computer attacks

– Who performs them, and what are they after?
– Distributed Denial-of-Service Attacks

• Detecting attackers after an attack is launched
– Signature Matching Technique
– Bottleneck Verification Technique
– Evaluation

• Detecting attackers before an attack is launched
– Motivation and Requirements
– Approach
– Feature Extraction
– Evaluation

• Summary and Challenges

MIT Lincoln Laboratory
5

RKC 11/00

Motivation

• Information systems are critical to the functioning of nations
– Repositories for critical data (e.g., financial, military)
– Control of infrastructure (e.g., power, cable, inventory, personnel)

• But these systems are vulnerable!
• As these systems are more heavily relied upon, their

vulnerability becomes more of a concern

We live in an age when one person sitting at one
computer can come up with an idea, travel through
cyberspace and take humanity to new heights. Yet,
someone can sit at the same computer, hack into a
computer system and potentially paralyze a company,
a city or a government.

- President Clinton, 1/7/2000, announcement of three-
year cyberspace defense plan

MIT Lincoln Laboratory
6

RKC 11/00

What is Information Assurance?

• Information Assurance is the process by which one ensures
the

– Integrity
– Confidentiality
– Availability

of information assets
(computers, networks, processes and data)

• Information Assurance must be done all of the time

MIT Lincoln Laboratory
7

RKC 11/00

Components of Information Assurance:
Protection, Detection and Reaction

Detection &
Reaction

Protection

Attacks

• Protect against known attacks and vulnerabilities

• Detect (and react to) attacks where defenses have failed

MIT Lincoln Laboratory
8

RKC 11/00

Who are the computer attackers, and
what are they after?

• Attackers vary in their skills and motivation
– Adversaries attacking economic or military infrastructure from safe

havens
– Teenagers who are experimenting with others’ computers

• But it’s hard to determine who initiated an attack

The CIA says it sees
growing signs that
countries such as
Russia and China are
developing tools to
attack commercial
computer networks at
the heart of U.S.
economic might.
- Reuters, 2/23/2000

MIT Lincoln Laboratory
9

RKC 11/00

Recent Attack Scenario: Feb 2000 “DDOS”

Attacker(s) Victims:
Yahoo, eBay,
etc…

Attack type: “DDOS” – Distributed denial of service

Intermediate Victims

• Attacker(s) compromised hundreds of intermediate
victims which were used in a coordinated packet flood
attack on eCommerce sites

MIT Lincoln Laboratory
10

RKC 11/00

Preventing and Detecting the DDOS Attack

• Attack could be prevented if early stages of probing and
software installation are detected (and if known security
flaws are corrected)

• Intrusion detection systems analyze many data sources to
discern normal traffic/actions from malicious
traffic/actions in order to detect and stop attacks

Network Traces
Host Data: Auditing, Logfiles,
File System Info, etc..

MIT Lincoln Laboratory
11

RKC 11/00

One Type of Conventional Intrusion
Detection: Signature Spotting

• Approach: Spot suspicious signatures in the network traffic
• Typical signatures for Unix systems

– Login incorrect
– finger
– passwd
– .rhosts

• Problems with signature systems
– Signatures are chosen by experts with limited regard for

impact on false alarm rate
– No use of context around the signature occurrence
– Need advance knowledge of the signatures, so can’t detect

new attacks

• Deployment status: in use at hundreds of military
installations world-wide as well as many commercial
establishments

MIT Lincoln Laboratory
12

RKC 11/00

Data Volume Example
>100 Military Bases: 1998

• Transcripts created only for sessions with high warning values
• Many connections (231M), fewer transcripts (2.9M),

and very few serious incidents (418)
• Critical need for improved intrusion detection accuracy

231 Million
Network
Sessions

Human analysts examine
session list and transcripts…
find 418 validated incidents

2.9 Million
Transcripts

Reduction
factor: 1/ 80 Reduction

factor: 1/ 6937

Internet Firewall
User Workstations
and Servers

Local Area
Network

Traffic
Sniffer

Intrusion
Detection
System

MIT Lincoln Laboratory
13

RKC 11/00

Macroscope
Functional Diagram

• Sensor: NetTracker - Robust packet assembly and statistics
• Algorithms

– Bottleneck Verification - detection of attacks that acquire
privilege, regardless of method

– Attack Code Models - detection of code to acquire privileges
– Probe and DoS Detect/Ident - detection of attacks that map

the network and absorb its resources

• Database - easy access/retrieval of information
• RapIDisplay - clear display of attack information

Bottleneck Verification
Of Privilege Acquisition

RapIDisplay
Analyst

Workstation
Database

Lo
ca

l A
re

a
N

et
w

or
k

NetTracker
Probe and DoS

Detectors and Identifiers

U2S Attack Code
Detectors

MIT Lincoln Laboratory
14

RKC 11/00

Model-based Intrusion Detection:
Bottleneck Verification

• Bottlenecks are desirable for system security

• Well-designed systems have one bottleneck for transitioning from
normal to privileged access

• Key Idea: Detect bottleneck bypasses

• Need not know all possible ways to evade bottleneck, so new
attacks can be found!

Normal
User State

Transition
Bottleneck

Privileged
State

State Diagram
(notional)

All Normal
Users

Privileged
User

Entering the system:

MIT Lincoln Laboratory
15

RKC 11/00

mail
No mail for root.
#

Real Air Force Session
Returning Attacker

• User types nothing suspicious, so signature spotting score is
low

• Bottleneck verification sees that the user has obtained root
privileges

login:
Password: banana1

mismith

Permission denied

Signature
Spotting
Warning
Score

Bottleneck
Verification
Warning
Score

./ksh
cd .netscapeliontamer%

liontamer%
#
csh:
csh

MIT Lincoln Laboratory
16

RKC 11/00

1998 DARPA Intrusion Detection Evaluation1998 DARPA Intrusion Detection Evaluation
Simulation Network OverviewSimulation Network Overview

Outside
Internet

Eyrie AF Base
•http
•smtp
•pop3
•FTP
•IRC
•Telnet

•X
•SQL/Telnet
•DNS
•finger
•snmp
•time

Primary Services/Protocols

Packet Sniffer

Inside

R o u t e r

1000’s Hosts, 100’s Users
Normal and Attack Traffic

•UNIX Workstations
•CISCO Router

MIT Lincoln Laboratory
17

RKC 11/00

Detecting Local Users
Illegally Becoming Root

• Bottleneck Verification is better at finding attacks and
rejecting false alarms

• At 1 False Alarm/day, BV detects 79%; Signature 2.6%
• At 100 False Alarms/day, BV detects 80%; Signature 38%

Attacks: 38
Normal: 660,049

0

10

20

30

40

50

60

70

80

90

100

0 33 66 100 133

A
tt

ac
ks

 D
et

ec
te

d
 (

%
)

False Alarms Per Day

Bottleneck Verification (unofficial)

Signature
Verification

1998 DARPA
Evaluation Data

(Network)
Note: this is not a blind
evaluation, as the data is
produced by MIT Lincoln
Laboratory. Do not
compare with other DARPA
contractor results.

MIT Lincoln Laboratory
18

RKC 11/00

Earlier Detection is Better

• Bottleneck Verification does a terrific job of finding an
attack after it has been launched

• But, it would be nice to detect someone preparing to attack

• Detecting attacks in source code is a first step
– Many features present in source code are also present in

compiled code, but feature extraction is easier for source
code

– If desirable, features could be extracted from executables

MIT Lincoln Laboratory
19

RKC 11/00

What Type of Attack Source Code?

• Probes, denial-of-service and remote-to-local attacks can
be developed and executed remotely, so defender may not
see code in any form

• Trojans are of interest, but limited examples (at time of
initial work, many examples recently)

• User-to-superuser attacks are launched on a system that is
being defended

– Could see source code, compilation, executables
– Defender controls the system environment and could monitor

all incoming data
– We know Unix well, so start there

MIT Lincoln Laboratory
20

RKC 11/00

Requirements

• Select features that will generalize across attack examples
– But lightweight feature search--no detailed analysis
– Single pass is best; perhaps single pass with preprocessor

support

• Use technique that can be improved with additional data,
but avoid “one attack gets one feature” approach

MIT Lincoln Laboratory
21

RKC 11/00

Approach: Distinguishing U2S Attack
from Normal Code

• Count selected attack-like operations
• Use pre-trained classifier to label attack-like code
• Detect/Prevent attack-like code from infecting host
• Alert Intrusion Detection System

• Key elements
– Selecting the correct attack-like operations
– Training a classifier to generalize across attack classes

main(){
int attackvar;

D
at

a
S

ou
rc

e

Incoming
code

Classifier OK: Save

Attack:
Alert

Intrusion
Detection
System

Feature
Extraction

MIT Lincoln Laboratory
22

RKC 11/00

Data Set 1: Shell Software

• Attack Software (20 examples: 19 bash,ksh,sh; 1 csh)
– All Unix attacks at rootshell.com from Jan 1, 1998 to April 1,

2000 (6 files)
– All Unix attacks at anticode.com (6 files)
– Misc. Unix attacks from web from 1996 onward (8 files)

• Normal Software (382 examples)
– SHELLdorado (http://www.oase-shareware.org) (192 files)
– RedHat Linux 6.1 scripts in init.d, rc[0123S].d (134 files)
– Portable Shell Programming (Bruce Blinn) scripts (32 files)
– Learning the BASH Shell (Newham and Rosenblatt) (13 files)
– Learning the Korn Shell (Rosenblatt and Loukides) (11 files)

MIT Lincoln Laboratory
23

RKC 11/00

Data Set 2: C Software

• Attack Software (73 examples)
– All Unix attacks stored at rootshell.com from Jan 1, 1998 to

April 1, 2000 (18)
– All Solaris 2.5.1-2.7,x86,General/RedHat Linux, SCO, and AIX

attacks at anticode.com (41)
– BugTraq exploits available between April 1 and June 1 (14)

• Normal Software (>1700 files)
– Filesystem tools (fileutils-4.0)
– User interaction tools (shell-utils-2.0)
– Process control (bash-2.04, gdb-4.18)
– Network interaction (sendmail-8.10.0, apache-1.3.12)
– Lexical analysis (flex-2.54)
– Window manager interaction (emacs 20.6)

MIT Lincoln Laboratory
24

RKC 11/00

Feature Extraction

• Goal: represent all equivalent actions in one feature

• But, languages have many ways to express same operation

• For now, perform one-pass scan of a single file
– Separate comment sections from code sections
– Ignore static call graph

MIT Lincoln Laboratory
25

RKC 11/00

Language Independent Features

• Comments: “sploit, exploit, vulnerab”

• File or directory creation or deletion
– Link, mkdir
– unlink, rmdir

• File permission modification
– setuid, setgid
– chown, chgrp

• Process initiation: exec, system and variants

MIT Lincoln Laboratory
26

RKC 11/00

Shell Language Specific Features

• Embedded Low-level language
– Assembly using the asm directive
– Lines of “C” code

• Accessing passwd, shadow password file

• Accessing a core file

• Calling the shell in interactive mode

• Creating a shared library

• Using touch to set date/time

• Altering local security
– .rhosts, /etc/hosts (performing the alteration)
– Localhost, 127.0.0.1 (accessing the host)

MIT Lincoln Laboratory
27

RKC 11/00

C Language Specific Features

• Embedded low-level language
– Using the asm directive
– Using arrays of executables stored as data

• Adding passwd, shadow password entry

• Using ptrace

• Access environment variables

MIT Lincoln Laboratory
28

RKC 11/00

Feature Scanning
Implementation Details

• Example feature patterns (as perl regexp)
– Simple: File Link feature

 Shell: \b((?<!un)link|ln)\b
 C: \b((?<!un)link)\b

– Complicated: Detecting set user/group id
 Sh:\bchmod\b.*?(((u|g|ug|gu)[+=]\S*?s)|(?:\d*?[4567]\d\d\d)))
 C: \bset(e?uid|e?gid)\b
 Differences: shell affects file, whereas C affects running program

• Observations from developing feature patterns
– Different mechanisms to accomplish similar things are

counted together
 link and ln; chmod numeric and symbolic permissions

– Common use of macros in C makes feature selection hard
without preprocessor support

– Feature patterns could be targeted to specific architetures

MIT Lincoln Laboratory
29

RKC 11/00

Accurate Labeling of Source Requires
Selecting Best Features

• Signature combinations can be better than isolated features
• Some combinations separate attacks from normal data,

others don’t
• Classifiers learn a label for a given combination of features

– Some classifiers also provide posterior probabilities
– We can use this to select the best features…

Attack

Normal

Feature 2 counts

F
ea

tu
re

 1

Feature 3 counts

F
ea

tu
re

 1

F
ea

tu
re

 1

?
N

or
m

al
A

tta
ck

MIT Lincoln Laboratory
30

RKC 11/00

Feature Selection Process: Classifier

• Two-layer perceptron
– K input nodes, feature input normalized to 0 mean, std dev=1
– 2K hidden nodes
– 2 outputs

• Train weights w using backpropagation of errors with
weight updating after each training pattern

jkw

jx

ijw

ky

ix

Attack Normal

Hidden
Nodes

MIT Lincoln Laboratory
31

RKC 11/00

Feature Selection Process: Algorithm

• Improve detection of attacks by adjusting class a-priori
probabilities to 70% attacks and 30% normal data

• Train network with each feature, select best single feature
• Add a second feature, select best two features
• Continue until no more improvements

• Train and test using 20-fold cross-validation
– Subdivide data into 20 samples
– Use 19 for training, 1 for testing
– Cycle through training/testing groups to determine how well

feature generalizes on all of the data

MIT Lincoln Laboratory
32

RKC 11/00

Feature Selection Overview

• Train and test on different data to understand how well
approach can generalize

Scan
Attack Files

Train
Network

Test
Network

Scan
Normal Files

1 0 9 8 3 4...
0 1 9 7 3 4...

Separate
into “folds”

main(){
int a;

main(){
int a;

Weights Summary
Score

(Across all folds)
%correct

Feature VectorsF
ea

tu
re

 V
ec

to
rs

Training Folds
Vectors

Test Fold Vectors

MIT Lincoln Laboratory
33

RKC 11/00

Results: Shell Source Code

• With comments, best performance with 2 features
– Comment about exploit
– Accessing a core file
– 20/20 detections, 1 false positive (382 Normals)

• Without comments, best performance with 7 features
– Making a file set-user/group-id
– Accessing a core file
– Modifying .rhosts or /etc/hosts
– Creating a shared library object
– Copying a shell
– Logging back into the local host
– Creating a link
– 17/20 detections, 1 false positive
– Misses included csh attack, shell attacks with embedded C

• Note: each feature does NOT detect one attack; it is the
combination of features that is important

MIT Lincoln Laboratory
34

RKC 11/00

Results: C Source Code

• With comments, best performance using only 2 features
– Comment about exploit
– Unlink command
– 68/73 attacks detected, 4 false positives (>1700 Normals)

• But, Comments won’t appear in executable
• Without comments, best performance used 2 features

– setuid/setgid creation
– Embedded _asm_ line
– 53/73 attacks detected, 4 false positives

MIT Lincoln Laboratory
35

RKC 11/00

Spy vs. Spy

• To hide: exploit feature extraction shortcuts to
– Reduce feature counts

 Use alternative mechanism to accomplish the same action
 Use subroutines
 Put portions of software in different files

– Increase feature counts
 Insert #ifdef 0 with useless code
 Insert subroutines that are not called

• To respond: improve feature extraction
– Expand feature pattern to include new technique
– Perform static analysis of subroutines
– Parse #ifdefs in addition to comments
– Support cross-file analysis
– Perform dynamic analysis of subroutines in sandbox

MIT Lincoln Laboratory
36

RKC 11/00

Deployment Options

• Network Intrusion Detection System
– Our network IDS (Macroscope) can scan incoming mail and ftp-

data, looking for attacks
– But data rates in these services are high, and traffic can be

encrypted

• On each host
– Periodic file system scans
– Wrappers that perform a scan before making a file executable

 Reworked chmod from shell
 Chmod, open, creat library calls when executable file is closed

• This finds some attacks before they are launched; an IDS
finds attacks after they are launched

• This is defense-in-depth!

MIT Lincoln Laboratory
37

RKC 11/00

Summary

• Substantial R&D efforts in intrusion detection research and
other IA areas are underway

• Model-based intrusion detection algorithms work well
– Bottleneck Verification allows one to detect attacks without

prior knowledge of the attack
– U2S Attack software source code can (mostly) be

differentiated from normal software using neural networks

• Formal evaluations of such systems are being run, and
these evaluations help guide the research

• But, these efforts are new, the problems are difficult, and
attackers are working hard too...

MIT Lincoln Laboratory
38

RKC 11/00

Some Current and Future Challenges

• Disruption of evidence collection
– Bad guys: Encrypt data so that LAN sniffing is ineffective
– Good guys: Move from sniffing to host-based audit logging

• Broadening the base of attack
– Bad guys: Attack from multiple hosts over multiple sessions
– Good guys: Correlate evidence across multiple hosts and sessions

(inter-host communication, bottleneck verification)

• Social engineering and captured terminals
– Bad guys: Get access to real passwords, masquerade as real users
– Good guys: Look for seemingly legitimate but anomalous behavior

• Broadening the number of victim systems
– Bad guys: Attack multiple hosts at the same time
– Good guys: Correlate evidence across multiple targets

