
92F-739

A System for the Specification and Enforcement of Quality-based Authentication
Policies

A. Squicciarini, A. Czeskis, E. Bertino, A. Bhargav-Spantzel, M. Almomen

The Problem

3
2

1

Policy

103201118

85185112

97169120

Unsuccessful
Authentication

Successful
Authentication

Baseline
No policy

Intel(R) Xeon(TM) 2.80GHz CPU with 1 GB of RAM

Time to open a file 10,000 times (milliseconds)

The Implementation

Overview of the Solution

Acknowledgements

Future Work

Benchmarking

The Language

There is no current method which permits the basing of access decisions on the
system’s certainty of a user’s identity. This is a problem because not all
authentication mechanisms have the same strength. Consider a 3 letter password
versus a fingerprint. This could result in the following scenario:

A user authenticated five hours ago with a three letter password can access the
same sensitive resources as if he were authenticated two minutes ago with a
fingerprint.

We would like to thank Keith Watson for his advice on kernel development and modification.

Policies:
• Develop different policies for different actions on resource. That is, one policy will apply if the user is

reading a file and a different policy if a user is writing to the file.
• Develop different policies for different users, groups, and roles.
Implementation:
• Develop and test more complex policies.
• Develop re-authentication capability and export policies into a separate library.
• Possible extension to distributed/federated system.

Our solution is based on authentication policies. Policies specify:
• How many authentication factors are needed to access a resource.
• Which type of factors (ie. fingerprint, iris scan, password, smartcard,..)
• What time constraints – how long ago was the last authentication?
• Constraints on the authorities by which credentials used for authentication have

to be provided.

The idea is to:
1. A priori - associate policies with resources. (Authoring box in diagram below)
2. Remember user’s authentication history. (Authentication Event Log)
3. When user requests a resource (performed by Authentication Enforcement Pt)

a) Grab user’s authentication history
b) Grab policy associated with resources
c) Compare them

i. Success = allow for access control to take place
ii. Failure = try to re-authenticate the user to satisfy policy.

We implemented our solution using FreeBSD 6.1-RC.

Policy Storage and Binding:
• Have a predefined repository of policies each with unique ID.
• Resource stores ID of policy and several parameters for policy interpretation in an extended attribute of

the vnode. Thus policies are directly associated with the resources to which they pertain.

Authentication Log:
• Maintain log of a user’s authentication in the proc structure of the process.

o Added a structure to the ucred struct (the ucred maintains other information such as the user id,
group id, etc...)

Policy Enforcement:
• When system calls are invoked to access a particular resource, the Authentication Enforcement Point is

activated. This is done prior to any authorization check to be sure who the user is before applying any
access control mechanism. The Enforcement Point verifies that the user’s authentication history
satisfies the criteria set forth by the policy associated with the requested resource.

• We developed an articulated framework for authentication based on an
expressive authentication policy language. By using such language, one can
specify how many authentication factors are required.

• The goal of our language is to specify policies driving authentication decisions;
as such policies expressed in our language may also take into account previous
authentication decisions, taken for example by other sites in a distributed
system, together with other information in order to reach an authentication
decision.

A snapshot of the XML template corresponding
to the formal authentication policies

Authentication Policy Template Graph Representation

Pluggable Authentication Modules (PAM):
• PAM organizes multiple authentication

mechanisms into a single API.
• Used by system entry applications to

authenticate the user.
• Since PAM is designed to be completely

transparent, we had to modify it in order
to accommodate our solution:
o Added code to a PAM module to

export authentication details such as:
type of mechanism, time of
authentication, number of
authentication tries, threshold1, TTP,
storage location (local or remote),
and storage mode (encrypted, plain
text, etc...).

1This parameter is somewhat context dependent. For example, in the case of password authentication, this is the minimum password length allowed
by the authentication module. In the case of a fingerprint, this is the percent match, as specified by the module settings, necessary for a match.

We considered three simple policies:
1.First with one a single factor
2.The second with two factors and zero constraints
3.The third with two factors and one constrain binding

the two factors.

Each policy is composed of two factor assertions,
and refers to a password authentication mechanism.
The results show that our implementation does not
introduce significant latency.

92F-739.pdf 1 3/5/2007 3:28:19 PM

coj
Text Box
 - A System for the Specification and Enforcement of Quality-based Authentication Policies - Alexei Czeskis - IAP

