
Our Dynamic Solution

• We design a dynamic method that forces
the execution of the omitted code by
switching outcomes of relevant predicates
such that implicit dependences are
exposed.
– Explicit dependence is a dependence that can

be observed during the execution including
data dependence and control dependence.

Implicit Dependence

• DEFINITION Given an execution E, a predicate p, and a
use u s.t. there is no explicit dependence path between p
and u, let E’ be the reexecution of the same program with
the same input as E except the branch outcome of p’
being switched, p’ and u’ be the execution points in E’ that
match p and u in E, respectively, u implicitly depends on
p, iff
– (i) u’ is not found in E’, or,
– (ii) there is an explicit dependence path between p’ and u’.

An Example

• The explicit dependence path 5-4-3 in E’
implies 5 implicitly depends 3 in E.

1: X = …

2: Y = …

3: if (f(X)) then

5: …= Y

p

u

E:

1: X = …

2: Y = …

3: if (f(X)) then

4: Y = Y + 1

5: …= Y

p’

u’

E’

Two Challenges

• How to align points in two executions?
– it remains the same problem even though a

thread can be started instead at the moment
of the predicate execution.

• How to reduce the number of predicates
that are needed to verify?
– it could potentially be all the executed

predicates.

Towards Dynamically Handling Implicit Information Flow
Bin Xin and Xiangyu Zhang

On Going Work

• Forward scenario
– Goal: a low overhead dynamic information flow

system that handles implicit dependence.
– Sketched solution

• Taint the execution with security labels.
• If a predicate is tainted, both branches will be taken

by starting two threads (could be on two cores). The
two threads share the same security label space but
separated memory space.

• A DCD stack is maintained to synchronize the two
threads at the end of both branches.

On Going Work

• The soundness of predicate switching
– Switching one predicate may not suffice

1: X = … /* buggy */

2: Y = …

3: if (X > 10) then

4: if (X > 100) then

5: Y = Y + 1

5: …= Y

Author Information

• Bin Xin: Ph.D. student, Department of Computer
Science, Purdue University, West Lafayette, IN 47906;
E-mail: xinb@cs.purdue.edu.

• Xiangyu Zhang: Assistant Professor, Department of
Computer Science, Purdue University, West Lafayette,
IN 47906; E-mail: xyzhang@cs.purdue.edu.

Evaluation

1115V3-F3

236V3-F2sed

11V2-F3gzip

62313V4-F2grep

22V5-F6

56V4-F6

11V3-F10

14V2-F14

55V1-F9flex

of expanded edges# of verificationErrorBenchmark

An Example

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

if (p1 || p2) {
 s1;
 s2;
}
if (p3) {
 while (p4) {
 s3;
 }
} else {
 if (p5) {
 return;
 }
}
s4;

1. p1

2. s1

1. p2

3. s2

5. p3

6. p4 10. p5

7. s3

14. s4

EXIT

control flow edge
Branching ()
Merging ()

Challenge Two – Reducing the
Number of Verification

• Two scenarios
– Backward scenario: debugging
– Forward scenario: dynamic control dependence.

• Our solution for the backward scenario
– Given a program failure (seg fault or wrong

output value), a dynamic slice is computed.
Confidence analysis (our PLDI 2006 work) is
applied to produce a pruned slice.

– Only the predicates in the slices are tested for
implicit dependences.

An Example (continued)

[]popEXIT1

[<51,EXIT>]pop141

[<62,EXIT>|<51,EXIT>]replace top w/ <62, EXIT>62

same as above-71

[<61,EXIT>|<51,EXIT>]push <61,EXIT>61

[<51,EXIT>]pop

push <51,EXIT>

51

same as above-31

same as above-21

[<p2@11,5>]replace top w/ <p2@11,5>p2@11

[<p1@11,5>]push <p1@11,5>p1@11

Control Dependence StackInstrumentationTrace

Evaluation

2.54x-2.57x--Average

--2.02x7939300.twolf

1.80x1281.97x7136256.bzip2

3.37x1752.26x5223197.parser

1.54x1961.41x12790181.mcf

--3.37x8124175.vpr

2.94x373.41x12.63.7164.gzip

2.19x1601.83x7340132.ijpeg

2.58x6572.22x255115129.compress

3.09x1.983.55x0.640.18124.m88ksim

2.78x143.73x5.031.35008.espresso

ImprovementOld(s)OverheadDCD(s)Base(s)Benchmark

Existing Dynamic Solutions Fail

• Dynamic analysis is typically designed to
focus on dynamic information collected
from executed statements, and statements
whose execution is omitted do not produce
any dynamic information, detection of IIF
becomes very challenging.
– It is a long standing open problem in dynamic

information flow and debugging

What is Implicit Information Flow (IIF)?

• Information flow caused by execution
omission.

1: X = …

2: Y = …

3: if (f(X)) then

4: Y = Y + 1

5: …= Y

If f(x) = False,

the branch at 3 is not taken, Y
at 5 has the same value as Y
at 2.

There is information flow from
X to Y – Implicit Information
Flow

Why IIF is Important

• Information protection • debugging

1: X = getpassword()

2: Y = 0

3: if (X != “xin&zhang”) then

4: Y = Y + 1

5: sendpacket(Y)

1: X = … /*buggy*/

2: Y = …

3: if (f(X)) then

4: Y = Y + 1

5: …= Y

Y==0 implies password is
“xin&zhang”

Dependence backtrace
misses the root cause

Static Solution Is Too Conservative

• Static solution consider all
possible paths

1: X = …
2: Y = …
3: if (f(X)) then
 …
 if (…) then
40: Y = Y + 1
 …
50: …= Y

• Points-to analysis

Static analysis considers there is
always information flow from X to Y.

1: X = …

2: Y = …

3: if (f(X)) then

4: *p = Y + 1

5: …= Y

If p may points to Y, static
analysis considers there is
information flow from X to Y.

Efficient Execution Alignment

 1: X = …
 2: if (P) then
 5: while (…)
 6: …
 5: while (…)
 6: …
 7: if (…) then

 8: …= X

E:

 1: X = …
 2: if (P) then
 3: *p=*p…
 4: F()
 1: X=…
 2 if (P) then
 …
 8: …=X
 5: while (…)
 7: if (…) then
 8: …= X

E’: (with P in E switched)

Entry
|
7

Entry
|
2
|
Entry
|
7

Entry
|
7

Observation: two execution points
can be aligned if they have the
same control dependence.

Challenge One – Execution Alignment

F () {
 1: X = …
 2: if (P) then
 3: *p = *p …
 4: F()
 5: while (…)
 6: …
 7: if (…) then
 8: …= X
}

p is a may alias to X

 1: X = …
 2: if (P) then
 5: while (…)
 6: …
 5: while (…)
 6: …
 7: if (…) then

 8: …= X

E:

 1: X = …
 2: if (P) then
 3: *p=*p…
 4: F()
 1: X=…
 2 if (P) then
 …
 8: …=X
 5: while (…)
 7: if (…) then
 8: …= X

E’: (with P in E switched)

Detection Of Dynamic Control
Dependence

• Existing dynamic control dependence (DCD) detection
can not meet our goal
– Offline: the control flow trace is first collected and then

processed to compute DCD
• Expensive (both time and space)

– Online: if a statement s has multiple static control depending
predicates p1,p2,…, at the moment s is executed, the latest px is
the dynamic CD.

• Not efficient

• Can not handle interprocedural DCD.

Our Approach

• Observation: DCD at runtime has a stack-like structure.
– An entry is pushed onto the control dependence stack if a

branching point (predicates, switch statements, etc.) executes.
– The current entry is popped if the post-dominator of the

branching point executes.

• Advantages:
– Multiple static control depending predicates are no longer a

problem, becomes much more efficient.
– Naturally handle interprocedural DCD even in the presence of

irregular control flow caused by longjmp, setjmp.

DF0-53E.pdf 1 3/5/2007 2:53:23 PM

coj
Text Box
DF0-53E - Towards Dynamically Handling Implicit Information Flow - Bin Xin - ASA

