k-Anonymity Privacy Protection: **Questions without Answers**

M. Ercan Nergiz & Chris Clifton

k-Anonymity

- What: A table is k-anonymous if every tuple over the identifying attributes occurs at least k times
- Why: Limits the ability to link released data to other external information
- Proposed algorithms: Single Dimensional or Cell based
- How: Use of suppressions and generalizations "generally" over a user defined DGH (Domain Generalization Hierarchies)
- **<u>Cost Metrics</u>**: Measure of the quality or information value of the *k*anonymous dataset
 - LM: Get penalized for data cells that stand for many values e.g. Indiana has higher cost than Lafayette
 - AM, CM, DM...

Datasets

Experiments

<u>Alg Type</u>	Generalization Type	Optimized Against
Clustering	DGH	LMAM
Genetic	NDGH	CM DM

Original Dataset

Age	Sex	Address	Disease
19	Μ	W. Lafayette	Flu
18	Μ	Lafayette	Tetanus
23	F	Lafayette	Flu
25	Μ	Indianapolis	Cancer

Domain Generalization Hierarchy (DGH) for Address Attribute

2-Anonymized Dataset

Age	Sex	Address	Disease
10-20	M	G. Lafayette	Flu
10-20	М	G. Lafayette	Tetanus
20-30	*	Indiana	Flu
20-30	*	Indiana	Cancer

	mana	
Applications		J
Classification		

Adult Asc. Rule Mining Mushroom

> In experiments, we discovered that the existing cost metrics failed to explain the usefulness of the output dataset in terms of some applications' accuracy. The findings bring in the following k-anonymity related questions

What is a good anonymization?

- A good anonymization may not come with good precision
 - CDGH had the best classification accuracy with the highest LM, AM, CM, DM costs
- Reason
 - User input

What is a good metric?

- Optimizing against some metrics is better than optimizing against others
 - CM works better than LM in classification.
 - CM is the worst in explaining rule mining results
 - AM is better in classification for small k than LM
 - LM is better in rule mining than AM

What is a good algorithm?

- Some algorithm types perform better in some applications
 - DGH algorithms are better in classification
 - NDGH algorithms are better in rule mining
 - SDA algorithms can't mine low level rules
- What is a good input?

Variety in attribute importance

No perfect metric

Intuitive DGH inputs help in classification

