Goal
To provide a comprehensive framework for securing XML data

Benefits
Ensuring security allowing at the same time:
- Flexibility
- Scalability
- Portability

Scenarios
Information dissemination systems, such as digital libraries, mailing lists, intracompany employee information systems

Two different dissemination modes
- Information pull
- Information push

Main security requirements
- **Confidentiality**
 - Data protection against unauthorized readings
- **Integrity**
 - Data protection against unauthorized modifications
- **Authenticity**
 - Ensuring both the truth of declared source and integrity of distributed data for both the receiving subjects and information owners

What is needed?
- **Model**
 - For specifying the security policies stating
 - **WHO can READ WHAT**
 - **WHO can MODIFY WHAT**
 - **WHO has to ensure authenticity to WHAT**
 - Providing all mechanisms for ensuring the stated security policies in disseminating XML data

Author-X: the model
A model for specifying security policies on XML documents providing:
- Selective protection both at intensional and extensional level
- Temporal constraints
- Flexible qualification of subjects through the notion of subject credential
- An XML formalism for specifying both access control and signature policies

ACCESS CONTROL vs SIGNATURE POLICIES
- An access control policy expresses the possibility of exercising a privilege on a document portion
- A signature policy states the duty of signing a document portion

Author-X: the system
A system for ensuring the satisfaction of both access control policies, through
- Traditional view-based techniques for pull mode
- Broadcast encryption for push mode, using XML encryption standard
- Signature policies, by using digital signature technology, adopting XML signature format

Secure push dissemination
- **Access control mechanism:** Well-formed encryption
 - All the document portions to which the same access control policy configuration applies are encrypted with the same key
- **Authenticity mechanism:** Correct signature
 - Different portions of the same document are signed with different signatures according to the specified signature policies.
 - The same (encrypted and signed) copy is, then, broadcasted to all the subjects.
 - Each subject only receives the keys and signatures of the portions he/she is enabled to access
- **Key Management**
 - **Naive solution:** Each access control policy configuration is associated with a different key: N policies $\Rightarrow 2^N$ secrets in the worst case
 - **Innovative solution:** A symmetric key assignment scheme based on temporal constraint specified in access control policies:
 - Linear number of N in the number of policies

Future Work
- Model extension for supporting a large variety of signature policies
- Development of protocols and algorithms for the management of policy update

References
- E. Bertino, E. Ferrari, B. Carminati and L. Parasiliti Provenza
 - Signature and Access Control policies for XML Documents
 - A Temporal key management scheme for broadcasting XML Documents