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INTRODUCTION

The security of many public-key cryptosystems such as RSA 
relies on the difficulty of factoring large numbers. It follows that 
one measure of the security of such cryptosystems is the run -
time complexity of the fastest known factoring algorithm. 
Currently, this algorithm is the number field sieve (NFS).

Most steps in NFS are well understood except the first in which 
one chooses a polynomial. Since the run-time of NFS is largely 
determined by the choice of polynomial, our best hope for 
reducing the run-time of NFS seems to be in devising a method 
for choosing a good polynomial. Our work aims to better 
understand what makes for a good polynomial and how to find 
such polynomials.

FINDING POLYNOMIALS WITH SMALL SIZE

First, we consider how the output of the base-m method varies as we change the base m . To do this, suppose we are given a 
polynomial f. Replace every occurrence of Xin  fwith X - Y:

f(X - Y) =c d(X - Y)d + … + c 1(X - Y) + c0.

Now expand in terms of X:

= c ' dX
d + … + c ' 1X + c' 0,

where c' i is a function of thec j and Y.

Each solution (x, y) to the equation X = m + Y, where x and y are integers, gives rise to a polynomial with root x modulo N. 
The coefficients of this new polynomial are functions of the oldcoefficients c j and y . We seek a choice of y that minimizes the size 
(y + m) ·C' of this new polynomial, where x  =  y  +  m is the root modulo N and C' is the maximum of the c 'i in absolute value. 
Unfortunately, the size of polynomials generated by the base-m method is not easily predicted. However note that 
(y + m)2·C' 2 = (y + m)2·(c ' d

2 + … + c' 1
2 + c ' 0

2). For fixedc j, this upper bound is a differentiable function of y , so we may use 
standard Calculus techniques to minimize this function and produce  a  y that minimizes the upper bound. Clearly then, 
(y + m) ·C' = (y + m) ·v (c' d

2 + … + c' 1
2 + c ' 0

2),so by making the upper bound small, we can force the size of the polynomial to be 
small. Note that if y = 0 is the value that minimizes the upper bound, then we have (y + m)·C' =m C. So in general the size of the 
new polynomial will be no greater than the original polynomial g enerated by the base-m method. It is also important to note that 
c ' d =c d; that is, the modified base-m method has no effect on the leading coefficient of the polynomial generated with the base -m
method.

We refer to the procedure that we have developed above as the modified base -m method. Our interest is in how much 
smaller we can expect modified base -m polynomials to be when compared to polynomials generated by thebase-m method. To 
this end, a simple Mathematica program which implements both the base-m and modified base-m methods was run for different 
values of N and d , with N1/(d+1)≤ m ≤ N1 / d.What follows are some typical graphs of the difference in the size of the polynomials 
generated by the base-m method and the modified base-m method versus m .

POLYNOMIALS USED IN NFS

Let N be a number that one wishes to factor. The first step of NFS 
is to find a polynomial f of specified degree d with integer 
coefficients and an integer m such that m is a root of fmodulo N. 
The traditional method for doing this is the base -m method:

Choose an integer m such that N1/(d+1) ≤m  ≤ N1 / d and write N to 
the base m : 

N = c dm
d+c d- 1m

d- 1 + …+ c 1m + c 0,

0 ≤c i <m , for i = 0 , 1, …d .

The polynomial fcan now be taken to be:

f = c dX
d +c d- 1X

d- 1+ … + c 1X + c 0,

with root m modulo N. Finally, we construct the homogeneous 
polynomials:

F1(X, Y) = Ydf(X/Y),

F2(X, Y) = X –m Y.

PROPERTIES OF GOOD POLYNOMIALS

The rate determining step in NFS is the search for smooth 
integers; that is, integers with no large prime factors. In this
case, the integers that are examined for smoothness are the 
values of F1(a, b) and F2(a, b), for specified values of a and b. 
If we define the yield of F1, F2 to be the number of smooth 
values of F1, F2 for a given smoothness bound and range for a
and b , then our search for good polynomials is reduced to 
finding F1and F2 with high yield.

Let C be the largest coefficient of f in absolute value and 
define the size of the pair F1, F2 to bem C. It is well known that 
size affects yield. Furthermore, root properties play an 
important role in determining yield. In particular, we consider 
roots of F1 modulo N. The pair (a, b) is a projective root of F1
modulo a prime p if p divides band F1(a, b). Any other pair 
(a, b) which is a root of F1 modulo p i s  a  non-projective root . 
Finally, non-projective roots (a, b) with p dividing a are called 
zero roots. We would like to find those F1 which have many 
projective and non-projective roots.

ROOT PROPERTIES

Now we turn to the problem of finding polynomials that have 
good root properties. Note that F1 will have a projective root 
modulo p if and only if p divides the leading coefficientc d of f. 
Also note that i f  a is a positive integer and N/(a + 1) = m 5 = N/a, 
then the polynomial produced by the base-m method will have 
leading coefficient c d= a . So by suitably restricting the range for 
m , we can force the polynomials produced by the modified base-
m method to have a predetermined set of projective roots.

At this point we have a way of finding polynomials of 
small size with many projective roots. To force these 
polynomials to have non -projective roots will take some extra 
effort. Others have suggested a rotation of f as a possible 
means of gaining non-projective roots. A rotation of fis simply 
f + (X - m) ·g for a suitable choice of polynomial g. The rotation 
will still have the root m modulo N and, through a judicious 
choice of g, may also have many non-projective roots in addition 
to any projective roots of f. 

We describe our method for finding g . We start by noting that F1
will have a zero root modulo p if and only if p divides c 0, the 
constant term of f. Now we factor c 0 + jm , for –B = j  = B, where B
is a measure of how much work we are willing to do. Once j is 
found so that  c 0 +j m has many small prime factors we replace f
with f - (X -m) · j . This new polynomial has c 0 +j m as its constant 
term and thus has many zero roots. Now suppose f is a 
polynomial that already has many projective and zero roots. We 
can now replace fby  f + X·(a X + ß )·(X -m) and get a polynomial 
with all the projective and zero roots of f. Finally, we examine 
many values for a and ß to see which gives the most non-zero 
non-projective roots. Of course, all of this work may alter the 
size of our polynomial, but the trade-off may be worth the effort.

FUTURE WORK

• Local minima of c' d
2 + … + c' 1

2 + c' 0
2, need not correspond in 

any way to those values that minimize C' . We are currently 
looking for other functions of the c' i that more sharply bound C'
that could replace c ' d

2 + … + c ' 1
2 + c' 0

2 in the modified base -m
method.

• Experimentally we have found that as d increases, the 
difference between the sizes of the outputs of the base -m
method and the modified base-m method decreases. This is 
likely due to the fact that the modified base-m method must 
minimize all d+1coefficients, c' i, and the base y + m . As we saw, 
forcing the polynomials to have many non-projective roots can 
come at the cost of larger low order coefficients but as it turn s 
out, it is more important for the high order coefficients to small .  
This suggests that we should minimize 
(y + m)2·(wdc ' d

2 + … + w1c ' 1
2 + w0c ' 0

2) in the modified base -m
method, for suitable weights wi.

• Non-projective roots that are not zero roots depend upon all 
the coefficients of f, which makes them difficult to characterize. 
We hope to find a relationship between the rotation polynomial g
and the non -zero non -projective roots of the rotated polynomial 
that can be exploited without destroying projective and zero root 
properties.

• We would like to construct a norm on polynomials that 
measures yield. We could then conduct sieving experiments to 
compare polynomials of varying size and root properties. 
Ultimately we would like to use our methods to find good 
polynomials that we could then compare with other polynomials 
being used to factor large numbers such as RSA155.
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N = 13184498

d = 2
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N = 532375951828446038279

d = 5
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