Access Control in Multidomain Environments

Arif Ghafoor
School of Electrical and Computer Engineering

4/27/2001

Basics

- Access control
 - Restrict access to system entities to authorized personnel

- Security Domain
 - A bounded group of subjects and objects under a single security policy

- Multidomain Secure Environment
 - Ensuring a secure interaction among participating domains
Current Systems

- Single domain systems
- Multidomain systems
 - Open Interconnected Heterogeneous Systems
 - Web applications, E-Government, Global enterprises

DoD Business Operations Environment (Ref: JECPO)
Discretionary Access Control (DAC)

- **Subjects** have ownership over **objects**
 - A subject can pass access rights to other subjects at his discretion
- Highly flexible and currently most widely used
- Not appropriate for
 - high assurance systems, e.g., a military system
 - Many complex commercial security requirements
- “Trojan horse” problem

Mandatory Access Control (MAC)

- **Subjects/objects** have security levels forming a lattice
 - Flow of information is restricted.
 - Example: *(no-readup), (no-writedown)*
 - Well-known MAC model is the Bell-LaPadula model
Role Based Access Control (RBAC)

- Access control in organizations is based on roles that individual users take on as part of the organization.
 - A role is “is a collection of permissions”

Advantages of RBAC

- Allows Efficient Security Management
 - Administrative roles to manage other roles
 - Role hierarchy allows inheritance of permissions
- Principle of least privilege
 - Minimizes damage
- Separation of Duties constraints
 - Prevents fraud
- Grouping Objects
 - Permissions can be grouped according to a class of objects
- Policy-neutrality
 - Provides generality
Advantages of RBAC

- Encompasses DAC and MAC policies
- Potential for use in multidomain environment
 - Open interconnected systems
 - Similarity of role concepts
 - Provides a generic representation of security policies

Multidomain Environments

- Dimensions of heterogeneity
 - Security goals
 - Constituent organizational units
 - Multidomain environment
 - Constituent systems
 - Availability
 - Biba integrity model
 - Multilevel etc.
 - UN
 - Federal
 - Local
 - EC etc.
 - MLS DBMS
 - MLS OS etc.
Key Access Control Challenges in a Multi-Domain Environment

- Semantic heterogeneity
- Secure interoperation
- Assurance and risk propagation
- Security Management

Semantic heterogeneity

- Different systems may use different security policies
 - e.g., DAC, MAC, Chinese wall, Integrity policies etc.
- Variations of the same policies
 - e.g., BLP model and its several variations
- Naming conflict on security attributes
 - Similar roles with different names
 - Similar permission sets with different role names
- Structural conflict
 - different multilevel lattices / role hierarchies
Secure Interoperability

- Principles of secure interoperation
 - Principle of autonomy
 - If an access is permitted within an individual system, it must also be permitted under secure interoperation in a multi-domain environment.
 - Principle of security
 - If an access is not permitted within an individual system, it must not be permitted under secure interoperation.

- Interoperation of secure systems can create new security breaches

Unsecure Interoperability

- $F_{12} = \{a, b\}$
- $F_{12}^\text{permitted access between systems 1 and 2}$
- (1) $F_{12} = \{a, b, d\}$
- (2) $F_{12} = \{c\}$
- Direct access

13

14
Challenges in Secure Interoperability

How to ensure autonomy and security principles?

- Determining inconsistencies/incompleteness in security rules.
- Identifying security holes
- Selecting optimality criteria for secure interoperability: maximizing number of domains, direct accesses

Assurance and Risk Propagation & Security Management

- Assurance and Risk propagation
 - Breach in one domain can render the whole environment insecure
 - Cascading problem

- Security Management
 - Centralized/Decentralized
 - Managing global metapolicy
 - Managing policy evolution
Approaches to Multidomain Problem

- Policy-Metapolicy specification framework
 - Ad-hoc, Formal models: lattice merging, RBAC

- Agent based approach (Policy agents)

- Architectural approaches (CORBA, DCE)

A Multi-Domain Access Control Framework

- A Multi-Phase Framework
 - Based on Generalized RBAC (GRBAC) model
 - Temporal and Non-temporal constraints

Pre-integration → Policy Comparison → Policy Conformance → Merging/Restructuring

Need external mediation policy to handle conflicts/incompleteness

Consistent, complete and optimal specification
Pre-integration Phase

- Requires GRBAC representation of arbitrary policies. A policy mapping technique is needed for non-RBAC systems.

- Uses an information base
 - Semantic information about domains including policies, roles and attributes
 - Integration/merging strategies to generate the overall configuration of the multi-domain environment.

Policy Comparison and Conformance

- Tools & techniques for detecting
 - Semantic conflicts
 - Naming conflicts
 - Structural conflicts
 - Rule conflicts

- Mediation policies are needed for resolution
 - Predefined meta-policies
 - Domain cooperation by administrators

- Tradeoffs
 - Determine optimal/heuristic solutions secure interoperability
Merging/Restructuring

- Merging/integrating policies
 - Restructure domain policies according to the selected optimal criteria
 - Generate integrated global policy

- Repeat policy conformance step
 - Re-evaluation and restructuring of meta-policy

Conclusion

- Emerging distributed and Web applications have significant security challenges due to heterogeneity of underlying domains.
- Novel solutions and techniques are needed to allow secure interoperability and integration of multiple systems