

sian-Network-Based Anomaly Detection for MANETs - Zille Huma

the center for education and research in information assurance and security

BANBAD: Bayesian-Network-Based Anomaly Detection for MANETs

Chaoli Cai¹, Ajay Gupta¹ and Leszek Lilien^{1,2} ¹WiSe Lab, Western Michigan University ²Affiliated with CERIAS

- Bayesian Network (4)
- Application Models
 - > The Chain Application Model (5) The DAG Application Model (6)
- Training & Testing Processes (7)
- Simulation Results (8)
- Future Work (9)

4. Bayesian Network (BN)

- Used extensively for modeling knowledge in medicine, engineering, text analysis, decision support systems, etc.
- BN is a directed acyclic graph Nodes represent variables (features) > Arcs represent statistical dependence relationships among the variables, and local probability distributions for each variable

- Lack of fixed network topology
- Prevention
 - \succ Encryption, authentication, etc.
 - > Prevention alone can only reduce intrusions rather than eliminate them
 - Hence, *detection* is needed.
- Detection
 - Misuse detection known attacks
 - Anomaly detection unknown attacks
 - Hence, anomaly detection is needed.

5. The Chain Application Model • Special case of DAG

> Chain Model contains 4 features along with their corresponding ranges

- Power Consumption
- > Displacement
- Local Computation
- Communication
- > Velocity
- Incorporate various features using chain / tree model
- Set up acceptable ranges for features
- Goal is to reduce the false alarm rate and increase the detection rate

6. The DAG Application Model

- More realistic and powerful
- Detect anomalies not only for displacement but for local computation and communication, based on the evidence of power

 H_{O} H_2 H_1

Bi-directional Belief Propagation

- > In belief propagation algorithms, each node transmits a π message to its children and a λ message to its parents
- Calculate belief for each variable as

 \succ Bel $(H_1) = \alpha \pi (H_1) \equiv \lambda (H_1)$

- $\succ \pi (H_1) = \pi (H_0) \bullet M (H_1 \mid H_0)$ the prior probability
- $\succ \lambda (H_1) = M (H_2 \mid H_1) \bullet \lambda (H_2)$ the likelihood evidence
- Some notations
- >f (x) g (x) the dot product of two vectors
- >f (x) \blacksquare g (x) the congruent multiplication of two vectors
- $\geq \alpha$ a constant used to normalize a vector so that its elements sum to 1.0

- > Detect anomaly in displacement
- Conditional probability representation

 $M(D|V) = \begin{bmatrix} P(D_{21} | V_{11}) & P(D_{22} | V_{11}) \\ P(D_{21} | V_{12}) & P(D_{22} | V_{12}) \end{bmatrix}$

 $\geq P(D_{21} \mid V_{11})$ — the conditional probability of range D_{21} given range V_{11}

> M (D | V) — the conditional probability distribution of feature *D* given feature *V*

> Bel (H_1) = P (H_1 | e) — the posterior probability \geq e — evidence \succ A significant deviation between the prior and the posterior probabilities within any range of features of a node indicates an anomaly

 Data mining (prepares data for BANBAD) Construct DAG from raw data set efficiently Multimodal / Multisensor fusion (to process results of BANBAD) \geq Represent anomaly by audio, video, image, etc. /

Distribution issues

WESTERN MICHIGAN UNIVERSITY

WiSe (Wireless Sensornet) Lab **Department of Computer Science** Kalamazoo, MI 49008-5466 www.cs.wmich.edu/wsn