CERIAS - Center for Education and Research in Information Assurance and Security

Skip Navigation
CERIAS Logo
Purdue University
Center for Education and Research in Information Assurance and Security

Big data security analyses

Research Areas: Network Security

Principal Investigator: Baijian Yang

Study how to better use macine learning to quickly identify events in big data environment.

Representative Publications

  • Zhang, T., Yang, B. (2016). Box-Cox Transformation in Big Data. Technometrics. www.tandfonline.com/loi/utch20

  • S. Nanda, F. Zafari, C. DeCusatisy, E. Wedaaz and B. Yang , “Predicting Network Attack Patterns in SDN using Machine Learning Approach”, IEEE NFV-SDN 2016, Palo Alto, CA, USA

  • T. Zhang and B. Yang, “Big Data Dimension Reduction using PCA”, to appear IEEE SmartCloud 2016, NYC, USA, 2016


  • B. Yang and T. Zhang, “A Scalable Feature Selection and Model Updating Approach for Big Data Machine Learning”, to appear IEEE SmartCloud 2016, NYC, USA, 2016


  • Zhang, T., & Yang (2018), B. Dimension reduction for big data. Statistics and Its Interface, 11(2), 295-306.

  • Ryu, S.-H.G, & Yang, B. Comparison of Machine Learning Algorithms and Their Ensembles for Botnet Detection. Dekalb, IL: International Conference of Information and Computer Technology, 2018.

  • Zhang, T., & Yang, B. (2017). An exact approach to ridge regression for big data. Computational Statistics, 32(3), 909-928.

Keywords: big data, intrusion detection, machine learning