
1

April 27, 2001 1

Purdue University

Center for Education and Research in
Information Assurance and Security

SOFTWARE TAMPERPROOFINGSOFTWARE TAMPERPROOFING

Mikhail Atallah

Hoi Chang

Tim Korb

John Rice

CERIAS Conference, April 27, 2001

April 27, 2001 2

TAMPERPROOFINGTAMPERPROOFING

• The goal is to prevent unauthorized use of a
program P. The mechanism is to put in code
to check authorization and that prevents the
program from operating properly if ANY
change is made in it.

• This might prevent the piracy of MS Word or
the clandestine use of a nuclear bomb
design code.

2

April 27, 2001 3

MECHANISMS 1 & 2MECHANISMS 1 & 2

1. Insert authorization checks:
passwords, biometrics,
machine/system prints, … If any of
these checks fail then appropriate
action is taken, e.g., crash machine,
notify owner, corrupt computations, etc.

2. Insert guards: Compute check sums
on the code of P.

April 27, 2001 4

PROBLEMSPROBLEMS
1. The authorizations and guards can be

located (even in binary code) by their
special natures. Authorizations ask for
information and guards use program
statements as data.

2. Thus an attacker can remove or bypass
the authorizations and/or guards.

3

April 27, 2001 5

LINE OF DEFENSE 3LINE OF DEFENSE 3
3. Insert multiple guards: They guard each

other as well as the program P. Make a
complex network of guards that protect one
another so that they have to all be removed
before the guarding fails.

PROBLEM : A determined attacker might be
able to find and remove them all.

April 27, 2001 6

LINES OF DEFENSE 4 & 5LINES OF DEFENSE 4 & 5

4. Obfuscate the authorization and guard codes so
they are hard to identify; e.g., hide 1789 and 4969
in their product 8889541; it is very hard to find the
true code in the final product.

PROBLEM: Obfuscated code may be hard to
understand but it is “strange” so one can eventually
identify and remove it.

5. Insert repairing guards. They correct errors
introduced into P; if they are deleted then P does not
work properly.

4

April 27, 2001 7

LINE OF DEFENSE 6LINE OF DEFENSE 6

6. Mix (tangle) these codes with pieces of
P’s code and obfuscate it all together.
Then one cannot remove the
obfuscated code without corrupting P.

PROBLEM : Obfuscated code is tough to
untangle but the toughness depends on the
length. These code fragments tend to be
fairly short.

April 27, 2001 8

LINE OF DEFENSE 7LINE OF DEFENSE 7

7. Introduce dummy code which does not
affect P’s operation. Tangle this in with
the authorization, guard and P’s code,
then obfuscate. One can make this as
hard to untangle as one wants. One
can automate the generation of
appropriate dummy code and doing the
obfuscation.

5

April 27, 2001 9

SUMMARYSUMMARY

• There must be defenses for all kinds of
attacks on the integrity of P. The above
describes just the main theme of the
defense; we list other attacks we can
defend against. Some of these may be
machine/system dependent in their
details

April 27, 2001 10

OTHER TYPES OF OTHER TYPES OF
ATTACKSATTACKS

1. Code analysis: Read P using analysis/debugging
tools.

2. Trace analysis: Trace the paths & values in P;
simulate it.

3. Reverse engineer the obfuscated parts of P.
4. Copy attack: The guards check Copy #1 while

executing Copy #2.
5. Multiple copy attack: Compare 10K copies of P to

isolate and identify various functionalities.
6. Subprogram spy attack: Replace a standard utility

with a spy.

6

April 27, 2001 11

DEMONSTRATIONDEMONSTRATION
• The OnGuard Tool works on Intel

binary code using Visual C++ output of
the compiler to insert guards into P.

• The GUI prototype inserts markers into
source code about types and locations
of guards desired. It can also insert
standard or customized authorization
code.

April 27, 2001 12

DEMO DETAILSDEMO DETAILS

• P ~ 100 lines and has 6 guards: 2 check
sums and 4 repairs (2 small and 2 larger).

• Basic obfuscation (basic block shuffling) and
watermarking (garbage instructions between
basic blocks) are included.

• There is no increase in object file size.
• The guarding is mostly automated

