
Encapsulating Objects with Con�ned Types

Christian Grotho� Jens Palsberg Jan Vitek

S3 Lab, Department of Computer Sciences, Purdue University

April 6, 2001

Abstract

Object-oriented languages provide little support for encapsulating objects; reference
semantics lets objects escape their de�ning scope. The pervasive aliasing that ensues
remains a major source of software defects. This paper introduces the Kacheck/J

tool for inference of object encapsulation properties in Java application code. The
primary goal of Kacheck/J is to help software engineers build robust systems. For
this purpose we emphasize simplicity and scalability. Simplicity is crucial for humans
to be able to interpret the tool's output. Scalability is mandatory for dealing with
software systems consisting of thousands of classes. The encapsulation properties that
are currently supported by Kacheck/J are variants of con�ned types. We introduce a
classi�cation of con�nement properties and of con�nement breaches. The tool infers
these properties automatically from Java bytecode by constraint-based analysis. The
analysis is practical, a corpus of 20 959 classes �les (50 MB) can be analyzed in less
than 326 seconds.

1 Introduction

Most object-oriented languages adopt reference semantics to allow sharing of objects.
Sharing occurs when an object is accessible to di�erent clients; we say that it is aliased
if it is accessible from the same client under two names. Sharing is both a powerful
tool and a source of subtle program defects. A potential consequence of aliasing is that
methods invoked on an object may depend on another in a manner not anticipated
by designers of those objects. Thus updates to objects in one sub-system can a�ect
apparently unrelated sub-systems, undermining the reliability of the software.

While object-oriented languages provide linguistic support for protecting access
to variables and methods or even entire classes, they fail to provide any systematic
way of protecting objects. A program may declare some instance variable as private
and at the same time return an alias to its content from a method. In other words,
object-oriented languages provide the means of protecting the state of single object,
but cannot guarantee the integrity of systems of interacting objects. What is lacking
is a notion of an encapsulation boundary that ensures that references to 'protected'
objects do not escape.

The goal of this paper is to experiment with pragmatic notions of encapsulation in
order to provide software engineers with tools to guide them in the design of robust

1

systems. To this end, we focus on simple models of encapsulation that can easily be
understood by programmers. We deliberately ignore more powerful escape analyses
which are sensitive to small source code changes [2, 3, 8] and which furnish results
that are diÆcult to interpret. We have chosen to explore variants of con�ned types [5]
as they are both simple and, as demonstrated in this paper, can be checked at little
cost. Con�ned types were designed to prevent objects of these classes to escape from
their de�ning package. The de�nition of con�nement given in [5] relied on declarations
presupposing that a program was designed with con�nement in mind. In practice, it
is more likely that con�nement will come as an afterthought, once a software system
is stable and ready to be released. Then, developers will need tools to help discover
which classes are con�ned and give hints how to make a number of non-con�ned classes
con�ned.

A disciplined use of the access control mechanisms of Java can prevent the users of
a package from depending on unnecessary implementation details. One such mecha-
nism is package scoped classes which may be accessed only from within their de�ning
package. For example, consider the PrivateKey class, this class should probably not
be declared public. Suppose for a moment that PrivateKey is package-scoped and that
it is declared in package P. Can code outside package P get access to a PrivateKey

object? Yes! This can happen if code in P creates a private key, casts it to some public
superclass, and then sends the object out of the package. It is likely that a program-
mer will consider such a scenario to be the result of a programming error, and a good
programmer will be on guard and try to avoid that it can happen. One can view this
as an escape issue: can the objects of a non public class escape the enclosing package?
If not, then such a class is said to be encapsulated.

Thesis: In many cases, a software designer intend a nonpublic class to be
encapsulated.

In other words, many classes are the \implementation details" of a package. In this
paper we present support for this thesis, in the form of results of a large-scale analysis
on existing Java code. We have implement Kacheck/J, a tool for inferring di�erent
encapsulation properties over Java bytecode �les. We have found many non public
classes that actually are con�ned and many more classes that could be made con�ned
with the proper linguistic support or minimal refactoring. Kacheck/J provides tool
support for re-engineering existing Java code to �t a stronger encapsulation discipline.
The contributions of this paper are:

1. a presentation of the Kacheck/J con�nement inference tool which can be used to
guide re-engineering of existing Java code;

2. results of running Kacheck/J on existing Java code showing that con�ned types
are all over the place; and

3. classi�cation of di�erent encapsulation properties and a discussion of ways to
re-engineer classes to make them con�ned with little or no run-time overhead.

1.1 Related Work

Bokowski and Vitek [5] introduced the notion of con�ned types. In their paper, con-
�ned types are explicitly declared which means that software must be designed and
implemented with con�nement in mind. Until now, con�ned types have not been

2

widely adopted. Their paper discussed an implementation of a source-level con�ne-
ment checker based on Bokowski's Co�eaStrainer [4]. We present a tool that can infer
con�nement from existing Java code. In other words, declarations are not needed.
Furthermore, we have made several changes to the de�nition of con�ned type to ac-
commodate inference. Kacheck/J works on Java bytecode and has been designed to be
scalable. It shares some of the restrictions of the original con�nement checker. Primar-
ily, native methods are not analyzed, we assume that they do not breach encapsulation
by accessing raw memory. We assume that packages cannot be extended without trig-
gering a new round of veri�cation. In the original paper a similar assumption held so
that con�ning packages were implicitly sealed (c.f. [13, 15]).

Reference semantics permeate object-oriented programming languages, it is thus
not surprising that the issue of controlling aliasing has been the focus of numerous
papers in the recent years [11, 10, 7, 1, 14, 9, 12, 6]. We will discuss brie
y the most
relevant work.

In [14],
exible alias protection is presented as a means control potential aliasing
amongst components of an aggregate object (or owner). Aliasing mode declarations
specify constraints on sharing of references. The mode rep protects representation
objects from exposure. In essence, rep objects belong to a single owner object and the
model guarantees that all paths that lead to a representation object go through that
object's owner. The mode arg marks argument objects which do not belong to the
current owner, and therefore may be aliased from the outside. Argument objects can
have di�erent roles, and the model guarantees that an owner cannot introduce aliasing
between roles. In [6], Clarke, Potter, and Noble formalize representation containment
by means of ownership types.

Hogg's Islands [10] and Almeida's Balloons [1] have similar aims. An Island or
Balloon is an owner object that protects its internal representation from aliasing. The
main di�erence from [14] is that both proposals strive for full encapsulation, that is,
all objects reachable from an owner are protected from aliasing. This is equivalent
to declaring everything inside an Island or Balloon as rep. This is restrictive, since
it prevents many common programming styles: it is not possible to mix protected
and unprotected objects as done with
exible alias protection and con�ned types.
Hogg's proposal extends Smalltalk-80 with sharing annotations but it has neither been
implemented nor formally validated. Almeida did implement an abstract interpretation
algorithm for deciding whether a class meets his balloon invariants. But his approach
requires whole-program analysis.

Finally, Kent and Maung [12] proposed an informal extension of the Ei�el pro-
gramming language with ownership annotations that are tracked and monitored at
run-time.

In the �eld of static program analysis a number of techniques have been developed.
Static analyses such as the ones proposed by Blanchet [2] and others [3, 8] provide
much more precise results than our technique, but come at a higher analysis cost, they
Aoften require whole program analyses, and are very sensitive to small changes in the
source code. More than anything, their results are hard to interpret; knowing that an
object escapes is often not enough to have a clue of how to re-engineer the code to
avoid such an occurrence.

3

2 Con�ned Types and Anonymous Methods

The goal of any notion of con�nement is to satisfy the following soundness property
for some notion of scope:

Soundness: An object of con�ned type is encapsulated in its scope.

The �rst de�nition of con�ned types given by Bokowski and Vitek [5] assumed that
con�ned objects are bound to the scope of their de�ning package. Con�nement was
enforced by two sets of constraints. The �rst set of constraints, con�nement constraints,
apply to the con�ning package and ensure that reference to con�ned objects cannot
leak across package boundaries. The second set of constraints, so called anonymity
constraints, applies to methods inherited by the con�ned classes, potentially including
library code. These constraints are meant to ensure that methods inherited by a
con�ned class do not leak a reference to this (i.e., to a con�ned object).

2.1 A New De�nition of Con�nement

In this section, we recall the original de�nition and provide a variant of the anonymity
constraints that is better suited to inference. Compared to the de�nition by Bokowski
and Vitek, our de�nition allows more types to be con�ned, and thus it proves more
objects to be encapsulated. We begin with anonymity constraints. These constraints
apply to methods that are inherited by con�ned types. Their goal is to prevent a
method from leaking a reference to a con�ned object to outside code through the
hidden widening on the this reference. A method is said to be anonymous if the
method satis�es the following three constraints.

A1
An anonymous method cannot assign this to a �eld, use it as an
argument or as a return value.

A2 An anonymous method cannot be native.

A3

A method which is anonymous in relation to a class C, can only use
this to call methods m which are also anonymous in relation to C.
The target method m is determined under the assertion that this
is of type C.

Figure 1: Anonymity rules.

Con�nement constraints apply to the code of a con�ning package and they prevent
all forms of widening from a con�ned type to an uncon�ned type.

2.2 Better Anonymity rules

We now explain how the new de�nition of con�nement di�ers from the one Bokowski
and Vitek.

The most interesting con�nement breach is hidden widening of con�ned types to
public types that can occur with inherited methods (rule C1). A simple example is
given in Figure 3.

4

C1 Only methods which are anonymous in relation to a con�ned type C
or which are de�ned in a con�ned class can be invoked on C.

C2 A con�ned class cannot extend Thread or Throwable.

C3 A con�ned type cannot be a public class or interface.

C4
A con�ned type cannot be the type of a public (or protected) �eld
or the return type of a public (or protected) method.

C5 Subtypes of a con�ned types must be con�ned.

C6 A con�ned type cannot be widened to a non-con�ned type.

Figure 2: Con�nement rules.

class Parent {

Parent nonAnonymousMethod() {

return this;

}

}

class NotConfined extends Parent {

Parent violation() {

return nonAnonymousMethod(); // hidden widening

}

}

Figure 3: Breaching con�nement with a non anonymous method.

In the example a local analysis of the methods does not reveal that NotConfined
is cast to Parent. To avoid having to analyze library code all over again for each
con�ning package, Bokowski and Vitek relied on anonymity declarations. To ensure
that library code need to be checked only once, they included an additional constraint:

A4 Anonymity declarations must be preserved when overriding methods.

Thus once a method is declared anonymous, all rede�nitions of that method in
subclasses have to abide by the constraints.

When inferring anonymity, the rule A4 can be improved upon signi�cantly. It is
not necessary to require that anonymity of a method be preserved in all subclasses.
It is suÆcient to require all methods that are invoked by an anonymous method to
be anonymous (rule C1). Discovering anonymous is a simple control-
ow problem in
which the dynamic type of this will be used to resolve the target of virtual method
dispatch. The problem is simpli�ed as there is no need to track messages send to any
other receiver than this.

5

By relating methods with the dynamic type of the this reference we arrive at a
de�nition of anonymous methods in relation to a class. As the type this is exactly
known, the rule A4 is no longer required, the rule C1 already takes care of all relevant
cases.

Figure 4 shows a con�ned class C that extends a class A that has a method m(). The
method A.m() meets all anonymity criteria except for rule A4. The violation of that
rule occurs in class B, this class extends A and rede�nes m with an implementation that
returns this. The key point to notice here is that the anonymity violation can never
occur when the dynamic type of this is A. We say the method P.m() is anonymous in
relation to C, but not in relation to B.

public class A { // A is not confined

Object m() { // m() is anon in relation to C

return null; // but not in relation to B

}

public Object n() { // n() is anon in relation to B and C

return new C().m();

}

}

class B extends A { // B is not confined

Object m() { // m() is not anon

return this;

}

}

class C extends A { } // C is confined

Figure 4: Anonymity does not have to be preserved in all subtypes.

Figure 5 shows that this de�nition is still too strict. If the non-anonymous method is
de�ned in the con�ned class itself, the this reference may be given away, as the static
type of this is con�ned. Widening rules will prevent the reference from escaping.
In the example, method C.m() is not anonymous by the old de�nition as it gives
away the this reference. But as in this case exposing the this reference can breach
encapsulation as the C rules ensure that C does not escape the package.

Thus we can improve A1 as follows:

A1'
A method that is anonymous in relation to a class C must either be
declared in class C or it can neither assign this to a �eld, nor use it as
an argument nor as a return value.

The new rules are suÆcient as they only exclude cases that either can never occur
in the control
ow or where hidden widening cannot occur.

This revised de�nition improves the analysis signi�cantly, allowing to infer a lot
more classes as con�ned then it was possible with the declarations used by Bokowski
and Vitek.

6

public class A { // A is not confined

public void n() { // n() is anon in relation to C

new C().m();

}

}

class C extends A { // C is confined

C m() { // m() is not anon

return this;

}

}

Figure 5: Example where this is given away in the con�ned class.

7

3 Constraint-Based Analysis

We use a constraint-based program analysis to determine which methods are anony-
mous and which types are con�ned. Constraint-based analyzes have previously been
used for a wide variety of purposes, including type inference and
ow analysis. The
idea of constraint-based analysis is to do the analysis in two steps:

1. generate a system of constraints from the program text; and

2. solve the constraint system.

The solution to the constraint system is the desired information. For our application,
constraints are of the following forms:

A ::= not-anon(methodId; classId)

T ::= not-conf(classId)

C ::= A j T j A) A j A) T j T) T

A constraint not-anon(methodId; classId) denotes that the method methodId is not
anonymous in relation to the class classId. A constraint not-conf(classId) denotes that
the class classId is not con�ned. The remaining three forms of constraints denote
logical implications.

We generate constraints from the program text in a straightforward manner. The
example program in Figure 6 illustrates all parts of the syntax from which constraints
are generated. The numbers given in the comments in Figure 6 and in the following
table refer to the rules in section 2. From the program in Figure 6, we generate the
following constraints:

case constraint explanation

(A1) not-anon(A.m(); *) illegal use of this

(A2) not-anon(A.o(); *) o is native

(A3) not-anon(A.m(); B)) not-anon(B.p(); B) p calls m with this being
not-anon(A.m(); E)) not-anon(B.p(); E) either a B-object or an E-object

(C1) not-anon(E.p(); E)) not-conf(E) p invoked on a E-object

(C2) not-conf(C) class C extends Thread

(C3) not-conf(D) class D declared to be public

public method getE has return type E,
(C4) not-conf(E)

public �eld c has type C

(C5) not-conf(E)) not-conf(B) E extends B

(C6) not-conf(A)) not-conf(E) E widened to A

In some of the constraints, we use the abbreviation not-anon(A.m(); *) to denote the
set of constraints not-anon(A.m(); X) for all classes X in the program.

All our constraints are ground Horn clauses. Our solution procedure computes the
set of clauses not-conf(classId) that are either immediate facts or derivable via logical
implication. This computation can be done easily, in linear time.

8

public class A {

A a;

public A m() {

a = this; // (A1)

new B().t(this); // (A1)

return this; // (A1)

}

native void o(); // (A2)

}

class B extends A {

void t(A a) {}

A p() {

return this.m(); // (A3)

}

public A getE() {

return new E().p(); // (C1)

}

}

class C extends Thread { // (C2)

}

public class D { // (C3)

public E getE() { // (C4)

return new E();

}

public C c = new C(); // (C4)

}

class E extends B { // (C5)

A getA() {

this.t(this); // (C6)

a = new E(); // (C6)

return new E(); // (C6)

}

}

Figure 6: Example program.

9

4 Implementation

Though the criteria for con�ned types have been described on the source level, our
analysis is performed on Java bytecode. The code extends a bytecode veri�er written
for the OVM project, a GPLed implementation of a Java Virtual Machine in Java.

First Kacheck/J loads all classes (libraries and program) using the OVM loading
mechanism. Then Kacheck/J runs a modi�ed version of OVM's bytecode veri�er to
create the constraint system.

The veri�cation process in OVM can be described with the
yweight pattern. For
each of the 200 bytecode instructions de�ned in the Java Virtual Machine Speci�cation
the veri�er creates an Instruction object that is responsible to compute the actions
of this instruction. Starting with an initial state of the StackFrame (which includes the
instruction pointer, stack height and types of the local variables) the veri�er follows
all possible control
ows. The Instruction objects operate on a StackFrame yield-
ing all next possible states of the interpreter that might follow the execution of that
instruction.

This
yweight approach allows us to use the veri�er to check for con�ned types by
changing the simulation method of only 9 of the 200 Instruction objects. Instead
of just computing the next possible StackFrames some extra checks are added. For
example the areturn instruction now has to check that a this Reference is not used as
the argument (or report this as a violation of anonymity for that method). The invoke
instructions record violations like the use of this as an argument or dependencies if
the method is invoked on this.

Overall, the following changes were applied to the veri�er:

� in non-static methods the incoming reference to this in local variable 0 must be
marked special and tracked during the control
ow.

� violations and uses of this (return, invoke on, argument to) must be recorded
during the analysis of the control
ow.

� widening of private types (set �eld, return, use in arguments) must be recorded.

� record if con�ned types are used with throw.

The violations caused by implicit widening can be recorded in the subtyping facility
that usually veri�es if the assignments in the bytecode are legal. The violations con-
cerned with anonymous methods only require slight modi�cations to the code that
simulates the instructions: a check if the reference used happens to be this.

First the constraint solver determines the potentially con�ned classes using the
collected constraints of type not-conf(C). For each of the potentially con�ned classes
C it then implements a demand driven computation of the anonymous methods m
in relation to C starting with the constraints not-anon(m;C)) not-conf(C). Finally
dependencies between the con�ned types (constraint not-conf(A)) not-conf(B)) are
considered.

The code speci�c to con�ned types (including constraint solving) is about 3,000
lines. The code reused from OVM (including class loading) is about 15,000 lines of
code. The current version of the OVM is about 44,000 lines of code.

10

5 Results

We have run Kacheck/J on the following 15 benchmarks programs:

JDK 1.1.8 library code
JDK 1.2.2 library code
JDK 1.3 library code

GJ Generic Java compiler
Soot Bytecode optimizer framework
Toba bytecode-to-C translator
Jpat protein analysis tool
Kawa Scheme to bytecode compiler
Rhino Javascript interpreter

Schroeder Audio editor
Symjpack Symbolic executor of mathematical expressions
SableCC Java source to HTML translator

Aglet Mobile agent development toolkit
HyperJ IBM composition framework

Kacheck/J con�nement checker

Some of our benchmark programs were provided by the Sable Research group and
are part of their Ashes Suite. Figure 7 shows general characteristics of the benchmark
programs.

classes
Benchmark

all public
packages size (KB)

JDK 1.1.8 1704 1419 80 8776
JDK 1.2.2 4338 2648 130 10008
JDK 1.3 5438 3327 176 12877
GJ 1638 1130 40 3017
Soot 1442 604 7 2276
Kawa 3160 3155 8 4578
Toba 762 327 12 1378
Rhino 164 122 7 749
Schroeder 120 112 3 299
Javasrc 196 126 14 634
Symjpack 15 2 2 82
SableCC 342 290 9 566
Aglets 410 193 19 1015
HyperJ 921 793 155 2873
Kacheck/J 311 113 21 576352

Figure 7: Statistics for the benchmarks

11

5.1 Con�ned Types in Practice

The numbers of con�ned classes found in the benchmark programs are given in Figure 8.
The di�erences between applications are stunning. For example in Soot nearly every
third class is con�ned. On the other hand in Kawa only 2 of 3160 classes are con�ned.
On the average, about 8.6% of all classes are con�ned and 27.4% of all non-public
classes are con�ned.

con�ned violations
Benchmark

classes hierarchy widening anonimity member

JDK 1.1.8 37 18 203 41 52
JDK 1.2.2 415 19 1215 125 124
JDK 1.3 507 25 1521 140 171
GJ 93 0 412 5 14
Soot 453 0 382 1 41
Kawa 2 0 3 0 0
Toba 40 0 389 1 83
Rhino 21 0 17 1 3
Schroeder 3 0 5 3 0
Javasrc 14 0 53 3 58
Symjpack 10 0 3 0 12
SableCC 3 0 49 0 2
Aglets 104 4 91 42 4
HyperJ 22 0 97 15 21
Kacheck/J 18 0 169 0 18

Figure 8: Number of con�ned classes and reasons for non-con�nement

Performance All benchmarks were performed on a Pentium III 800 with 256 MB
of RAM running Linux 2.2.18 with IBM JDK 1.3. The CPU timings show best user
time over three consecutive runs of the program.

Except for the JDK tests all benchmarks times include loading the JDK 1.2.2
libraries, but Kacheck/J analyzes library code only to evaluate method anonymity. In
practice only a small part of the library is analyzed.

The following graphs plot the number of classes/bytecode size against analysis
time. Circles represent the JDK benchmarks which are special since they do not have
load library code. The variability in analysis time is due to Kacheck/J's treatment
of bytecode veri�cation. In some pathological cases analysis of a single method can
dominate the entire program analysis time.

12

average
Benchmark time (s)

per class (ms)

JDK 1.1.8 15.2 8.9
JDK 1.2.2 27.0 6.2
JDK 1.3 54.0 9.9
GJ 22.7 13.8
Soot 22.2 15.4
Kawa 21.8 6.9
Toba 20.0 26.2
Rhino 14.2 86.5
Schroeder 13.5 112.5
Javasrc 14.1 71.9
Symjpack 12.6 840.0
SableCC 32.9 96.2
Aglets 18.1 44.1
HyperJ 22.6 24.5
Kacheck/J 14.8 47.6

Figure 9: Time required for the analysis

0 1000 2000 3000 4000 5000

c [#classes]

0

20

40

60

t(
c)

 [
m

s]

0 5000000 10000000

b [size in bytes]

0

20

40

60

t(
b)

 [
m

s]

5.2 Con�nement Violations

A rough categorization of con�nement violations is as follows:

Hierarchy The class is a subclass of Thread or Throwable.
Widening The type is widened to a non con�ned type.
Anonymity A method invoked on the class is not anonymous.
Member A non-private �eld or method return type exposes

a con�ned type

13

The data summarizing violation in the benchmarks is shown in Figure 8. Looking
at the reasons why classes are not con�ned, it is obvious that most violations are caused
by widening to non-con�ned classes. Invocations of non anonymous methods on a class
play only a minor rule in the overall number of violations. Hierarchy violations occur
almost exclusively in the JDK (note that in our current implementation classes that
extend Throwable are caught during bytecode analysis and are marked as widening
violations).

Some very frequent violations are caused by well known programming idioms. We
give examples some of the most frequent cases.

Anonymous inner class cast to public type: This violation occurs very fre-
quently when inner classes are used to implement call-backs. For example in the Aglet
benchmark (com/ibm/aglet/util/AddressBook.java) the MouseListener class is
public. Thus the following code violates con�nement of the inner class.

MouseListener mlistener = new MouseAdapter() {

public void mouseEntered(MouseEvent e) {

....

}

};

Anonymity violations: The top three anonymity violations (accounting for 133
non con�ned classes) in the entire JDK come from methods in the AWT library which
register the current object for noti�cation. The method addImpl is representative:

protected void addImpl(Component comp, Object constraints, int index) {

synchronized (getTreeLock()) {

...

ContainerEvent e = new ContainerEvent(this,

ContainerEvent.COMPONENT_ADDED,

comp);

...

}

Widening to (abstract) parent: Widening violations are the most frequent kind
of con�nement breach. For instance the tool signals the following widening in the Aglet
benchmark:

com/ibm/aglets/tahiti/SecurityPermissionEditor:

Illegal Widening:

widened to com/ibm/aglets/tahiti/PermissionEditor

PermissionEditor is an abstract superclass of SecurityPermissionEditor. This
part of the interface is then exported outside the package (in this case in a method
call, implicit widening of the argument).

14

Widening to containers: For instance, the tool reports that a key part of the
ClassLoader class is not con�ned.

java/lang/ClassLoader$NativeLibrary:

Illegal Widening:

widened to java/lang/Object

The error occurs because an instance of NativeLibrary is stored in a vector.

systemNativeLibraries.addElement(lib);

As such, this violation may indicate a security problem. Quick inspection of the
code reveals that the vector in which the object is stored is private.

private static Vector systemNativeLibraries = new Vector();

After a little more checking it is obvious that the vector does not escape from
its de�ning class. But this required inspection of the source code and remains true
only until the next patch is applied to the class. Examples like this one are a good
motivation for con�ned types.

6 Discussion

6.1 Increasing Con�nement

The large number of widening violations occurring in the benchmarks suggests that
we should focus on this category of error when re-engineering software to increase
con�nement opportunities. Most of the widening violation we have observed occur
because the target of the widening is a public class. These breaches roughly break
down in two groups: breaches due to casts to a public super type and the special case
of casts to Object that occur when con�ned types are stored in containers.

We introduce the following classi�cation:

Unconf Classes that cannot be made con�ned.
Con�nable Classes that could possibly be made con�ned.
Con�ned Classes that satisfy the con�nement rules.
GenCon�nable Classes that are not con�ned only because

they are stored in a container.

Unconf classes are classes that cannot possibly be con�ned because they are actually
used outside of their de�ning package. Con�nable classes are class that are not con�ned
because they have been declared public, but otherwise meet all the con�nement criteria.
GenCon�nable classes are con�nable classes that are not con�ned only because they
are stored in a container.

Con�nable classes are interesting because all it takes to make the classes con�ned is
to remove the public keyword in the class declaration. Figure 6.1 shows that there is a
large number of types that may be made con�ned. The analysis infers con�nability by

15

ignoring class access modi�ers and trying to make all classes con�ned. When ever the
tool �nd a use of a class outside of its de�ning package the class is marked as Unconf.
Of course, making library classes con�ned may a�ect future clients, so the numbers
shown here should be considered an upper bound.

number of classes
Benchmark

all con�ned con�nable

JDK 1.1.8 1702 37 488
JDK 1.2.2 4338 415 1015
JDK 1.3 5438 507 1362
GJ 1638 93 409
Soot 1442 453 862
Kawa 3160 2 707
Toba 762 40 153
Rhino 164 21 80
Schroeder 120 3 8
Javasrc 196 11 48
Symjpack 15 10 12
SableCC 342 3 43
Aglets 410 104 152
HyperJ 921 22 176
Kacheck/J 311 18 38

Figure 10: Number of con�ned and con�nable classes

Containers in Java are usually de�ned in the JDK java.util package and hold
objects of type Object. As Object is public and the methods of the containers deal
with Object, widening occurs in every use of these containers. In Figure 6.1 we show
what happens if we do not count widening of potentially con�ned types to public types
in calls to methods of java.util classes. The column GenCon�nable list the number
of classes (including public classes) that would be con�ned if violations with java.util

are discounted.
The numbers are, again, an upper bound as we do not check that the container in

which con�ned objects do not escape their con�ning package.

6.2 Coding for Con�nement

Our results clearly point to containers is one source of con�nement violations. We
considered using generic extensions of Java (such as GJ) to increase con�nement, un-
fortunately the homogeneous translation strategies adopted by most of these extensions
imply that at the bytecode level, code written with GJ is translated back to code that
uses the standard Java container classes. Thus it is not possible for Kacheck/J to
verify that classes stored in generic types remain con�ned. Heterogeneous translation
strategies have the drawback of causing code duplication. Fortunately, it is possible
to achieve the desired result with some coding techniques. The basic idea is to use a

16

number of classes
Benchmark

all con�ned util-con�nable

JDK 1.1.8 1702 37 527
JDK 1.2.2 4338 415 1129
JDK 1.3 5438 507 1499
GJ 1638 93 466
Soot 1442 453 862
Kawa 3160 2 707
Toba 762 40 153
Rhino 164 21 84
Schroeder 120 3 18
Javasrc 196 11 60
Symjpack 15 10 12
SableCC 342 3 47
Aglets 410 104 161
HyperJ 921 22 188
Kacheck/J 311 18 38

Figure 11: Number of con�ned and util-con�nable classes

adapter pattern to wrap an uncon�ned object around each con�ned object that must
be stored in a container.

A Hashtable Example: A con�ned implementation of Hashtable could provide
an interface Entry with two methods boolean equal(Entry e) and int hashCode().
In the package that contains the con�ned class C the programmer would de�ne an
implementation RealEntry of Entry with a package-scoped constructor that takes the
key and value (where e.g. the value has the type of the con�ned class) and package-
scoped accessor methods. The Hashtable itself would only be able to access the public
methods de�ned in Entry. As long as these method do not reveal the con�ned class,
the con�nement of the class can be veri�ed.

The cost of this change would be the creation of the extra Entry object that might
not be required by other implementations of Hashtable. On the other hand, to access
a key-value pair this implementation only requires one cast (Entry to the RealEntry

to access key and value, where the default implementation requires a cast on key and
value. For other containers the tradeo�s maybe worse.

7 Conclusion

The number of con�ned types in normal Java code is surprisingly high. Many of vio-
lations occur together with the use of java.util classes and thus might be resolved
extending Java with genericity or by changing the coding style. We proved that infer-
ring con�ned types is fast, scalable and provides results that are easy to interpret.

17

References

[1] Paulo S�ergio Almeida. Balloon Types: Controlling sharing of state in data types.
In ECOOP Proceedings, June 1997.

[2] Bruno Blanchet. Escape analysis for object oriented languages. application to
Java. In OOPSLA'99 ACM Conference on Object-Oriented Systems, Languages
and Applications, volume 34(10) of ACM SIGPLAN Notices, pages 20{34, Denver,
CO, October 1999. ACM Press.

[3] Je� Bogda and Urs H�olzle. Removing unnecessary synchronization in Java. In
OOPSLA'99 ACM Conference on Object-Oriented Systems, Languages and Ap-
plications, volume 34(10) of ACM SIGPLAN Notices, pages 35{46, Denver, CO,
October 1999. ACM Press.

[4] Boris Bokowski. Co�eeStrainer: Statically-checked constraints on the de�nition
and use of types in Java. In Proceedings of ESEC/FSE'99, Toulouse, France,
September 1999.

[5] Boris Bokowski and Jan Vitek. Con�ned Types. In Proceedings 14th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA'99), Denver, Colorado, USA, November 1999.

[6] David G. Clarke, John M. Potter, and James Noble. Ownership types for
exible
alias protection. In OOPSLA '98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 48{64. ACM, October 1998.

[7] D. Detlefs, K. Rustan, M. Leino, and G. Nelson. Wrestling with rep exposure.
Technical report, Digital Equipment Corporation Systems Research Center, 1996.

[8] Alain Deutsch. Semantic models and abstract interpretation techniques for in-
ductive data structures and pointers. In Proceedings of the ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation, pages
226{229, La Jolla, California, June 21{23, 1995.

[9] Daniela Genius, Martin Trapp, and Wolf Zimmermann. An approach to improve
locality using Sandwich Types. In Proceedings of the 2nd Types in Compilation
workshop, volume LNCS 1473, Kyoto, Japan, March 1998. Springer Verlag.

[10] John Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA
Proceedings, November 1991.

[11] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The
Geneva convention on the treatment of object aliasing. OOPS Messenger, 3(2),
April 1992.

[12] S.J.H. Kent and I. Maung. Encapsulation and Aggregation. In Proceedings of
TOOLS PACIFIC 95 (TOOLS 18). Prentice Hall, 1995.

[13] Sun Microsystems. Support for extensions and applications in the version 1.2 of
the Java platform. 2000.

[14] James Noble, John Potter, and Jan Vitek. Flexible alias protection. In Proceed-
ings of ECOOP'98, volume 1543 of LNCS, Brussels, Belgium, July 20 - 24 1998.
Springer-Verlag.

18

[15] Ayal Zaks, Vitaly Feldman, and Nava Aizikowitz. Sealed calls in Java packages. In
OOPSLA '2000 Conference Proceedings, ACM SIGPLAN Notices. ACM, October
2000.

19

