
Lingfeng Ma lingfeng@cerias.purdue.edu
Salvador Mandujano sam@cerias.purdue.edu
Guangfeng Song songg@cerias.purdue.edu
Pascal Meunier pmeunier@cerias.purdue.edu



Bugtraq:       Little QA
Standard search options
No classification of vulnerabilities

CERT:   Impose disclosure time
More concerned with incidents

We: Information review process
Smarter search criteria
Vulnerability taxonomy
Better mechanisms for disclosure
Cooperation and sharing



3 main models:
- Open model
- Centralized model
- Federated model
- * Balkans/Status quo

The CoopVDB:
- A central repository is maintained
- Multiple entities contribute to the contents
- Information is made available in a controlled 
manner



Vulnerability information sharing

• Reasons not to share 
•”not a problem until it is exploited”
• Leave well-enough alone
• Sharing encourages attacks
• Immediate cost:

• Our customers could get hurt
• It’s expensive to fix vulnerabilities

• Reasons to share 
• Security is important to customers
• Unknown risks are scarier
• Information warfare

• others are spending resources on 
finding vulnerabilities against you

• Learn from mistakes
• Motivate vendors to fix vulnerabilities
• Indirect reward for responsible sharing

• Wrong: Should I share?

• Right: When should I share, and with who?

• How do I get credit for doing the right thing?



Time periods:

1. Pre-patch, pre-workaround
• There are no patches or known 

workarounds
• Sharing vulnerability information with 

everyone is dangerous

2. Pre-patch, known workaround
• There are no patches available, but a 

workaround has been found
• Sharing vulnerability information with 

everyone is less dangerous

3. Post-patch, pre-installation
• The patch has been released by the vendor, 

but very few people have had time to 
install it

• Sharing vulnerability information is 
necessary to motivate the uniform 
installation of patches

4. Post-patch, post-installation
•Most people have installed the patch, and the 

fix is now included in the normal release
• Vulnerability information is of academic 

interest

When to share



Intended Usage
• Share within trusted groups:

• Inside a company
• Across partner companies 

e.g., CERIAS sponsors

• Let vendors have some control over disclosure
• Submit vulnerabilities to the editor 

representing the company who made the 
product

• Nominate a reviewer from that company
• Withold vote until workaround is available.

• How to convince companies to use it?
•  If no vendor participation, disclose to trusted 
community immediately after review

• How to convince finders to use it?
• Time-stamped channel
• Kudos

• Primer: CERIAS uses it.

• Dangers: community pollution
• Leakage outside trusted group 
• Fragile trust
• Trust drift (a -> b -> c -> d does not imply 

a -> d)



Key points:
• Information need to be shared among trusted parties
• Information validation and quality control are 

important

Discoverer

Vendor

Third Party

Vulnerability

Patches

Vulnerability

Patches

Discoverer

Vendor

Cooperative
trusted community

Vulnerability

Confirmation PublicPatches



Editor Reviewer

Checks

Invitation

Submitter

Submission

Vote
Result

Community

Publication



• Grouping and classification 
– Features derived by classification
– Meaningful identity created by grouping 

features
• Practical usefulness

– Easy to understand, remember, and faster input
• Example:

– Nature object, method, input, effect





• Submitter rankings (Top Ten)
• # accepted submissions 
• “Stars” as suggested in Ranum [CSI XVII, 
Number 1, 2001] (“Towards an economy 
for vulnerability disclosure”)

• Pre-flight checks
• Patches applied?
• Vulnerability already known?
• Try to reduce effort for participating 

vendors 

• To limit trust drift:
• Database owner nominates editors
• Editors nominate only normal users

• Feed the CVE with good information

• Public version
• Post-patch disclosure
• Linked to announcement service

(e.g., Cassandra)

Future Enhancements



Technical Aspects: Overview

• Developed with PHP and MySQL
• Secure connection (SSL 3.0 or TLS)
• Small functionality-based modules
• Library of utility functions
• Code review



Technical Aspects:
Validation of Submission

• Problem: Submitted input fields in HTML codes 
may subvert the system

• Solutions:
– All inputs run through “sanitization” routine 

before entering the database
– No improper operation will be performed once 

the data is stored onto the database
– The functionality of the system will not be 

affected by values being read from the tables



Technical Aspects: Cookies

• Session log table: Record successful authentication 
and session id

• Cookies: Identify session
– Randomly generated large number as session id
– Checked at the beginning of every script
– Must match username / sessionid pair in the sessionlog 

table



Technical Aspects:
Access Control

• Mandatory Access Control
– Clark-Wilson model
– Verify troplet {userid, action, vulnerability}
– Done as necessary and for customized interface



Technical Aspects: 
Miscellaneous

• Uniform PHP coding style
• Display: header, footer and navigation
• Standardized error handling routine
• User-friendly interface
• No java/javascript/ActiveX, fewer vulnerabilities


