
1

Developing Data Mining
Techniques for Intrusion Detection:

A Progress Report

Wenke Lee
Computer Science Department,
North Carolina State University

Outline

• Intrusion detection: promises and
challenges

• A development process using data mining
• Cost-sensitive analysis and modeling
• Anomaly detection
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Building a Secure Network

Vulnerabilities

Intrusion Detection

Response/Tolerance

Prevention

Intrusion Detection

• Primary assumptions:
– System activities are observable
– Normal and intrusive activities have distinct

evidence
• Main techniques:

– Misuse detection: patterns of well-known
attacks

– Anomaly detection: deviation from normal
usage
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The State of Current ID Techniques
• Poor effectiveness:

– Marginal true positive rate:
• Signatures not adaptive to new network

environments and attack variations
– High false positive rate:

• Especially for anomaly detection

• Poor theoretical foundations and
development methodology
– Pure knowledge engineering.
– But the networking environment too

complicated.

DM for Building ID Models
• Motivation:

– A systematic IDS development toolkit.

• Approach:
– Mine activity patterns from audit data;
– Identify “intrusion patterns” and construct

features;
– Build classifiers as ID models.

• Results:
– One of the best performing systems in 1998

DARPA Evaluation.
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The DM Process of Building ID
Models

raw audit data

packets/
events

connection/
session
records

models

featurespatterns

10:35:41.5 A > B : . 512:1024(512) ack 1 win 9216
10:35:42.2 C > D: . ack 1073 win 16384
10:35:45.6 E > F: . ack 2650 win 16225
...

tcpdump packet data

time dur src dst bytes srv flag … 
10:35:39.1 5.2 A B 42 http SF … 
10:35:40.4 20.5 C D 22 user REJ … 
10:35:41.2 10.2 E F 1036 ftp SF … 
… … … … … .. . … … 

  

connection records
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Data Mining for ID

• Relevant data mining algorithms:
– Classification: maps a data item to a category

(e.g., normal or intrusion)
• Rule learner

– Link analysis: determines relations between
attributes (system features)

• Association rules
– Sequence analysis: finds sequential patterns

• Frequent episodes

Classifiers As ID Models

• Classification rule learner:
• use the most distinguishing and concise

attribute/value tests for each class label.

• Example rule-set:
– if (wrong_fragment ≥ 1 AND protocol_type =

icmp) then “pod.”
– else if (protocol = icmp_echo_request AND

host_count ≥ 3 AND  srv_count ≥ 3) then
“smurf.”

– ...
– else normal.
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Classifiers As EFFECTIVE ID
Models

• Need features with high information
gain, i.e., reduction in entropy (a
measure of data “impurity/uncertainty”)
– temporal and statistical features for ID

• Our approach:
– Mine frequent sequential patterns
– Identify “intrusion-only” patterns and construct

features accordingly
• The constructed features have high information gain

Mining Audit Data

• Basic (standard) algorithms:
– Association rules: intra-audit record patterns
– Frequent episodes: inter-audit record patterns
– Need both

• Need to efficiently compute only the
“relevant” patterns:
– Utilize schema-level information
– The “interestingness” of a pattern = whether it

contains “important” attributes
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Association Rules
• Motivation:

–Correlation among system features
–X → Y [c, s]

• c: confidence
• S: support

• Example from shell commands:
–Mail → am, hostA [0.3, 0.1]

Frequent Episodes
• Motivation:

–Sequential information (system
activities)

–X, Y → Z [c, s, w]
• X,Y, and Z are in different records
• these records are within w

• Example from shell commands:
– (vi, C, am) → (gcc, C, am) [0.6,0.2,5]
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Extensions to Data Mining
Algorithms

• Designating the “important” attributes
to compute “relevant” patterns
– axis attribute(s)
– reference attribute(s)

• Uncovering low frequency but
important patterns
– level-wise approximate mining
– mining with relative support

Axis Attribute(s)
– axis attribute(s) as an “item constraint”:

• the most important attribute, e.g., service
• an itemset must contain axis attribute values

axis
attributes
(e.g., id)

non-axis attributes
(auxiliary information)
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Axis Attribute(s) (Continued)
–Compute sequential patterns in two

phases:
• associations using the axis attribute(s)
• serial episodes from associations

(A

(A

B)

B)

(A B)

Example (service is the axis
attribute):

(service = telnet, src_bytes = 200,
dst_bytes = 300, flag = SF),
(service = smtp, flag = SF) →
(service = telnet, src_bytes = 200)

Reference Attribute(s)

A1
A2

S1
S1

A1 S3
A2 S3

A2
A1 S2

S2

reference attribute(s) as an
item constraint:

records of an episode must
have the same reference
attribute value

the “subject” of a sequence of related “actions”
e.g., connections to the same destination host:

(service=http, flag=S0), (service=http, flag=S0) →
(service=http, flag=S0)
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Feature Construction from Patterns

patterns
intrusion
records

mining

compare

intrusion
patterns

   new
features

historical
normal and
attack
records

mining

training data

detection
models

learning

Feature Construction from
Patterns

• Parse an “intrusion-only” pattern
– Identify the anatomy (in reference and

axis attribute(s)) and invariant (in non-
axis attribute(s)) of an attack;

–Add features that use count, percent,
and average operations on the attribute
values in the pattern.
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Feature Construction
Example

• An example: “syn flood” patterns
(dst_host is reference attribute):
– (flag = S0, service = http),

(flag = S0, service = http,) →
(flag = S0, service = http) [0.6, 0.1, 2]

– add features:
• count the connections to the same dst_host in the

past 2 seconds, and among these connections,
• the percentage with the same service,
• the percentage with S0

Theoretical Underpinnings

• “Intrusion-only” patterns identify
how a set of intrusion records
differ from normal records

• Features constructed from these
patterns separate intrusion and
normal records
– i.e., they have high information gain
– hence resulting classifiers more accurate
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1998 DARPA ID Evaluation

• The data:
– Total 38 attack types, in four categories:

• DOS (denial-of-service), e.g., syn flood
• Probing (gathering information), e.g., port scan
• r2l (remote intruder illegally gaining access to

local systems), e.g., guess password
• u2r (user illegally gaining root privilege), e.g.,

buffer overflow
– 40% of attack types are in test data only,

i.e., “new” to intrusion detection systems
• to evaluate how well the IDSs generalized

DARPA ID Evaluation (cont’d)
• Features:

– “intrinsic” features:
• protocol (service),
• protocol type (tcp, udp, icmp, etc.)
• duration of the connection,
• flag (connection established and terminated

properly, SYN error, rejected, etc.),
• # of wrong fragments,
• # of urgent packets,
• whether the connection is from/to the same ip/port

pair.
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DARPA ID Evaluation (cont’d)
• Features constructed from mined

patterns:
– temporal and statistical “traffic” features that

describe connections within a time window:
• # of connections to the same destination host

as the current connection in the past 2 seconds,
and among these connections,

• % of rejected connections,
• % of connections with “SYN” errors,
• % of different services,
• % of connections that have the same service,
• % of different (unique) services.
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Major Limitations
• Mainly misuse detection
• Requires labeled training data

– not realistic for many environments

• Assumes fixed “session” definition,
e.g., network connection
– attacks can be extended and coordinated

• Need well engineered approach for
real-time performance

The Need for Cost-sensitive ID
• High-volume automated attacks can

overwhelm an IDS and its staff.
• Use cost-sensitive data mining algorithms to

construct ID models that consider cost
factors:
– damage cost, response cost, operational cost, etc.

• Multiple specialized and light ID models can
be dynamically activated/configured.

• Cost-effectiveness as the guiding principle
and multi-model correlation as the
architectural approach .
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Cost Factors of IDSs
• Attack taxonomy: result/target/technique
• Development cost
• Damage cost (DCost)

– The amount of damage when ID is not available or
ineffective.

• Response cost (RCost)
– The cost of acting upon an alarm of potential

intrusion.

• Operational cost (OpCost)
– The cost of processing and analyzing audit data ;
– Mainly the computational costs of the features.

Cost Models of IDSs

• The total cost of an IDS over a set of
events:
• CumulativeCost(E) = � e∈ E (CCost(e) + OpCost(e))

• CCost(e), the consequential cost, depends
on prediction on event e
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Consequential Cost (CCost)

• For event e :

Outcome CCost(e)  Conditions 
Miss (FN) DCost(e)   
False Alarm (FP) RCost(e’)+PCost(e) DCost(e’) ≥ RCost(e’) 
  0 Otherwise  
Hit (TP) RCost(e)+εDCost(e) DCost(e) ≥ RCost(e) 
  DCost(e) Otherwise  
Normal (TN) 0   
Misclassified Hit RCost(e’)+εDCost(e) DCost(e’) ≥ RCost(e’) 
 DCost(e) Otherwise 
 

Cost-sensitive Modeling:
Objectives

• Reducing operational costs:
– Use cheap features in ID models.

• Reducing consequential costs:
– Do not respond to an intrusion if RCost >

DCost.
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Cost-sensitive Modeling:
Approaches

• Reducing operational costs:
– A multiple-model approach:

• Build multiple rule-sets, each with features of
different cost levels;

• Use cheaper rule-sets first, costlier ones later only
for required accuracy.

– Feature-Cost-Sensitive Rule Induction:
• Search heuristic considers information gain AND

feature cost.

Cost-sensitive Modeling:
Approaches (continued)

• Reducing consequential costs:
– MetaCost:

• Purposely re-label intrusions with Rcost > DCost
as normal.

– Post-Detection decision:
• Action depends on comparison of RCost and

DCost.
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Anomaly Detection

• Motivations:
–Detect novel attacks.
–Provide techniques for:

• Building the “best” possible models.
• Predicting and characterizing the

performance of the models.

• Approach:
– Information-theoretic based measures.

A Case Study

• Anomaly detection for Unix
processes.

• UNM sendmail system call traces
–“Short sequences” as normal profile
–A classification approach:

• Given the first k system calls, predict the
k+1st system call

–How to determine the “sequence length”,
k?
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Misclassification Rate vs.
Sequence Length
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Misclassification Rate for
Intrusion Traces
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Entropy
H(X) = − P(x) log(P(x))

x
�

= −EP[log(P( X))]
≥ 0

Given random variable X, samples from X can be
encoded in H(X) bits. Entropy is a measure of
“uncertainty”.

Conditional Entropy

How “uncertain” is Y given X?
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Conditional Entropy for
System Call Data

• Given a system call sequence (A1,A2,…,Ak), how
to predict the next system call Ak+1?

• Let Y be the sequence (A1,A2,…,Ak , Ak+1), and X
be the sequence (A1,A2,…,Ak ),

• Conditional entropy H(Y|X):
• how much uncertainty remains for Ak+1 after
we have seen the first k system calls.

How to Compute H(Y|X)
Let S be the set of all length k+1 system call
sequences in a trace,

S={x | x= (A1,A2,…,Ak , Ak+1) in the trace}.
Let |x| be the number of occurrence of x in S.
Let y(x) be the length-k subsequence of x.

y(x)=(A1,A2,…,Ak).

Then

because

H(X | Y ) =
| x |
| S |

log(
| x |

| y(x) |
)

x
�

||
||)(),(

S
xxPyxP ==
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Conditional Entropy
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Conditional Entropy for
Daemon
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Condition Entropy vs.
Misclassification Rate: Total

Trace
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Condition Entropy vs.
Misclassification Rate:

Mean of All Traces
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What Is the Best Sequence
Length

• Get the biggest gain while paying the least cost.

• Define the cost to be the time to process one system
call sequence.

• Define the gain to be accuracy of the processing,
where accuracy=1-miss_classification_rate.
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Accuracy/time
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Conclusion and Future Work

• Data mining can be used to
improve the ID development
process.

• Future work
–Correlation techniques for combining

outputs from multiple sensors.
– ID for emerging environments, e.g.,

wireless ad-hoc networks.



26

Thank You…

Misuse Detection

Intrusion
patterns

activities

pattern
matching

intrusion

Problem: can’t detect new attacks
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Anomaly Detection

activity
measures
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Problem: relatively high false positive rate - 
anomalies can just be new normal activities.

Match Maker / CA
IDS

IDS
Modeling Engine

ID models

attack data

attack data

ID models

A CIDF Architecture
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Axis Attribute(s) (Continued)
–very important for frequent episodes:

• association A → B can result in MANY
episode rules: (A|B)(,A|B)* →
(A|B)(,A|B)*

A

A

B

B

A B

A

A

B

B

A B

Research in Intrusion Detection
• James Anderson (1980)

– “malicious users”, anomaly detection
• Dorothy Denning (1987)

– generic intrusion detection system architecture
• SRI’s IDES and NIDES (1992, 1993)

– statistical and rule-based methods
• UCSB’s USTAT and Purdue’s IDIOT (1995)

– state transition analysis and Colored Petri nets
• UNM’s “self” models of Unix processes (1996-)

– anomaly detection models w/ system call sequences
• MADAM ID (Lee et al. 1997-)

– using data mining to build ID models


