Transactional Data Analysis and Visualization Lab

Faculty

- Chris Clifton (Computer Science)
- Ananth lyer (Management)
- Reha Uzsoy (Industrial Engineering)

along with

- Richard Cho (Management)
- Wei Jiang Eirik Herskedal Murat Kantarcioglu Jaideep Vaidya (Computer Science)

South Bend

Funded by e-Enterprise Center

In cooperation with

Routes of Great Eastern

Routes of Western Trucking

LEEAP

Great Eastern is swamped with deliveries from Ft. Wayne to Gary, and Western Trucking is overloaded with business from Chicago to South Bend. **Collaborations between Great Eastern and Western** Trucking are possible at either Gary and south

Problem: How to identify this opportunity without giving away information that would enable companies to: •Steal customers •Give the appearance of price-fixing / antitrust violations

Bend.

Chicago

The above diagram represents a collaborative route between the two companies, and the collaboration takes place as South Bend.

Example: Two Traveling Salesman

- The optimal rout of salesman A
- The optimal rout of salesman B
 - Customers of salesman A
 - Customers of salesman B

Swapping some customers would give both a shorter route

But they don't want to share information on all customers!

Bigger Problem: Linear Programming

Start with *The Decomposition Algorithm for Linear Programs* (Dantzig and Wolfe '61)

Block-structured Linear Programming Problem

- Master: All variables, some constraints, function to be minimized
- Subproblems: Additional (separable) constraints

 B_{n} b_n

Private solution using space-filling curves

For each customer of salesman A, calculate a corresponding position on an interval.

Now find the median and swap items on the "wrong" side

Median

For each customer of salesman B, calculate a corresponding position on an interval.

- Master Problem
 - For given solution sets for SP_i , say $\{X_i^1, X_i^2, \bullet \bullet, \bullet\}$ X_i^K
 - the feasible set à $X_i^1 = \Sigma_k s_{ik} X_i^k$, and $\Sigma_k s_{ik} = 1$.
 - Master Problem is changes to use variable $S_i =$ $\{s_{ik}\},$ for each X_i ,

- From the dual optimal of this LP, say $\{\pi_1^*, \pi_n^*, \bullet \bullet\}$ •, π_n^* generate new objective function for SP_i \mathbb{E} Min $\pi_1^* S_i = Min (\pi_1^* A_i) X_i$
- Subproblem *SP*,
 - Solve the following LP, Min $(\pi_1^*A_i) X_i$ s.t $B_i X_i = b_i$
- Iterations
 - $-SP_i$ gives the optimal solution set X_i^* to MP
 - If $X_i^* \in \{X_i^1, X_i^2, \bullet \bullet, X_i^K\}$, then ignore it. If all new solutions are turned down, the current solution is optimal.
 - Otherwise, calculate new objective function for *MP*.
 - Repeat until obtaining the optimal solution.

Example

(All variables are non-negative)

(Iteration 1) Initial solution = (0, 0, 0, 0)E Min $-2x_1 - x_2$ and Min $-x_3 + x_4$

(Iteration 2) New solutions (2, 3/2) & (3, 0) from SP₁ & SP_2 à *MP* : $\pi_1^* = (1, 1)$ and Opt. Value = -5 à new obj. functions are Min $-2x_1 - x_2$ and Min $-x_3 - 2x_4$

(Iteration 3) No new sol'n from SP_1 and (4/3, 10/3) from SP_2

à MP: No more improvement from Opt. Value = -5. à Thus, this is an optimal and

New customers of B (swapped from A)

PURDUE IVERSITY

Goal – Private Computation

- Subproblem constraints not shared
- Master constraints not shared
- $X_1 = (x_1, x_2) = 1/7^*(0, 0) + 6/7^*(2, 3/2) = (12/7, 9/7)$ $X_2 = (X_3, X_4) = 19/21^*(0, 0) + 2/21^*(3, 0) = (2/7, 0)$
- Everybody only learns the part of the result that matters to them - And nothing else!
- Not trivial to accomplish this efficiently but we're working on it

