K-anonymity using Clustering*

Elisa Bertino, Ninghui Li, Ji-Won Byun and Ashish Kamra {bertino, ninghui, byunj, akamra}@cs.purdue.edu

Objective : To achieve k-anonymization of data with minimal loss in data quality

Sensitive

Anonymization Process

Quasi Identifier

Age	Sex	Jip code	Diagnosis
78	M	47803	FLu
75	M	47567	Asthma
34	Ŧ	56763	Cancer
29	Ŧ	56789	HTV
		IONYMIZAUON	
Age	AI	onymizauon Zip code	Diagnosis
Agc (18,15)	AII Sex M	опушіяцоп <i>Зір со</i> дс (47803,47567)	Diagnosis Thu
Agc (18,15) (18,15)	A Scx M M M	ОПУШДАЦОП Зір софс (47803,47567) (47803,47567)	Diagnosis Flu Asthma
Age (18,15) (18,15) (34,29)	A Sex M M M J	Onymization <i>Fip. code</i> (47803,47567) (47803,47567) (56763,56789)	Diagnosis July July July July July July July July

Related Concepts

Distance Measures

Distance between two records, r_1 and r_2 : $\Delta(\mathbf{r}_{1}, \mathbf{r}_{2}) = \sum_{i=1,...,m} \delta_{N}(\mathbf{r}_{1}[\mathbf{N}_{i}], \mathbf{r}_{2}[\mathbf{N}_{i}]) + \sum_{j=1,...,n} \delta_{C}(\mathbf{r}_{1}[\mathbf{C}_{j}], \mathbf{r}_{2}[\mathbf{C}_{j}]),$

where $r(N_i)$ is the i-th numerical attribute of r, $r(C_i)$ is the j-th categorical attribute, and δ_N and δ_C are a numerical and categorical distance metric, respectively.

Clustering Algorithm

Given a set of *n* records, 1. Randomly pick a record r_c . 2. Make a cluster e_i which contains only r_c . 3. Include to e_i a record r_i that makes IL(e_i ${r_i}$ minimal. 4. Repeat Step 2 until $|e_i| = k$. 5. Choose a record that is furthest from r_c and go to Step 2. 6. Repeat Steps 1-4 until there are less than k records left. 7. Iterate over the leftover records and insert each record into a cluster with respect to which the increment of the information loss is minimal.

Information Loss

Total information loss of anonymizing table T : Total-IL(T) = $\Sigma_{i=1,...,n}$ IL(e_i), where IL(e) is the information loss (i.e., data distortion) of a cluster e, defined as IL(e) = $|e| * \Sigma_{j=1,...,m} \max -\delta(at'tr_j)$.

Future Work

•New measures of information loss based on Information Theoretic concepts

•Use of outlier detection algorithms for identifying candidates for tuple suppression

•Better clustering algorithms to partition the data

* Supported by NSF under Grant No. 0430274

