Data collection for

intrusion detection

Network -based Host -based

0706 ¢

Indirect monitoring

= —
& @

External sensors Internal sensors

oW . N..

Internal sensor

» A piece of code added to a
program that monitors a specific

variable or condition
char buf[256];

log(“len=%", strlen(getenv(“HOME")));
strcpy(buf,getenv(“HOMVE"));

Embedded detector

* An internal sensor with logic
added to detect a specific
intrusion or attack

char buf[256];

{ if(strlen(getenv(“HOVE")) >255) {
log(“buffer overflow');

strcpy(buf,getenv(“HOVE"));

Using embedded detectors

for intrusion detection

v Advantages:
* Little extra resource usage
* Very difficult to disable
* Direct monitoring
* Full access to data
x Disadvantages:
* Very system-dependent
* Need source code
» Sometimes “too low”

Our implementation

Over 100 detectors implemented so far. For example:

¢ Land « Sendmail MIME buffer

* Teardrop overflows

« Ping of death ¢ SSH vulnerabilities

« WinNuke « IRIX buffer overflows

« Portscans « Apache buffer overflows
« SYN flood « Solaris telned DoS

* Smurf/Fraggle * TCP seqg# prediction

Web server performance

etperf(source)

CPU Utilization in %

Bandwidth

imiter

0 10 20 30 40 50 60 70
Bandwidth in MB/s

E==3No Sensors c===3Sensors
NO SensorsSensors

ESP-instrumented

Size of detectors
We measure Executabl e Statements Added or Modified

Chart includes
117 detectors

More than 90%
are6 ESAM or
less!

Number of detectors

11
Executable Statements Added or

What have we learned?

* Some patterns start to emerge
(generic detectors)

* Stateless and stateful detectors

* Build an IDS based on what we
need, not what we have

Still in the works....

* Detection of unknown attacks

» Detailed characterization of sensors
and detectors

 Detailed description of
implementation guidelines

