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Building a Secure Network

Vulnerabilities

Prevention

Intrusion Detection

Response/ Tolerance

Intrusion Detection

* Primary assumptions:
— System activities are observable
— Normal and intrusive activities have distinct
evidence

e Main technigues:
— Misuse detection: patterns of well-known
attacks

— Anomaly detection: deviation from normal
usage




The State of Current ID Techniques

» Poor effectiveness:

— Marginal true positive rate:

* Signatures not adaptive to new network
environments and attack variations

— High false positive rate:
» Especially for anomaly detection
» Poor theoretical foundations and
development methodology
— Pure knowledge engineering.

— But the networking environment too
complicated.

DM for Building ID Models

» Motivation:
— A systematic IDS development toolkit.

» Approach:
— Mine activity patterns from audit data;

— ldentify “intrusion patterns” and construct
features;

— Build classifiers as ID models.

* Results:

— One of the best performing systems in 1998
DARPA Evaluation.




The DM Process of Building ID
Models
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Data Mining for ID

* Relevant data mining algorithms:
— Classification: maps a data item to a category
(e.g., normal or intrusion)
* Rule learner

— Link analysis: determines relations between
attributes (system features)

» Association rules
— Sequence analysis: finds sequential patterns
* Frequent episodes

Classifiers As ID Models

e Classification rule learner:

 use the most distinguishing and concise
attribute/value tests for each class label.

« Example rule-set:

—if (wrong_fragment =1 AND protocol_type =
icmp) then “pod.”

— else if (protocol = icmp_echo_request AND
host_count =3 AND srv_count = 3) then
“smurf.”

—else normal.




Classifiers As EFFECTIVE ID
Models

* Need features with high information
gain, i.e., reduction in entropy (a
measure of data “impurity/uncertainty”)
—temporal and statistical features for ID

e Qur approach:
— Mine frequent sequential patterns

— ldentify “intrusion-only” patterns and construct
features accordingly
» The constructed features have high information gain

Mining Audit Data

» Basic (standard) algorithms:
— Association rules: intra-audit record patterns
— Frequent episodes: inter-audit record patterns
— Need both

* Need to efficiently compute only the
“relevant” patterns:
— Utilize schema-level information

— The “interestingness” of a pattern = whether it
contains “important” attributes




Association Rules

e Motivation:
—Correlation among system features
e Y [c, s]

e Cc: confidence
» S: support

e Example from shell commands:
—Mail - am, hostA [0.3, 0.1]

Frequent Episodes

» Motivation:

— Sequential information (system
activities)
-X,Y - Z][c,s, w]
* X,Y, and Z are in different records
* these records are within w

e Example from shell commands:
—(vi, C, am) - (gcc, C, am) [0.6,0.2,5]




Extensions to Data Mining
Algorithms

» Designating the “important” attributes
to compute “relevant” patterns
— axis attribute(s)
— reference attribute(s)

* Uncovering low frequency but
important patterns

— level-wise approximate mining
— mining with relative support

AXxis Attribute(s)

— axis attribute(s) as an “item constraint”:
» the most important attribute, e.g., service
* an itemset must contain axis attribute values

& D 7 >

axis non-axis attributes
attributes (auxiliary information)

(e.g.,id)




AXxis Attribute(s) (Continued)

—Compute sequential patterns in two

phases:

 associations using the axis attribute(s)
» serial episodes from associations

(A B)
(A ! B)
(A J B)

Example (service is the axis
attribute):
(service = telnet, src_bytes = 200,
dst_bytes =300, flag = SF),
(service = smtp, flag = SF) -
(service = telnet, src_bytes = 200)

Reference Attribute(s)

the “subject” of a sequence of related “actions”

e.g., connections to the same destination host:
(service=http, flag=S0), (service=http, flag=S0) -
(service=http, flag=S0)

Al S1
A2 S1
Al S
A2 S2
Al S3

A2 S

reference attribute(s) as an

item constraint:
records of an episode must
have the same reference
attribute value




Feature Construction from Patterns
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Feature Construction from
Patterns

» Parse an “intrusion-only” pattern

—ldentify the anatomy (in reference and
axis attribute(s)) and invariant (in non-
axis attribute(s)) of an attack;

—Add features that use count, percent,
and average operations on the attribute
values in the pattern.

10



Feature Construction
Example

* An example: “syn flood” patterns
(dst_host is reference attribute):
— (flag = SO, service = http),

(flag = SO, service = http,) -
(flag = SO, service = http) [0.6, 0.1, 2]
— add features:

 count the connections to the same dst_host in the
past 2 seconds, and among these connections,

* the percentage with the same service,
* the percentage with SO

Theoretical Underpinnings

 “Intrusion-only” patterns identify
how a set of intrusion records
differ from normal records

» Features constructed from these
patterns separate intrusion and
normal records
—i.e., they have high information gain
— hence resulting classifiers more accurate
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1998 DARPA ID Evaluation
 The data:

— Total 38 attack types, in four categories:
» DOS (denial-of-service), e.g., syn flood
* Probing (gathering information), e.g., port scan

* r2| (remote intruder illegally gaining access to
local systems), e.g., guess password

» u2r (user illegally gaining root privilege), e.g.,
buffer overflow
— 40% of attack types are in test data only,
l.e., “new” to intrusion detection systems
* to evaluate how well the IDSs generalized

DARPA ID Evaluation (cont’'d)

 Features:

— “Intrinsic” features:
* protocol (service),
* protocol type (tcp, udp, icmp, etc.)
* duration of the connection,

» flag (connection established and terminated
properly, SYN error, rejected, etc.),

» # of wrong fragments,
* # of urgent packets,

» whether the connection is from/to the same ip/port
pair.
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DARPA ID Evaluation (cont’d)

» Features constructed from mined
patterns:

—temporal and statistical “traffic” features that
describe connections within a time window:

* # of connections to the same destination host
as the current connection in the past 2 seconds,
and among these connections,

* % of rejected connections,

* % of connections with “SYN” errors,

* % of different services,

* % of connections that have the same service,
* % of different (unique) services.
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Major Limitations

Mainly misuse detection

Requires labeled training data

— not realistic for many environments
Assumes fixed “session” definition,
e.g., hetwork connection

— attacks can be extended and coordinated
Need well engineered approach for
real-time performance

The Need for Cost-sensitive ID

High-volume automated attacks can
overwhelm an IDS and its staff.

Use cost-sensitive data mining algorithms to
construct ID models that consider cost
factors:

— damage cost, response cost, operational cost, etc.
Multiple specialized and light ID models can
be dynamically activated/configured.

Cost-effectiveness as the guiding principle
and multi-model correlation as the
architectural approach .
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Cost Factors of IDSs

Attack taxonomy: result/target/technique
Development cost

Damage cost (DCost)

— The amount of damage when ID is not available or
ineffective.

Response cost (RCost)

— The cost of acting upon an alarm of potential
intrusion.

Operational cost (OpCost)
— The cost of processing and analyzing audit data ;
— Mainly the computational costs of the features.

Cost Models of IDSs

e Thetotal cost of an IDS over a set of
events.
» CumulativeCost(E) =2 4 (CCost(e) + OpCog(€))
» CCost(e), the consequential cost, depends
on prediction on event e
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Consequential Cost (CCost)

 For event e:
Outcome CCost(e) Conditions
Miss (FN) DCost(e)

FaseAlarm (FP)

RCog (€' )+PCost(e)
0

DCog(€) 2 RCod(e’)
Otherwise

Hit (TP) RCos(e)+£DCog(e) |DCos(e) = RCost(€)
DCost(€e) Otherwise

Normal (TN) 0

Misclassified Hit |RCog(€)+£éDCod(e) [DCog(€) = RCos(e’)
DCost(€) Otherwise

Cost-sensitive Modeling:
Objectives

* Reducing operational costs:
— Use cheap features in ID models.

* Reducing consequential costs:
— Do not respond to an intrusion if RCost >

DCost.
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Cost-sensitive Modeling:
Approaches

* Reducing operational costs:

— A multiple-model approach:

» Build multiple rule-sets, each with features of
different cost levels;

» Use cheaper rule-sets first, costlier ones later only
for required accuracy.
— Feature-Cost-Sensitive Rule Induction:

» Search heuristic considers information gain AND
feature cost.

Cost-sensitive Modeling:
Approaches (continued)

* Reducing consequential costs:

— MetaCost:

» Purposely re-label intrusions with Rcost > DCost
as normal.

— Post-Detection decision:

* Action depends on comparison of RCost and
DCost.
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Anomaly Detection

* Motivations:
—Detect novel attacks.

—Provide techniques for:
* Building the “best’ possible models.

 Predicting and characterizing the
performance of the models.

e Approach:

—Information-theoretic based measures.

A Case Study

 Anomaly detection for Unix
processes.

« UNM sendmail system call traces
—“Short sequences” as normal profile

— A classification approach:

* Given the first k system calls, predict the
k+1st system call

—How to determine the “sequence length”
Kk?

18
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Entropy
H(X) = =2 P(x)log(P(x))

~Ex[log(P(X))]
0

AV

Given random variable X, samples from X can be
encoded in H(X) bits. Entropy is a measure of

“uncertainty”.

Conditional Entropy
H(Y | X) = —Eq, [H(Y [ X =X)]
== P> P(y|x)logP(y|X)
=2 P(x,y)logP(x|y)

X,y

How “uncertain” is Y given X?
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Conditional Entropy for
System Call Data

» Given a system call sequence (A, A, ...,A,), how
to predict the next system call A, ;?

*LetY be the sequence (A, A,,....,A., Aq), and X
be the sequence (A;,A,,...,A,),

» Conditional entropy H(Y|X):
* how much uncertainty remains for A, after
we have seen the first k system calls.

How to Compute H(Y|X)

Let S be the set of all length k+1 system calll
sequences in a trace,
S={x| x= (ALA,,....A., Ay) in the trace}.
Let |x| be the number of occurrence of x in S.
Let y(x) be the length-k subsequence of x.
YX)=(A,A,,.. ., AY)-

Then H(X|Y):Z:g:log(h|/z<x|)|

because P(x,y)=P(x) = %

)
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ition Entropy vs.
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Trace
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What Is the Best Sequence
Length

* Get the bigged gain while paying the | east cog.

* Define the cog to bethetimeto processone system
call sequence.

* Define the gain to be accuracy of the processng,
where accuracy=1-miss_classification_rate.

Time to Process One
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Accuracy/time
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Conclusion and Future Work

e Data mining can be used to
improve the ID development
process.

 Future work
—Correlation techniques for combining

outputs from multiple sensors.

—ID for emerging environments, e.g.,
wireless ad-hoc networks.
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AXxis Attribute(s) (Continued)

—very important for frequent episodes:

e association A - B can result in MANY
episode rules: (A|B)(,AB)* -
(AIB)(,AIB)*
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Research in Intrusion Detection

» James Anderson (1980)
— “malicious users”, anomaly detection

» Dorothy Denning (1987)
— generic intrusion detection system architecture

« SRI's IDES and NIDES (1992, 1993)
— statistical and rule-based methods

« UCSB’s USTAT and Purdue’s IDIOT (1995)

— state transition analysis and Colored Petri nets
 UNM'’s “self’ models of Unix processes (1996-)

— anomaly detection models w/ system call sequences
« MADAM ID (Lee etal. 1997-)

— using data mining to build ID models
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