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Bugtraq:       Little QA
Standard search options
No classification of vulnerabilities

CERT:   Impose disclosure time
More concerned with incidents

We: Information review process
Smarter search criteria
Vulnerability taxonomy
Better mechanisms for disclosure
Cooperation and sharing



3 main models:
- Open model
- Centralized model
- Federated model
- * Balkans/Status quo

The CoopVDB:
- A central repository is maintained
- Multiple entities contribute to the contents
- Information is made available in a controlled 
manner



Vulnerability information sharing

• Reasons not to share 
•”not a problem until it is exploited”
• Leave well-enough alone
• Sharing encourages attacks
• Immediate cost:

• Our customers could get hurt
• It’s expensive to fix vulnerabilities

• Reasons to share 
• Security is important to customers
• Unknown risks are scarier
• Information warfare

• others are spending resources on 
finding vulnerabilities against you

• Learn from mistakes
• Motivate vendors to fix vulnerabilities
• Indirect reward for responsible sharing

• Wrong: Should I share?

• Right: When should I share, and with who?

• How do I get credit for doing the right thing?



Time periods:

1. Pre-patch, pre-workaround
• There are no patches or known 

workarounds
• Sharing vulnerability information with 

everyone is dangerous

2. Pre-patch, known workaround
• There are no patches available, but a 

workaround has been found
• Sharing vulnerability information with 

everyone is less dangerous

3. Post-patch, pre-installation
• The patch has been released by the vendor, 

but very few people have had time to 
install it

• Sharing vulnerability information is 
necessary to motivate the uniform 
installation of patches

4. Post-patch, post-installation
•Most people have installed the patch, and the 

fix is now included in the normal release
• Vulnerability information is of academic 

interest

When to share



Intended Usage
• Share within trusted groups:

• Inside a company
• Across partner companies 

e.g., CERIAS sponsors

• Let vendors have some control over disclosure
• Submit vulnerabilities to the editor 

representing the company who made the 
product

• Nominate a reviewer from that company
• Withold vote until workaround is available.

• How to convince companies to use it?
•  If no vendor participation, disclose to trusted 
community immediately after review

• How to convince finders to use it?
• Time-stamped channel
• Kudos

• Primer: CERIAS uses it.

• Dangers: community pollution
• Leakage outside trusted group 
• Fragile trust
• Trust drift (a -> b -> c -> d does not imply 

a -> d)



Key points:
• Information need to be shared among trusted parties
• Information validation and quality control are 

important
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• Grouping and classification 
– Features derived by classification
– Meaningful identity created by grouping 

features
• Practical usefulness

– Easy to understand, remember, and faster input
• Example:

– Nature object, method, input, effect





• Submitter rankings (Top Ten)
• # accepted submissions 
• “Stars” as suggested in Ranum [CSI XVII, 
Number 1, 2001] (“Towards an economy 
for vulnerability disclosure”)

• Pre-flight checks
• Patches applied?
• Vulnerability already known?
• Try to reduce effort for participating 

vendors 

• To limit trust drift:
• Database owner nominates editors
• Editors nominate only normal users

• Feed the CVE with good information

• Public version
• Post-patch disclosure
• Linked to announcement service

(e.g., Cassandra)

Future Enhancements



Technical Aspects: Overview

• Developed with PHP and MySQL
• Secure connection (SSL 3.0 or TLS)
• Small functionality-based modules
• Library of utility functions
• Code review



Technical Aspects:
Validation of Submission

• Problem: Submitted input fields in HTML codes 
may subvert the system

• Solutions:
– All inputs run through “sanitization” routine 

before entering the database
– No improper operation will be performed once 

the data is stored onto the database
– The functionality of the system will not be 

affected by values being read from the tables



Technical Aspects: Cookies

• Session log table: Record successful authentication 
and session id

• Cookies: Identify session
– Randomly generated large number as session id
– Checked at the beginning of every script
– Must match username / sessionid pair in the sessionlog 

table



Technical Aspects:
Access Control

• Mandatory Access Control
– Clark-Wilson model
– Verify troplet {userid, action, vulnerability}
– Done as necessary and for customized interface



Technical Aspects: 
Miscellaneous

• Uniform PHP coding style
• Display: header, footer and navigation
• Standardized error handling routine
• User-friendly interface
• No java/javascript/ActiveX, fewer vulnerabilities


