Developing Data Mining Techniques for Intrusion Detection: A Progress Report

Wenke Lee Computer Science Department, North Carolina State University

The State of Current ID Techniques

- Poor effectiveness:
 - Marginal true positive rate:
 - Signatures not adaptive to new network environments and attack variations
 - High false positive rate:
 - Especially for anomaly detection
- Poor theoretical foundations and development methodology
 - Pure knowledge engineering.
 - But the networking environment too complicated.

DM for Building ID Models

- Motivation:
 - A systematic IDS development toolkit.
- Approach:
 - Mine activity patterns from audit data;
 - Identify "intrusion patterns" and construct features;
 - Build classifiers as ID models.
- Results:
 - One of the best performing systems in 1998
 DARPA Evaluation.

Data Mining for ID Relevant data mining algorithms: Classification: maps a data item to a category (e.g., normal or intrusion) Rule learner Link analysis: determines relations between attributes (system features) Association rules Sequence analysis: finds sequential patterns Frequent episodes

Classifiers As EFFECTIVE ID Models

- Need features with high *information* gain, i.e., reduction in *entropy* (a measure of data "impurity/uncertainty") – temporal and statistical features for ID
- Our approach:
 - Mine frequent sequential patterns
 - Identify "intrusion-only" patterns and construct features accordingly
 - The constructed features have high information gain

Extensions to Data Mining Algorithms

- Designating the "important" attributes to compute "relevant" patterns
 - axis attribute(s)
 - reference attribute(s)
- Uncovering low frequency but important patterns
 - level-wise approximate mining
 - mining with relative support

• the percentage with S0

1998 DARPA ID Evaluation

The data:

- Total 38 attack types, in four categories:
 - DOS (denial-of-service), e.g., syn flood
 - Probing (gathering information), e.g., port scan
 - r2l (remote intruder illegally gaining access to local systems), e.g., guess password
 - u2r (user illegally gaining root privilege), e.g., buffer overflow
- -40% of attack types are in test data only,
 - i.e., "new" to intrusion detection systems
 - to evaluate how well the IDSs generalized

Major Limitations

- Mainly misuse detection
- Requires labeled training data

 not realistic for many environments
- Assumes fixed "session" definition, e.g., network connection
 - attacks can be extended and coordinated
- Need well engineered approach for real-time performance

• For event <i>e</i> :		
Outcome	CCost(e)	Conditions
Miss (FN)	DCost(e)	
False Alarm (FP)	RCost(e')+PCost(e)	$DCost(e') \ge RCost(e')$
	0	Otherwise
Hit (<i>TP</i>)	$RCost(e) + \mathcal{E}DCost(e)$	$DCost(e) \ge RCost(e)$
	DCost(e)	Otherwise
Normal (<i>TN</i>)	0	
Misclassified Hit	$RCost(e') + \mathcal{E}DCost(e)$	$DCost(e') \ge RCost(e')$
	DCost(e)	Otherwise

Cost-sensitive Modeling: Approaches

- Reducing operational costs:
 - A multiple-model approach:
 - Build multiple rule-sets, each with features of different cost levels;
 - Use cheaper rule-sets first, costlier ones later only for required accuracy.
 - Feature-Cost-Sensitive Rule Induction:
 - Search heuristic considers information gain **AND** feature cost.

- Reducing consequential costs:
 - MetaCost:
 - Purposely re-label intrusions with Rcost > DCost as normal.
 - Post-Detection decision:
 - Action depends on comparison of RCost and DCost.

Anomaly Detection

Motivations:

- Detect novel attacks.
- -Provide techniques for:
 - Building the "best" possible models.
 - Predicting and characterizing the performance of the models.

Approach:

-Information-theoretic based measures.

Conditional Entropy for System Call Data

- Given a system call sequence $(A_1, A_2, ..., A_k)$, how to predict the next system call A_{k+1} ?
- Let Y be the sequence $(A_1, A_2, ..., A_k, A_{k+1})$, and X be the sequence $(A_1, A_2, ..., A_k)$,
- Conditional entropy H(Y|X):
 how much uncertainty remains for A_{k+1} after we have seen the first *k* system calls.

