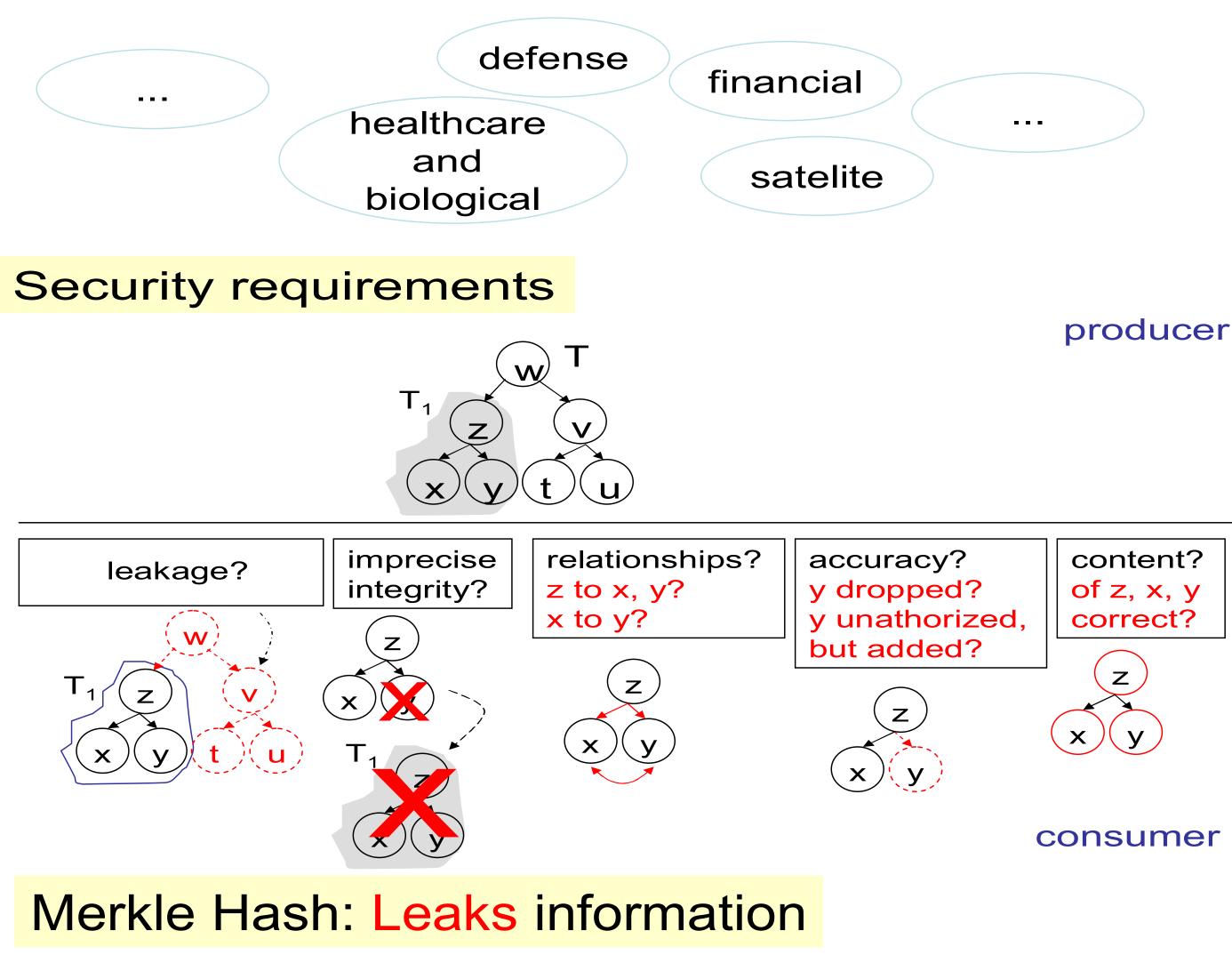


/4-46F - Completely-Secure Sharing of Trees and Hierarchical Content - Ashish Kundu - IAP

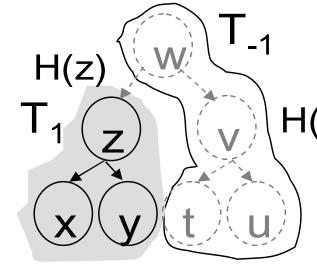
the center for education and research in information assurance and security

Completely-Secure Sharing of Trees and Hierarchical Content Ashish Kundu, Elisa Bertino CERIAS, Purdue University

Hierarchical data forms: trees


- XML VoiceXML
- Composite data objects
- Serialized objects
- Views of mobile applications

Structural Signature


0	
S _x :	(p ^e _x , r ^e _x)
Structural signature	– p ^e _x , r ^e _x : EPON, ERON of x
of node x	
C _x :	$\Delta(S_x, H(g_x))$
Content signature of	– g _x : content of node x
node x	– H: one-way collision-resistant
	hash function
	$-\Delta$: MAC operator
$\delta^{h}(V_{i})$:	$\rho^{h}(S_{x}, x \text{ in } V_{i})$
Signature of a	$-\rho^h$: <i>h</i> -order sequence of nodes
sub-set of nodes V _i	in V _i
in tree T	- <i>h</i> : p: post-order, r: pre-order
Signing & Sharing	
	Sign
	\mathbf{x}
	$(S_x, \Delta(S_x), C_x)$
Snare : < signed nodes, s	signature of the set of nodes, number >
	No leakage
	$(S_z, \Delta(S_z), C_z)$
$(S_x, \Delta(S_x),$	C_x (S_y , $\Delta(S_y)$, C_y)
	xy
Producer	→ Consumer
	$S = S \rightarrow A(\delta^p) = 3 \wedge A(3) > 0$

Problem: secure distribution of hierarchical content.

Consumer-side Integrity Verification

H(w)

• H(w) = G(H(z) | H(v))

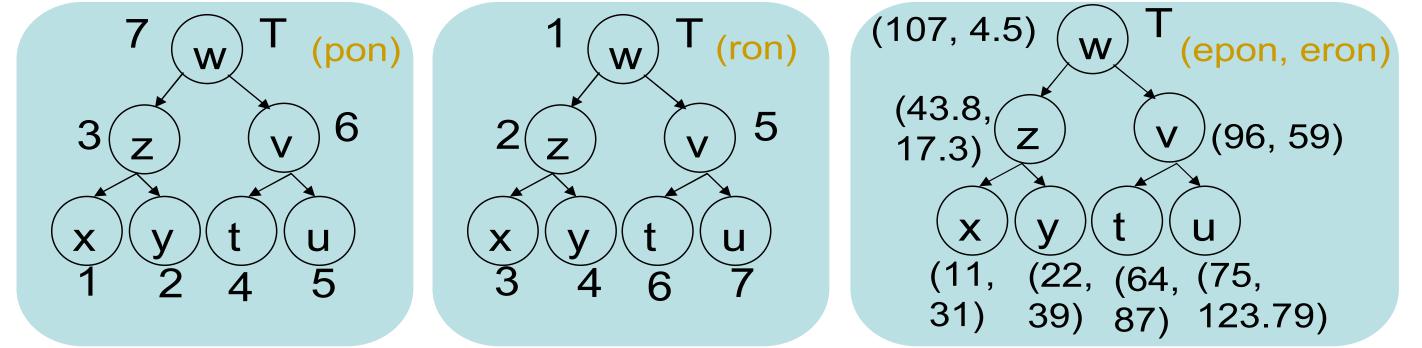
• H(z) = G(H(x) | H(y))

• H, G: hash functions for leaves, non-leaves

H(v) • Uses cascaded hashing: non-associative

Leakage

• Structural ordering between z, v and w. • H(V), H(w)


Inference attacks

✓ Node v is on the right of x, y, z: semantic relationship between v and x, y, z

 \checkmark Knowledge of H(v) and H(z): *tree is larger, semantic* information about source data

Simple tree traversals

- **Unique re-construction** of a tree: from its post-order and preorder traversals
- Post-order numbers (pon) and pre-order numbers (ron)
- Anonymize structural information \bullet
 - encrypted post-order numbers (epon)
 - encrypted pre-order numbers (eron)

Signature	Δ (received S _x) \neq received Δ (S _x): S _x in-authentic
integrity	Δ (received δ^{h}) \neq received $\Delta(\delta^{h})$: δ^{h} in-authentic
	Δ (received number) \neq received Δ (number): number of nodes <u>in-authentic</u>
Relationships	$(p_{x}^{e} \ge p_{z}^{e}) OR (r_{x}^{e} \ge r_{z}^{e})$: (z, x) order <u>incorrect</u>
	$(p_{x}^{e} \ge p_{y}^{e}) OR (r_{x}^{e} \ge r_{y}^{e}) : (x, y) order incorrect$
Content Integrity	$\Delta(S_x, H(g_x) \neq C_x$: content of x, $g_x in-authentic$
Accuracy	number of received nodes (≠ ≥ ≤) received number: received <u>(not exact, more less)</u> nodes
Authenticity	S_x not in δ^h : x in-authentic
	δ^{h} (received nodes) \neq received δ^{h} : data <u>in-authentic</u>

 $= (\Im_x, \Im_y, \Im_z), \Delta(O^p), \Im, \Delta(\Im) >$

Conclusions

We showed that Merkle hash technique leaks information and does **not** support complete confidentiality

Our approach: first such technique for <u>complete security</u> of trees

- ✓ No leakage of information: ✓ Precise verification of complete confidentiality with encrypted transmission
- \checkmark Worst case O(n): n is the number of nodes
- **integrity:** efficient data-recovery and failure-oblivious computing
- ✓ Efficient: no cascaded hashing

✓ Easy to implement:

post-order, pre-order and inorder traversals are simple to understand and implement

Reference

Secure Dissemination of XML Content Using Structure-based Routing, Ashish Kundu & Elisa Bertino, in the Proceedings of IEEE EDOC 2006.

PURDUE UNIVERSITY

